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Abstract Velocity profile v(x,t)

Two classes of nonlinear delayed controlled systems

are considered: nonlinear hyperbolic equations (such

as the Burgers equation without diffusion) and models

of mixing processes with non negligible pipes holdups.

Both can be seen as systems with delays depending

on the control. As for flat systems, the trajectories of

such systems can be explicitly parameterized. This is

achieved by enlarging the set of allowed manipulations

(classical algebraic computations and time derivations)

by using compositions and inversions of functions. This

provides an easy motion planning algorithm.

Keywords: nonlinear delay systems, hyperbolic par-

tial differential equation, flatness, motion planning.

1 Introduction

Motion planning is an easy problem when the system is

flat (see Fliess et al. [3]): the corresponding parametr-

ization of all the trajectories of the system yields the

solution. Such systems are numerous among nonlinear

systems.

For linear systems with constant delays, module theory

provides systematic tools that are closely related to

flatness [7, 4], namely 6-freeness and n-freeness, for

solving the motion planning problem. Several physi-

cal examples, such as torsion beams [5], antenna sys-

tems [8] and classical process control models [10] (see

also [6] ) show that this approach is relevant. In [9]

the motion planning of a class of nonlinear chemical

reactors with time-delays is solved by combining the

classical algebraic manipulations and derivation (used

in the flatness approach [3]) and advance (specific to

the &freeness approach).

The goal of this paper is to indicate that adding compo-

sition and inversion of functions to these computation

rules can be very useful for solving the motion planning
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Figure 1: steering the Burgers equation from a low velo-

city v s 1 to a high velocity v - 4 without a

compression shock wave.

problems. This assertion relies on two classes of sys-

tems admitting a clear physical meaning and enginee-

ring interest. These systems are shown to be control-

lable in the sense of Willems [12, 11]: the explicit para-

metrization of their trajectories provides here a simple

and systematic way for constructing steering traj ect o-

ries on [0, T] for some T > 0, from a prescribed past

trajectory on ] – m, O] to another prescribed future tra-

jectory on [T, +CC [ in order to obtain, after concatena-

tion, system trajectories defined on ] – co, +m[.

2 Burgers equation

We consider here the classical Burgers equation wi-

thout diffusion admitting the control u > 0 on the

boundary x z O:

*=vt+w=o XEIO,l] (1)
V(o, t) = u(t).
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The field z H v(z, t) describes the velocity field of a

gasofparticles without interaction (inertial motion)in

a one dimensional tube O ~ z ~ 1. Here the input

velocity is the control u.

We are interested in the output velocity y(t) = v(1, t)

and its relationship with respect to the input u. Bur-

gers equation says that the acceleration of each particle

is zero: its velocity is constant. The particle which is

in z = 1 at time t admits y(t) as velocity. Thus at time

t – I/y(t) the same particle was at z = O with velocity

u(t — l/y(t)). Since its velocity remains constant we

have the nonlinear delay relation between u and y:

y(t) = U(t – l/y(t)).

Symmetrically, we have also;

u(t) = y(t + l/u(t)).

More generally the velocity field is related to the output

velocity via

y(t) = V(t – (1 – z)/y(t), z) z e [0,1]

and to the input velocity by

u(t) = 7J(t+2/u(t), z) z c [0, 1].

Formally, we have a one to one correspondence bet-

ween the trajectory profile t N v (w,t ), solution of (1),

and t +) y(t). This correspondence is effective as

soon as y > 0 is continuously differentiable and t ++

t – (1– z)/y(t) is increasing for each z, that is, for

each t, y(t) > –y2 (t). This condition corresponds to

smooth solutions of Burgers equation and avoids solu-

tion with shock waves. Notice that the transition from

high to low velocity can be easily and smoothly achie-

ved via any decreasing input t H u(t) (see e.g., [1]).

This correspondence can be used, as for flat systems [3,

6] to generate control trajectories tN u(t)steering the

system from a low velocity profile v(=, O) S VI > 0 to a

high profile v(-, T) ❑ V2 > WI avoiding discontinuity in

the transition profile due to compression shock waves

[1].

Figure 1 shows the obtained profile trajectory for VI =

1, V2 = 4, y(t) = VI + (V2 – V1)S2(2 – 3s) with s =

(t– 1.25)/0.25 fort E [1.25, 1.5], y(t) a w fort <1.25

and y(t) s vz for t > 1.5.

Finally such a correspondence can be extended to any

hyperbolic equation of the form

vt + A(v) ’u. = o z G [0, 1]
V(o,t) = u(t)

since the relation between y(t) = v (1, t) and u, v are

(see, e.g., [2, page 41]):

Y(t) = @-1/ ~(Y(~))l, Y(t) = d~-(l -%)/NY(t)), z].

Figure 2: The color batch process: input-varying delays

are due to non-negligible pipe holdups Vi and

VB

3 Color batch process

Another basic example of a system where input-varying

delays are to be taken into account can be described

by figure 2. Using the outcome flows from three in-

put tanks where pure colors are available, a desired

color is to be achieved in output tank. Due to the

non-negligible pipe holdups, delays appear which are

dependent on the velocity in the pipes. Under the

assumption of plug-flow in pipes a and ,8, we show

that the trajectories of the system can be explicitly

parameterized by the output tank holdups t 6 Y =

(Yl, Y2, Y,): the three controls u = (UI, u2, u3) and the

color profile in pipe a a~d /3 can be expressed via Y

and its time derivatives Y.

3.1 Notations

Notations are partly explained on figure 2.

● a color (a composition) is a triplet (cl, C2, c3) with

Vi=l,2,30~ ci~landc1+c2+c3 =1.

● h = (Ji.j)&3 corresponds to the fundamental

●

●

●

●

●

●

●

color cent ;ined’ in tank i, i = 1, 2, 3.

U=(’UI, U2, U3)T: outcome flows from input tanks

(the inputs).

o! = (al, a2,0)T : color at node a.

@ = (,BI, /32, @3)T: color at node /3.

V: level of output tank.

X: color of the output tank.

Y = (Y1,Y2,Y3) T = (V. X1, V. X2, V.X3)~ the hol-

dups in output tank. YI, Y2, Y3 are strictly increa-
sing functions of time.

V.: holdup of pipe a.
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● V@: holdup of pipe @

Notice that

0!1+0!2 =1, pl+@2+$3=l, XI+ XZ+X3=I.

3.2 Balance equations

Plug-flow assumption in pipe a tells us that the color

of the infinitesimal amount of fluid that reaches node

@ at time t is cr(I’a) where the time I’~ < t depends

on t and is defined implicitly by:

v. = J: (24,(S)+ IQ(S)) ds. (2)
0?

Seemingly, the color of the infinitesimal amount of fluid

that reaches the output tank at time t is P (1’p ), where

time 17p < t is defined by:

!
t

VP= (u, + UZ + U3)(S) ds. (3)
rp

Mixing is assumed instantaneous and linear in node a

and ~:

Ul(t) h + Z@(t) b2
a(t) = (4)

ZQ(t) + Uz(t) ‘

~(t) = (u,(t)+ U2(t)) C@a(t)) + u,(t) b3, (5)

w(t) + u2(t) + ~3(t)

The dilution dynamics in the output tank yields:

dY

z = :(VX) = (w + U2+ w)(t) fwdt)). (6)

Since /31 +,& +,& = 1, we deduce from (6) that

Ul(t) + u2(t) + lJ3(t) = v(t).

Equations (2,3 ,4,5,6) describe the system dynamics:

the relations between u and Y include delays depen-

ding nonlinearly on u via the implicit equations defi-

ning ra and 178. It also involves a differential equa-

tion (6), in opposition to the Burgers system.

3.3 Parameterization of the trajectories

In the following we show that one can write every

quantity of the system in terms of Y and a finite

number of its derivatives. More precisely, there is a

one to one correspondence between Y = VX and

the set (V, X, a, ~, u1, I-o, u3) solution of (2,3,4,5,6).

Each component of Y being a known increasing diffe-

rentiable time function, let us compute the quantities

(v, x,a, p,ul, u2,1L3).

We have

v=yI+y2+y3. (7)

Since ul(t) + uz(t) + u3(t) = V(t), equation (3) reads:

Vp = v(t) – v(rp(t)).

Since V is a strictly increasing function, we can invert

it:

rp=v-l O(v–vp). (8)

Thus f’p is also a strictly increasing function and its

inverse is given by:

r;l = v-l O(v+vp).

Equation (6) writes:

Y(t)

which gives @ via:

~=

= p(rp(t)) v(t)

11Y
-T-- Or;l.
v

(9)

LJ

Since a. and bs are orthogonal vectors, equation (5)

implies that:

us(t) U3
/33 =

ul(t) + w(t) + u3(t) = 7’

This gives the control U3:

U3 = v /83, (lo)

t llus

UI+U2=ti (l-@3)=V(@l+ @2).

Equation (2) defining implicitly I’~ involves an integral

that can be integrated explicitly. Since

(u, + u2)(t) = v(t) (A+ @2)(~)

where

[“1PW= ~ or;’(t)

[1

Y.. -
v

Ov-lo(v+vp)(t).

We have

([ 1
.

)(u, + u,)(t)= v(t) ~ o V-lo (v + v~)(~)

Thus the integrand in (2) can be expressed as (d de-

notes here the total differentiation operator)

([ 1Y1+Y2
(ul(s) + u2(s)) ds = ~

)
OV–l o(v+vp) dV

([ 1

Y1 + Y2— _—

)

oV–lo(v+vp) d(V+ V@).
v
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The right-hand side is of the form

(Hog”’oh)dh
since df = f dt and dg = g dt. But

([aO’-lOh)dh=d(fog-lob).

We finally obtain

(U1 +u,) ds = d((Yl +Yz) OV-l o (V+ Vd))

This allows to write (2) as:

[(Y, +Y,) “ V-l “ (v+ w];.(t) = v~
(Y, +Y2)Or;’ = (Y,+y2)or;10ra+va,

and deduce that

((r. =rp O(YI+Y2)-1 o yl+yz)or;l -Va),

(11)

( )r;l =rp O(yl +Yz)-l o (Yl +y2)or;1+v. .

(12)

Projection of (5) onto bl gives:

Using (9), we get:

[1YI“r_~
~1 era= -

Y1+Y2 p

In the end:

[1Y~or_~“r_~al=R off (13)
Y1 + Y?

and

az=l —o!l. (14)

We obtain the remaining controls U1 and U2 from

U1
Q!~=

U1+U2°

Then

U1 =al v (1–/33). (15)

Next, the projection of (4) onto b2 gives:

U2=C12 v (1–p3). (16)

At last we already know U3 from (10).

Gathering all the formulae (7,8,9,10,12,13,14)15,16) we

can write all the quantities of the system in terms of

Y.

3.4 Motion planning: scheduling several color

batches.

Let us summarize, using time scaling, the relation bet-

ween Y and u. The function tH u(t)@ Y(a(t)) is gi-

ven with ti-+u(t)an increasing differentiable function

and c H Y;(o) positive, differentiable and increasing

for each i = 1,2,3. The calculations of previous sec-

tion leads to the following simple algorithm allowing to

compute u(t) from Y ( ‘ denotes d/da):

1. solve (via, e.g., Newton-like method) the scalar

equation

3 3

with up corresponding to r; 1 (t)

2. solve a second scalar equation

as unknown.

Y2(a9) + v.

with Oa corresponding to r: 1or; 1(t) as unknown.

3. Set

Y(((7a)
cu(~)= y{(aa) +YJ((Ja) ‘ az(t) = 1– al(t)

and

p(t)= [;] (q?)

with V = Y1 +Y2 + Y3.

4. Set

and

us(t) = V’(cT(t)) b(t) – ul(f) – UZ(t).

Assume that we have to produce (a, b, c. ..), a series

of colored mixtures in the output tank, defined by

Q“ = (Q:,Q;,Q:), Qb,Q’, . . . without flushing pipes

a and ~ between each batch. We only need to define an

increasing curve for each component of Y, t 6 u H Y,

as displayed on figure 3 and where the part of the curve
init the initial quantity in pipes ~ and ,6 of co-under Qi (

lor i) is deduced from the initial profiles in pipes a and

/3. Notice also the design oft I-+a(t)with horizontal

tb t’, .. in order to smoothly stoptangent at time t“, ,

and start between each batch change where the content

of output tank is flushed.
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Figure 3:
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Color batch scheduling by defining a suitable

“flatoutput” trajectory t* Y(t).

4 Conclusion

Thanks to two physical examples, we have shown that

composition and inversion of functions are very useful

for solving the motion planning problem.

These examples belong to more general classes of sys-

tems for which the preceding methods give a similar

answer. In facts the extension to more complex flow-

sheets of alike mixture processes is rather straightfor-

ward. The extension for hyperbolic equation in one di-

mensional space that can be solved by the classical me-

thod of characteristics is also easy. On the other hand,

hyperbolic equations with several unknowns, such as

the dynamics of a compressible polytropic gas (see [1]),

may be much more difficult to handle.
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