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Abstract— This paper proposes simple feedback loops, in-
spired from extremum-seeking, that use the photon emission
times of a single quantum system following quantum Monte-
Carlo trajectories in order to lock in real time a probe
frequency to the system’s transition frequency. Two specific
settings are addressed: a 3-level system coupling one ground
to two excited states (one highly unstable and one metastable)
and a 3-level system coupling one excited to two ground states
(both metastable). Analytical proofs and simulations show the
accurate and robust convergence of probe frequency to system-
transition frequency in the two cases.

I. INTRODUCTION

The SI second is defined to be “the duration of 9 192 631

770 periods of the radiation corresponding to the transition

between the two hyperfine levels of the ground state of the

caesium 133 atom” [1]. A primary frequency standard is a

device that realizes this definition. For micro atomic-clocks

[8] perfect resonance between the probe laser frequency and

the atomic frequency is characterized by a maximum (or

minimum) output signal of a photo-detector. Therefore ex-

tremum seeking techniques (see e.g [3] for a recent exposure)

are usually used in high precision spectroscopy to achieve

frequency lock with an atomic transition frequency [14],

[12], [13].

State-of-the-art experiments appear in two strategies. In a

first strategy A, a real-time synchronization feedback scheme

based on modulation of the probe frequency (see more

description in [9]) is applied to a large population of identical

quantum systems with few mutual interactions (the vapor

cell) having reached its asymptotic statistical regime; the

evolution of this population and the related output signal

follow the continuous density matrix dynamics of a static

Lindblad-Kossakovski master equation. In a second strategy

B (see e.g. [13], [11]), a single atom is probed for a long time

with different probe frequencies and locking with the atom

transition frequency is deduced from the resulting statistics;

this somehow reconstructs over time the continuous signal

corresponding to strategy A.

The present paper proposes a way to merge the two

strategies and adapt real-time synchronization feedback

to a single quantum system. Such a single system cannot

be described by a static non-linear input/output map but
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it obeys stochastic jump dynamics [5], [7], modeled by

“quantum Monte-Carlo” trajectories; with respect to strategy

A, the output signal is no more continuous but corresponds

to a counter giving the jump times. As shown in [4], all the

spectroscopic information and in particular the value of the

atomic transition frequency are contained in the statistics

of these jump-time series. The novelty of the present paper

is to avoid the use of quantum filters [6] and records of

jump-time sequences required by usual statistical treatments

as in strategy B. It proposes a real-time synchronization

feedback scheme that can be implemented on electronic

circuits of similarly low complexity as those used for

extremum-seeking loops in strategy A. The resulting real-

time synchronization scheme might also allow to track (e.g.

field-induced) variations in the atom’s transition frequency

with a reasonable bandwidth, depending on the particular

atomic clock system.

We consider two particular atomic systems in the present

paper. (1) The first one corresponds to a V -system, which

features the electron-shelving mechanism and is one of the

main candidates for atomic clocks [4]. The system has two

excited states — one unstable and one metastable — which

interact with the same ground state through two electro-

magnetic fields. The system mostly evolves through the

ground-to-unstable transition. However, accurate frequency

estimation is based on the ground-to-metastable transition.

(2) The second setting corresponds to a Λ-system, where

two electromagnetic fields are tuned to make two metastable

ground states both interact with the same unstable excited

state. This system typically appears in coherent population

trapping phenomena and optical pumping [2], but also in

micro atomic clocks. This second setting is studied in more

detail in [9].

For the two systems, we propose relevant forms of the

amplitude modulation of the probe electromagnetic fields and

the associated real-time updates for their frequency on the

basis of photon detection times. We establish the stochastic

convergence property of probe frequency towards atomic

transition frequencies.

Note that the “quantum Monte-Carlo” trajectories, used

throughout the paper, should be understood as the actual

model for a single quantum system’s behavior, and not as a

numerical method. We refer to [7] for more details on the

physical interpretation of these quantum dynamics.

The paper is organized as follows. Sections II and III

consider, respectively, the V -system and the Λ-system.
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Fig. 1. The V structure system: a ground state |g〉 is coupled by two
electromagnetic fields to a highly unstable state |e1〉 (“blue laser”) and a
metastable state |e2〉 (“red laser”).

Each section first describes main properties of the specific

stochastic dynamics, then proposes a synchronization

feedback with the main ideas of a convergence proof, and

finally presents simulation results along with comments on

the performance. For detailed proofs the reader is referred

a.o. to [9].

II. THE V -SYSTEM

A. System dynamics and reduction

The V -system evolves on the Hilbert space spanned by a

stable ground state |g〉, an unstable excited state |e1〉, and a

metastable excited state |e2〉 (see Fig. 1). Lifetimes of the

excited states w.r.t. decaying to |g〉 are 1/Γ1 and 1/Γ2, with

Γ1 ≫ Γ2 (see simulation section for typical values). The

system is submitted to two laser fields with slowly varying

amplitudes denoted by Ω1, Ω2, and frequencies near-resonant

respectively with the |g〉 ↔ |e1〉 (“blue laser”) and |g〉 ↔
|e2〉 (“red laser”) transitions; the corresponding detunings

are noted ∆1 and ∆2. The goal is to reach ∆2 = 0, i.e. to

exactly synchronize the red laser to the transition frequency
Ee2−Eg

~
. Indeed, thanks to the large lifetime of metastable

state |e2〉, the uncertainty on this energy difference is very

narrow.

The classical rotating wave approximation, which as-

sumes frequencies associated to transition energies
Ee1−Eg

~
,

Ee2−Eg

~
, Ee1−Ee2

~
to be much larger than all other charac-

teristic frequencies, yields the following quantum Markov

trajectory model for the density matrix ρ characterizing a

single system (where {a, b} = ab + ba):

• continuous-time (1)

d
dt

ρ = −ı[H
~

, ρ] − 1
2

2∑

j=1

{
Q†

jQj , ρ
}

+
2∑

j=1

trace(Q†
jQjρ)ρ

with H
~

= ∆1|e1〉〈e1| + ∆2|e2〉〈e2| +
∑2

j=1

ΩjQ
†
j
+Ω∗

j Qj√
Γj

Q1 =
√

Γ1|g〉〈e1| and Q2 =
√

Γ2|g〉〈e2|

• jump to ρ = |g〉〈g| during dt with probability

Pjump(ρ → |g〉 〈g|) =
∑2

j=1 trace(Q†
jQjρ)dt

=
∑2

j=1 Γj〈ej |ρ|ej〉dt .

Assuming that decoherence rate Γ1 (typically 109 Hz) is

much larger than all other characteristic frequencies, singular

perturbation and center manifold theories are applied as

explained in [10] to separate slow and fast dynamics1.

The resulting dynamics describe a two-level “slow” system

essentially on the |g〉 ↔ |e2〉 transition. It can be written on

the Bloch sphere (see e.g. textbook [7]) as follows, with

Z = −1 and Z = +1 corresponding to |g〉 and |e2〉
respectively.

• d
dt

X = vZ + ∆2Y + σ
2 (−Z X)

d
dt

Y = −uZ − ∆2X + σ
2 (−Z Y )

d
dt

Z = −vX + uY + σ
2 (1 − Z)(1 + Z) (2)

• and jump to Z = −1 with probability

Pjump(Z → −1) =
(
Γ2 + σ

2 (1 − Z)
)
dt (3)

We denote Ω2 = u + ı v and σ = (
Ω2

1

Γ1

− Γ2). Since Γ2 ≪,

it is reasonable that
Ω2

1

Γ1

≫ Γ2 such that σ > 0.

Observations:

1. Fortunately ∆1 does not appear in these dynamics.

2. In absence of photon emission jumps, the decoherence

term, proportional to σ, drives the system towards excited

state |e2〉, not towards |g〉 as is usually the case for a two-

level system. This reflects the effect of measurement with the

blue laser: if no photon is emitted despite a strong coupling

of |g〉 with |e1〉, then it is most probable that the system is

actually mainly “shelved” on state |e2〉. Of course the system

still jumps to |g〉 at photon emission.

B. Synchronization feedback

In the absence of jumps, (2) is strictly equivalent to the

two-level system of [9], after inversion of the Z-direction

(and controls u, v) and scaling by σ
Γ1

. Therefore we take

Ω2 = ū(1 + ı cos(ωt)) (4)

as for this two-level system, with ū = 2κσǫ w.r.t. the

proof in [9]. Jump dynamics (3) after Z-inversion features a

significant difference w.r.t. the two-level system of [9]: the

system jumps to the opposite point of the Bloch sphere at

photon emission. The jumping probability after Z-inversion

is however as in [9]. Therefore, the analogous update is:




∆2(N + 1) = ∆2(N) + δ ū sin(ω tN )

if |∆2(N) + δ ū sin(ω tN )| ≤ C,

∆2(N + 1) = C otherwise

(5)

where t0, t1,... tN ,... are the detection times of photons

that are preceded by a sufficiently long “dead-time” interval

[tN −T, tN ) during which no photon has been detected, for

some T > 0. Thus (5) is only applied for photons that follow

a sufficiently long evolution without jump. While a similar

condition is included in [9] as a technicality, here T plays

1This is done by using the corresponding deterministic ensemble dynam-
ics, in Lindblad-Kossakovski master equation form, as an intermediate step.
See details for a similar case in Section III.
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a crucial role, explained in the following. We assume as in

[9] that initially |∆| does not exceed a fixed constant C and

explicitly maintain it within this bound.

The idea behind (4), similarly for the two-level system in

[9], is: under (4),(2) the system ultimately converges to and

evolves on a limit cycle in the neighborhood of Z = 1. The

position of this limit cycle, and linked to this the phase of

the system on the limit cycle w.r.t. the phase in (4), depends

on ∆2. The jump probability will depend on the position on

the limit cycle, and thus jump times reflect ∆2.

Under (4), the system in absence of jumps slowly drifts

from |g〉 towards |e2〉, around which it stabilizes on a limit

cycle; when jumping, the system goes to |g〉; the jump

probability decreases when going from |g〉 to |e2〉. As a

consequence the system jumps to a point (i) that is opposite

to the limit cycle on which we want to use (5) and (ii)

in whose neighborhood jumping again is highly probable.

Therefore, a useful photon for (5), based on limit-cycle

evolution as explained in the previous paragraph, is gained

only rarely, when the system travels the whole way from one

pole of the sphere to the other without emitting a photon.

Physically, (5) is applied close to an electron-shelving state,

which is much less probable to reach than emitting many

photons on the |g〉 ↔ |e〉 transition.

Consequently, we must impose a “dead-time” T large

enough to ensure that the system has travelled the whole

way from |g〉 to the limit cycle around |e2〉; in contrast,

for the systems studied in [9] (see also Section III), T is

introduced essentially as a technicality. However, the longer

time invested is compensated by better accuracy: the scaling

w.r.t. two-level system of [9], due to the long lifetime of

|e2〉, implies that (2) is sensitive to Γ1

σ
times smaller ∆2. It

also requires Γ1

σ
times smaller ω. Note that the dead-time

detection can be replaced by detection of a “red photon” if

a narrow-band detector is available in the experiment.

Theorem 1: Consider the Monte-Carlo trajectories de-

scribed by (2),(3) with controller (4),(5). Assume σ = (
Ω2

1

Γ1

−
Γ2) > 0 and take ū ∼ σ ǫ, δ ∼ σ ǫ2 with ǫ ≪ 1. For initial

detuning C, assume 4C2 + 1 < 4ω2. Then there exists a

dead-time T large enough so that

lim sup
N→∞

E(∆2(N)2) ≤ O(ǫ2) .

Indeed, thanks to the analogy between our reduced system

and the two-level system of [9], conclusions of Theorem 2.1

and Corollary 2.2 in [9] can be transposed here assuming

the system reduction to be exact. For the original system, we

need Γ1 so large that (1),(4) has a limit cycle ǫ4-close to the

one estimated with the reduced system in the proof, see [9].

C. Simulation and discussion

The simulation is made on the full model (1). Parameters

are chosen as Γ1 = 5, Ω1 = 0.5, ∆1 = 0, Γ2 = 0.005,

ū = 0.04, ω = 0.08 ·2π, δ = 0.012 and T = 100. With these

values, about 1 out of 100 photons corresponds to a jump

after sufficient dead-time, thus an update. Figure 2 shows the

evolution of detuning for a single trajectory of the system.

During the overall time of 24 · 105 the detuning decreases

from 0.25 to 0.03. As suspected given the significant dead-

time, convergence is much slower than for the systems

described in [9], see also Section III. For a typical system

with Γ1 in the nano-second range, the full simulation time

is of the order of 1ms and the obtained accuracy is about
Γ1

100 ∼ 10MHz.

Figure 3 shows a typical section of quantum Monte-Carlo

trajectory for the same simulation. It represents 〈e2|ρ|e2〉,
that is the probability of being “shelved” on metastable state

|e2〉. Each jump down to 0 corresponds to the emission of

a photon. Each plateau close to 1 corresponds to a “shelved

electron” situation. There is a significant probability to emit

no photon for a long time on this plateau, which has led

to its name “dark window” in the physics literature [4].

Oscillations on the plateau due to periodic excitation (4)

are clearly visible. Jumping from the plateau corresponds

to a “red” photon and triggers a detuning update. The idea

behind (5) is that jumps are more probable in the “valleys”

of the oscillations.

Simulations and approximate reasoning confirm that small

laser amplitudes Ω1, Ω2 improve the synchronization ac-

curacy. Note that in addition to Theorem 1, accuracy of

the singular perturbation approximation must be taken into

account. In practice, synchronization accuracy is limited by

the following.

• For small Ω1, Ω2, it takes longer to travel from |g〉 to

the neighborhood of |e2〉 where useful information is

gained. Thus convergence becomes very slow.

• Requirement σ > 0 imposes Ω2
1 > Γ2 Γ1 where the

right side is a system property. This lower bound on Ω1

sets a limit for the accuracy of the singular perturbation

approximation. Thus unlike for the two-level system,

it is not possible here2 to reach arbitrary accuracy by

taking small controls.

• One advantage of the V -system for physical experi-

ments is that the blue laser is also used for cooling

atomic motion [15]. This Doppler cooling technique

requires significant amplitude Ω1 and detuning ∆1:

optimum cooling is achieved at Ω1 = Γ1 and ∆1 =
−Γ1

2 . With these choices the singular perturbation ap-

proximation clearly fails. A proper reduction of fast vs.

slow dynamics would then reduce the slow “system”

to the one-dimensional |e2〉-space: the system varies

in first approximation between two discrete situations,

either completely trapped on |e2〉, or constantly moving

between |g〉 and |e1〉 with rapid photon emission. Then

real-time synchronization feedback schemes analogous

to the ones in this paper cannot be proposed anymore.

Sensitivity of the system to Ω1 and ∆1 is known by physi-

cists as “ground state broadening and shifting” through the

laser-induced interaction of |g〉 with |e1〉. This effect can

2That is, on the original V -system (1), in contrast to singular perturbation
approximation (2).

5033



0 0.5 1 1.5 2 2.5

x 10
6

0

0.2

0.4

D
e
tu

n
in

g

time

Fig. 2. Simulation of synchronization feedback on the V -system: evolution of detuning for a single Monte-Carlo trajectory.
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Fig. 3. Simulation of synchronization feedback on the V -system: quantum Monte-Carlo trajectory of 〈e2|ρ|e2〉.

be avoided in high-precision frequency measurements by

turning on the blue and red lasers alternatively, as suggested

in [4]. However, the real-time synchronization feedback

proposed here does not work with dynamics modified in this

way.

In conclusion, the proposed real-time feedback

synchronization on the V -system seems not competitive

for ultra-high-precision atomic clock standards like [11].

However, the real-time operation obtained in return (e.g.

convergence in 1ms in the above simulation) might allow

large-bandwidth tracking of energy level variations e.g. to

track a physical parameter (magnetic field) on which
Ee2−Eg

~
depends.

III. THE Λ-SYSTEM

A. System dynamics and reduction

In this section, we consider a 3-level system in Λ-

configuration, as another candidate for a frequency standard.

The system is composed of two metastable ground states |g1〉
and |g2〉, and an excited state |e〉 coupled to the lower ones.

The decay times for the |e〉 → |gj〉 transitions are assumed

to be much shorter than those corresponding to the transition

between ground states (here assumed so lowly probable that

it is neglected). Similarly to the previous section, we denote

the associated relaxing constants by Γ1 and Γ2. However,

we do not have anymore Γ2 ≪ Γ1: our essential assumption

is that both Γ1 and Γ2 are large w.r.t. other parameters. The

ground states can have their energy separation in microwave

regime, like in atomic microclocks, but also in the optical

regime which would allow a better precision of the clock.

Once again, we consider near-resonant laser fields with

slowly varying amplitudes that we note by Ω̃1 and Ω̃2 and

the associated detunings ∆e and ∆e + ∆ (∆ is called the

Raman detuning). Here we explicitly detail the derivation

of the quantum Markov model describing single system

trajectories, from the Lindblad master equation governing

average dynamics of an ensemble of systems. The classical

rotating wave approximation yields the following master

equation of Lindblad type

d

dt
ρ = − ı

~
[H̃, ρ]+

1

2

2∑

j=1

(2QjρQ†
j−Q†

jQjρ−ρQ†
jQj), (6)

with

H̃
~

=∆
2 (|g2〉 〈g2| − |g1〉 〈g1|)
+

(
∆e + ∆

2

)
(|g1〉 〈g1| + |g2〉 〈g2|)

+ Ω̃1 |g1〉 〈e| + Ω̃∗
1 |e〉 〈g1| + Ω̃2 |g2〉 〈e| + Ω̃∗

2 |e〉 〈g2|

and Qj =
√

Γj |gj〉 〈e|.

Fig. 4. The Λ-system: two metastable ground states |g1〉 and |g2〉 are
coupled to an unstable excited state.

Assuming that the decoherence rates Γ1 and Γ2 are much

larger than the Rabi frequencies |Ω̃1|, |Ω̃2| and the detuning

frequencies ∆ and ∆e, the system spends very little time on

the excited state |e〉 as it transits between |g1〉 and |g2〉. We
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then may apply the singular perturbation theory to remove

the fast and stable dynamics of |e〉 in order to obtain a system

living on the 2-level subspace span{|g1〉 , |g2〉}.

The reduced Markovian master equation is still of Lind-

blad type and reads (see [10] for a detailed proof)

d

dt
ρ = − ı

~
[H, ρ] +

1

2

2∑

j=1

(2LjρL†
j −L†

jLjρ− ρL†
jLj), (7)

where the reduced slow-Hamiltonian H is given, up to a

global phase change, by

H
~

= ∆
2 (|g2〉 〈g2| − |g1〉 〈g1|) = ∆

2 σz (8)

and

Lj =
√

γ̃j |gj〉
〈
beΩ

∣∣ with γ̃j = 4 |eΩ1|2+|eΩ2|2
(Γ1+Γ2)2

Γj .
(9)

State
∣∣beΩ

〉
=

eΩ1√
|eΩ1|2+|eΩ2|2

|g1〉 +
eΩ2√

|eΩ1|2+|eΩ2|2
|g2〉 .

is known as the “bright state” in the physics literature

(coherent population trapping). From now on, we deal with

the 2-level system (7) instead of (6).

Master equation (7) is identical to the ensemble dynam-

ics generated by the following single system Monte-Carlo

trajectories. In the absence of quantum jumps, the system

evolves through the dynamics (where {a, b} = ab + ba):

d
dt

ρ = −ı
∆

2
[σz, ρ]− 1

2

2∑

j=1

{
L†

jLj , ρ
}

+
2∑

j=1

trace(L†
jLjρ)ρ,

the Lindblad operators Lj being given by (9). Since L†
jLj =

γ̃j

∣∣beΩ

〉 〈
beΩ

∣∣, we have, with γ̃ = γ̃1 + γ̃2,

1
γ̃

d
dt

ρ = −ı ∆
2γ̃

[σz, ρ]

− 1
2

{∣∣beΩ

〉 〈
beΩ

∣∣ , ρ
}

+
〈
beΩ

∣∣ ρ
∣∣beΩ

〉
ρ. (10)

In addition, during each time step dt the system may jump

towards the state |gj〉 〈gj | with a probability given by

Pjump(ρ → |gj〉 〈gj |) = trace(L†
jLjρ)dt

= γ̃j

〈
beΩ

∣∣ ρ
∣∣beΩ

〉
dt, j = 1, 2. (11)

This probability is proportional to the population of the bright

state
∣∣beΩ

〉
(which is actually the reason for its name).

B. Synchronization feedback

In this subsection, we consider the 2-level system obtained

as the slow subsystem of the Λ-system presented in subsec-

tion III-A. Similarly to subsection II-B, we apply varying

laser field amplitudes Ω̃1 and Ω̃2. Consider two positive

constant Ω1, Ω2 and take the following modulations

Ω̃1 = Ω1 + ıǫΩ2 cos(ωt), Ω̃2 = Ω2 − ıǫΩ1 cos(ωt) (12)

with ǫ ≪ 1 and, to satisfy the assumptions of the above

singular perturbations reduction, ω,Ω1,Ω2 ≪ Γ1,Γ2. By

analogy with subsection III-A, consider the orthogonal basis

|b〉 = Ω1|g1〉+Ω2|g2〉√
Ω2

1
+Ω2

2

, |d〉 = Ω2|g1〉−Ω1|g2〉√
Ω2

1
+Ω2

2

(13)

which are respectively the “bright” and “dark” states of the

nonoscillating system (i.e. with ǫ = 0). Define

γj = 4
Ω2

1
+Ω2

2

(Γ1+Γ2)2
Γj for j = 1, 2 and γ = γ1 + γ2 .

Replacing ∆/γ by ∆, ω/γ by ω, and γt by t in (10),(11),

we get quantum Monte-Carlo dynamics in the 1/γ scale, the

optical-pumping scale. It reads as follows (with some abuse

of notation):

• continuous-time (14)

d
dt

ρ = −ı[
∆

2
σz, ρ] − 1

2 {|b + ıǫ cos(ωt)d〉 〈b + ıǫ cos(ωt)d| , ρ}
+ 〈b + ıǫ cos(ωt)d| ρ |b + ıǫ cos(ωt)d〉 ρ

with |b〉 = cos α |g1〉 + sin α |g2〉
|d〉 = − sin α |g1〉 + cos α |g2〉

α ∈
[
0,

π

2

]
the argument of Ω1 + iΩ2

• jump to ρ = |gj〉〈gj | , j = 1, 2 during dt with probability

Pjump(ρ → |gj〉 〈gj |) =
γj

γ
〈b + ıǫ cos(ωt)d| ρ |b + ıǫ cos(ωt)d〉 dt .

Each quantum jump leads to the emission of a photon. The

total photon detection probability simply reads

palljumps = 〈b + ıǫ cos(ωt)d| ρ |b + ıǫ cos(ωt)d〉 dt . (15)

We assume a broadband detection process, where the only

information available is the time of jump. The type of jump

(to ρ = |g1〉 〈g1| or to ρ = |g2〉 〈g2|) is not available. This

means that, unlike in the two-level reduction of Section II,

we do not know in which state the system is after each jump.

Similarly to Section II, the goal is to synchronize the lasers

with the system’s transition frequencies. Since ∆e drops out

of the reduced equations, we will make ∆ converge to zero;

this means that we synchronize on the difference between

ground state frequencies
Eg2−Eg1

~
.

We propose the following synchronization algorithm, as-

suming that δ, ǫ ≪ 1 ≪ ω (≪ Γ1,Γ2):




∆(N + 1) = ∆(N) − δ sin(2α) cos(ωtN )

if |∆(N) − δ sin(2α) cos(ωtN )| ≤ C,

∆(N + 1) = C otherwise
(16)

at times tN of photon detection for which there has been

no photon emission during a preceding “dead-time” inter-

val [tN − T, tN ). As in Section II, we impose bound C
on detuning. Unlike for the V -system, but more like the

traditional 2-level system in [9], the “dead-time” constant

T is just a technical parameter necessary for the proof of the

theorem: numerical simulations illustrate that in practice one

can simply take T = 0.

The formal convergence result is similar to Theorem 1

for the V -system: if we assume the system reduction to be

exact, then given any small ǫ (now appearing in the controller

as well), we can adjust the parameters ω large and δ small
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enough such that the detuning ∆N converges on average to

an O(ǫ2)-neighborhood of 0 with a deviation of order O(ǫ).

Theorem 2: Consider the Monte-Carlo trajectories de-

scribed by (14) with update (16). Assume ǫ ≪ 1, 1
ω

∼ ǫ2,

δ ∼ ǫ3 and initial detuning C < 1/2. Then there exists a

dead-time T large enough so that

lim sup
N→∞

E(∆(N)2) ≤ O(ǫ2) .

C. Numerical simulations

Like in Section II, we simulate the above synchronization

strategy on the main Λ-system, and not on the slow 2-level

subsystem resulting from approximate system reduction. We

take the parameters C = 0.5, Ω1 = Ω2 = 1 (i.e., α = π/4),

Γ1 = Γ2 = 3.0 (i.e., γ1 = γ2 = 0.6667), ǫ = 0.03, γ/ω =
0.05, and δ = 0.015. Dead-time is left at T = 0, very unlike

for the V -system. The simulations of Figure 5 illustrate 10

random Monte-Carlo trajectories of the system starting at

∆0 = 0.5 and ρ0 = |d〉 〈d|, where |d〉 = 1√
2
(|g1〉−|g2〉). The

first plot provides the number of photon detections (quantum

jumps) while the second one gives the evolution of detuning

∆(N). As can be noted, the detuning converges to a small

neighborhood of zero within at most 1000 detections.
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Fig. 5. Detuning evolution and number of quantum jumps (= photon
detections) as a function of time for the synchronization feedback on the
Λ-system.

IV. CONCLUSION

We have studied two atomic systems that are possible

candidates for frequency standards: the first one consists

of a so-called “V -configuration” with two excited states

(one highly unstable and one metastable) and one stable

ground state; the second one consists of a “Λ-configuration”

with one highly unstable excited state and two metastable

ground states. Both systems have been studied in the physics

literature, the V -system widely as a candidate for an ultimate

ultra-high-precision atomic clock and the Λ-system as a

candidate for atomic microclocks. However, in such physics

experiments, generally a cloud of atoms is considered as a

statistical ensemble and the measured photocurrent is used

to synchronize the laser fields.

In this paper, we propose a real-time output feedback

method to lock the probe frequencies to the atomic ones

in experiments where a single atom is probed and evolves

according to inherently stochastic quantum dynamics. For

both the V and Λ settings, we obtain theoretical real-time

synchronization results after having reduced the system with

singular perturbation theory. The synchronization results

are further confirmed in full-model simulations. Precise

synchronization capabilities allow to consider the case of a

single-atom frequency standard, where a laser is tuned to an

atom transition frequency that remains very accurately stable.

Alternatively, the real-time tracking capability might be

used to track variations of the energy levels in a single atom

under influence of physical parameters (e.g. magnetic fields).
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