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Underlying issues

Quantum Error Correction (QEC) is based on a discrete-time feedback loop

▶ A typical stabilizing feedback-loop for a classical system

systemcontroller

w

▶ Current experiments: 10−3 is the typical error probability during
elementary gates (manipulations) involving few physical qubits.

▶ High-order error-correcting codes with an important overhead;

▶ Today, no such controllable logical qubit has been built.

▶ Key issue: reduction by several magnitude orders of such error rates, far
below the threshold required by actual QEC, to build a controllable
logical qubit encoded in a reasonable number of physical qubits and
protected by QEC.

Control engineering can play a crucial role to build a controllable logical qubit
protected by adapted open-loop and closed-loop control schemes increasing
precision and stability.
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Two kinds of quantum feedback1

quantum
system

classical
controller 

quantum world

classical world y

u

decoherence Measurement-based feedback: controller is
classical; measurement back-action on the quan-
tum system of Hilbert spaceH is stochastic (col-
lapse of the wave-packet); the measured output
y is a classical signal; the control input u is a
classical variable appearing in some controlled
Schrödinger equation; u(t) depends on the past
measurements y(τ), τ ≤ t.

QUANTUM WORLD

CLASSICAL WORLD

Hilbert space 

       quantum
       controller
Hilbert space

Hilbert space
   system S

decoherence

decoherence

quantum
interaction

Coherent/autonomous feedback and reser-
voir/dissipation engineering: the system of
Hilbert space Hs is coupled to the controller,
another quantum system; the composite sys-
tem of Hilbert space Hs ⊗ Hc , is an open-
quantum system relaxing to some target (sepa-
rable) state. Relaxation behaviors in open quan-
tum systems can be exploited: optical pumping
of Alfred Kastler.

1Wiseman/Milburn: Quantum Measurement and Control, 2009, Cambridge
University Press.
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Outline

Quantum gate generation for open quantum systems

The monotone/Lyapunov algorithm and optimal control

Numerical case-study: Cnot-gate between two cat-qubits
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Quantum dynamics with dissipation (decoherence)
Gorini�Kossakowski �Sudarshan�Lindblad (GKSL) master equation:

d

dt
ρ = L[u](ρ) = L0(ρ) + u L1(ρ)

(
typically − i [Ĥ0 + uĤ1, ρ] +

∑
ν

DL̂ν
(ρ)
)

with DL̂ν
(ρ) ≜ L̂νρL̂

†
ν − 1

2

(
L̂†
ν L̂νρ+ ρL̂†

ν L̂ν

)
.

▶ Preservation of trace, hermiticity and positivity: ρ lies in the set of
Hermitian and trace-class operators that are non-negative with trace one.

▶ Invariance under unitary transformations.
A time-varying change of frame ρ 7→ Û†

t ρÛt with Ût unitary.
The new density operator obeys to a similar master equation where

Ĥ0 + uĤ1 7→ Û†
t (Ĥ0 + uĤ0)Ût + i Û†

t

(
d
dt
Ût

)
and L̂ν 7→ Û†

t L̂νÛt .

▶ "L1-contraction" properties. Such master equations generate contraction
semi-groups for many distances (nuclear distance2, Hilbert metric on the
cone of non negative operators3).

▶ If Hermitian operator Â satis�es "adjoint inequality" (Heisenberg view
point):

i [Ĥ0 + uĤ1, Â] +
∑
ν

D∗
L̂ν
(ρ) ≤ 0

then t 7→ V (ρ(t)) = Tr
(
Âρ(t)

)
decreases (Lyapunov function if Â ≥ 0).

2
D.Petz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications

3
R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. IEEE-CDC. 5 / 24



Quantum Gate Generation Problem (Unitary Version)

Given the Schrödinger equation

d |ψ(t)⟩
dt

= −ı
(
H0 + u(t)H1

)
|ψ(t)⟩

with |ψ(t)⟩ ∈ Cn.
Quantum gate generation (includes state preparation)

▶ {|ei ⟩, i = 1, . . . , n̄} and {|fi ⟩, i = 1, . . . , n̄} are orthonormal
subsets of Cn with n̄ ≤ n. (Note that n̄ ≪ n in the case of a
cat-qubit)

▶ Take T > 0 and �nd u : [0,T ] → R such that |ψ(t)⟩ is
steered from |ψ(0)⟩ = |ei ⟩ to |ψ(T )⟩ = |fi ⟩ for i = 1, . . . , n̄ up
to some admissible error called gate-�delity.
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Quantum Gate Generation for open systems (GKSL Master Equations)
dρ(t)
dt = L[u](ρ(t)) = L0(ρ(t)) + uL1(ρ(t))

▶ For the �density matrices context� the quantum gate can be
de�ned in an analogous way that appear in quantum
Tomographic methods.

▶ We must steer ρ(t) (at t = T ):
|ei ⟩⟨ei |⇝ |fi ⟩⟨fi |, i = 1, . . . , n̄

▶ Let
|eijR⟩ = 1√

2
(|ei ⟩+ |ej⟩), i > j , and

|eijI ⟩ = 1√
2
(|ei ⟩+ ı|ej⟩), i > j

(analogous notation for the fi , i = 1, . . . , n̄)

▶ One must also:
Steer all
|eijR⟩⟨eijR |⇝ |fijR⟩⟨fijR |
|eijI ⟩⟨eijI |⇝ |fijI ⟩⟨fijI |

▶ Remark: all of them are pure states
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Numerical methods

Several numerical methods4 (mainly optimal control, Lyapunov control) have
been developed with several packages:

▶ The Krotov monotone optimal method [Schirmer and de Fouquieres,
2011]

▶ GRAPE (of �rst and second orders) [Khaneja et al., 2005, de Fouquieres
et al., 2011]

▶ CRAB [Rach et al., 2015],

▶ GOAT [Machnes et al., 2018]

▶ RIGA [Pereira da Silva et al., 2019].

▶ QDYN [ C. Koch et al. since 2007 � today]
https://qdyn-library.net/

This talk: how control Lyapunov techniques provide a monotone algorithm
solving the �rst order stationary condition of an optimal control problem
including time optimization.

4An excellent review of Christiane P Koch: Controlling open quantum
systems: tools, achievements, and limitations. Journal of Physics: Condensed
Matter, 28(21):213001, may 2016.
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Outline

Quantum gate generation for open quantum systems

The monotone/Lyapunov algorithm and optimal control

Numerical case-study: Cnot-gate between two cat-qubits
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One iteration of the algorithm (�xed time T , single control-input u)

• Initial guess [0,T ] 7→ u0(t)
• n̄2 backward adjoint equations (open-loop):

dJσ
dt

(t) = −L∗
[u0(t)] (Jσ(t)) , Jσ(Tf ) = Π|ϕσ⟩ = |ϕσ⟩⟨ϕσ|

where |ϕσ⟩ =


|fi ⟩, if σ = i ∈ {1, . . . , n̄}
|fi ⟩+|fj ⟩√

2
, if σ = ijR, i , j ∈ {1, . . . , n̄}, i > j

|fi ⟩+ı|fj ⟩√
2

, if σ = ijI , i , j ∈ {1, . . . , n̄}, i > j

• n̄2 forward equations (closed-loop)

dρσ(t)

dt
= L[u0+∆u] (ρσ(t)) , ρσ(0) = Π|εσ⟩ = |εσ⟩⟨εσ|

where |εσ⟩ =


|ei ⟩, if σ = i ∈ {1, . . . , n̄}
|ei ⟩+|ej ⟩√

2
, if σ = ijR, i , j ∈ {1, . . . , n̄}, i > j

|ei ⟩+ı|ej ⟩√
2

, if σ = ijI , i , j ∈ {1, . . . , n̄}, i > j

and ∆u is given by a time-varying feedback based on the time-varying
Lyapunov function

V = n̄2 −
∑
σ

Tr (Jσ(t)ρσ) ≥ 0
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The forward Lyapunov feedback
Lyapunov function: V = n̄2 −

∑
σ Tr (Jσ(t)ρσ)

▶ From u 7→ L[u](ρ) a�ne and Tr
(
L∗

[u0]
(Jσ)ρσ

)
≡ Tr

(
JσL[u0](ρσ)

)
:

dV
dt

= −
∑
σ

Tr

(
dJσ
dt

ρσ + Jσ
dρσ
dt

)
= −

∑
σ

Tr
(
−L∗

[u0](Jσ)ρσ
)
+ Tr

(
JσL[u0+∆u](ρσ)

)
= −∆u

(∑
σ

Tr (Jσ L1(ρσ))

)
▶ De�ne the Lyapunov-based control with gain K > 0:

∆u = K

(∑
σ

Tr (Jσ L1(ρσ))

)
then dV

dt
= −K

(∑
σ Tr (Jσ L1(ρσ))

)2 ≤ 0.

▶ Next step: take as initial guess [0,T ] ∋ t 7→ u1 = u0 +∆u.

▶ Since Vt=0 ≥ Vt=T , Tr (Jσ(0) ρσ(0)) = Tr
(
e
−TL∗

[u0 ](Jσ(T )) ρσ(0)
)
and

Tr (Jσ(T ) ρσ(T )) = Tr
(
Jσ(T ) e−TL[u0+∆u ] (ρσ(0))

)
= Tr

(
e
−TL∗

[u0+∆u ] (Jσ(T )) ρσ(0)
)

the Lyapunov function decreases from step to step. 11 / 24



Including time optimization T

Consider virtual time τ according to dt
dτ

= (1+ v(τ)) where |v(τ)| < 1.
Physical time t(τ) is given by t(τ) =

∫ τ

0
(1+ v(τ ′))dτ ′.

With ũ = (1+ v)u one gets:

dρ

dt

dt

dτ
=

dρ

dτ
= (1+ v(τ))(L0(ρ) + uL1(ρ))

= L0(ρ) + v(τ)L0(ρ) + ũ(τ)L1(ρ)

Algorithm with time-control v :

▶ With two control-inputs (v , ũ) and initial guess T = T0, v0 = 0 and ũ0,
an algorithm step provides [0,T0] ∋ τ 7→ (v1(τ), ũ1(τ)).

▶ Update T1 via T1 =
∫ T0
0

(1+ v1(τ
′))dτ ′,

Compute u1(t(τ)) =
ũ1(τ)

1+v1(τ)
, for τ ∈ [0,T0] and

t(τ) =
∫ τ

0
(1+ v1(τ

′))dτ ′.
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Optimal control interpretation

Find T and [0,T ] ∋ t 7→ u(t) minimizing

n̄2 −
∑
σ

Tr
(
Π|ϕσ⟩ ρσ(T )

)
where Π|ϕσ⟩ = |ϕσ⟩⟨ϕσ|

▶ |ϕσ⟩ =


|fi ⟩, if σ = i ∈ {1, . . . , n̄}
|fi ⟩+|fj ⟩√

2
, if σ = ijR, i , j ∈ {1, . . . , n̄}, i > j

|fi ⟩+ı|fj ⟩√
2

, if σ = ijI , i , j ∈ {1, . . . , n̄}, i > j

▶ for each σ, dρσ(t)
dt

= L[u] (ρσ(t)) with ρσ(0) = Π|εσ⟩ = |εσ⟩⟨εσ| and

|εσ⟩ =


|ei ⟩, if σ = i ∈ {1, . . . , n̄}
|ei ⟩+|ej ⟩√

2
, if σ = ijR, i , j ∈ {1, . . . , n̄}, i > j

|ei ⟩+ı|ej ⟩√
2

, if σ = ijI , i , j ∈ {1, . . . , n̄}, i > j

Lemma: Consider the above monotone iterative algorithm starting for T0 and

u0. Assume that the Lyapunov function does not decrease strictly at step ℓ.
Then Tℓ and [0,T ] ∋ t 7→ uℓ(t) satisfy the �rst-order stationary condition of

this optimal control problem.
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Bosonic code with cat-qubits
▶ Quantum error corrrection requires redundancy.
▶ Bosonic code: instead of encoding a logical qubit in N physical qubits

living in C2N , encode a logical qubit in an harmonic oscillator living in
Fock space span{|0⟩, |1⟩, . . . , |n⟩, . . .} ∼ L2(R,C) of in�nite dimension.

▶ Cat-qubit 5: |ψL⟩ ∈ span{|α⟩, |-α⟩} where |α⟩ is the coherent state of real
amplitude α: â|α⟩ = α|α⟩ with â = (q̂ + i p̂)/

√
2 and [q̂, p̂] = i :

|ψ⟩ ∼ ψ(q) ∈ L2(R,C), q̂|ψ⟩ ∼ qψ(q), p̂|ψ⟩ ∼ −i
dψ

dq
(q), |α⟩ ∼

exp

(
−

(q−α
√
2)2

2

)
√
2π

.

▶ Stabilisation of cat-qubit via a single Lindblad dissipator L̂ = â2 − α2.
For any initial density operator ρ(0), the solution ρ(t) of

d

dt
ρ = L̂ρL̂† − 1

2
(L̂†L̂ρ+ ρL̂†L̂)

converges exponentially towards a steady-state density operator since

d

dt
Tr
(
L̂†L̂ρ

)
≤ −2 Tr

(
L̂†L̂ρ

)
, kerL̂ = span{|α⟩, |-α⟩}.

Any density operator with support in span{|α⟩, |-α⟩} is a steady-state.
5M. Mirrahimi, Z. Leghtas, . . . , M. Devoret: Dynamically protected cat-qubits: a

new paradigm for universal quantum computation. 2014, New Journal of Physics.
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Asymmetrically Threaded SQUID (ATS) stabilizing a cat-qubit 6

6R. Lescanne, . . . , Z. Leghtas: Exponential suppression of bit-�ips in a qubit
encoded in an oscillator. Nature Physics (2020)
U. Reglade, . . . , Z. Leghtas: Quantum control of a cat-qubit with bit-�ip times
exceeding ten seconds. Nature (2024)
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Mechanical analogue (R. Lescanne/U. Réglade from Alice&Bob ))

Both "steady-states" are locally stable

Two �steady-states" (locally stable) associated to the same motion of the suspension system
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Driven damped oscillator
coupled to a pendulum. 

Courtesy of Raphaël Lescanne

MAIN IDEA IN A CLASSICAL PICTURE



There are 2 steady states in 
which we can encode 
information

0 1

Courtesy of Raphaël Lescanne

A BI‐STABLE SYSTEM



Stabilization regardless of the state

0 1

Neither the drive nor the dissipation
can distinguish between 0 and 1

Courtesy of Raphaël Lescanne

Important to preserve
quantum coherence

MAIN IDEA IN A CLASSICAL PICTURE



Master equations of the ATS super-conducting circuit

Oscillator â with quantum controller based on a damped oscillator b̂:

d

dt
ρ = g2

[(
â2 − α2

)
b̂†−

(
(â†)2 − α2

)
b̂ , ρ

]
+κb

(
b̂ρb̂†−(b̂†b̂ρ+ρb̂†b̂)/2

)
with α ∈ R such that α2 = u/g2, the drive amplitude u ∈ R applied to mode b̂

and 1/κb > 0 the life-time of photon in mode b̂.
Any density operators ρ̄ = ρ̄a ⊗ |0⟩⟨0|b is a steady-state as soon as the support
of ρ̄a belongs to the two dimensional vector space spanned by the
quasi-classical wave functions |α⟩ and |-α⟩ (range(ρ̄a) ⊂ span{|α⟩, |-α⟩})

Usually κb ≫ |g2|, mode b̂ relaxes rapidly to vaccuum |0⟩⟨0|b, can be
eliminated adiabatically (singular perturbations, second order corrections) to
provides the slow evolution of mode â

d

dt
ρa =

4|g2|2
κb

(
L̂ρL̂† − 1

2
(L̂†L̂ρ+ ρL̂†L̂)

)
with L̂ = â2 − α2.

Convergence via the exponential Lyapunov function V (ρ) = Tr
(
L̂†L̂ρ

)
7

7
For a mathematical proof of convergence analysis in an adapted Banach space, see :R. Azouit, A.

Sarlette, PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic
oscillator with multi-photon drive and damping. 2016, ESAIM: COCV.
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Cat-qubit: exponential suppression of bit-�ip for large α.
Since ⟨α|-α⟩ = e−2α2

≈ 0:

|0L⟩ ≈ |α⟩, |1L⟩ ≈ |-α⟩, |+L⟩ ∝ |α⟩+|-α⟩√
2

, |−L⟩ ∝ |α⟩−|-α⟩√
2

.

Photon loss as dominant error channel (dissipator â with 0 < κ1 ≪ 1):

d

dt
ρa = Dâ2−α2(ρ) + κ1Dâ(ρ)

with DL̂(ρ) = L̂ρL̂† − 1
2
(L̂†L̂ρ+ ρL̂†L̂).

▶ if ρ(0) = |0L⟩⟨0L| or |1L⟩⟨1L|, ρ(t) converges to a statistical mixture of
quasi-classical states close to 1

2
|α⟩⟨α|+ 1

2
|-α⟩⟨-α| in a time

Tbit−flip ∼ e2α
2

κ1

since â|0L⟩ ≈ α|0L⟩ and â|1L⟩ ≈ −α|1L⟩.
▶ if ρ(0) = |+L⟩⟨+L| or |−L⟩⟨−L|, ρ(t) converges also to the same

statistical mixture in a time

Tphase−flip ∼ 1

κ1α2

since â|+L⟩ = α| − L⟩ and â|−L⟩ = α|+ L⟩.
Take α large to ignore bit-�ip and to correct only the phase-�ip with 1D code:
important overhead reduction.
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Cnot-gate between two cat-qubits8

dρ

dt
= −iu

[
(âco + â†co − 2αÎco)⊗ (â†taâta − α2 Îta)⊗ Îqu , ρ

]
− ig2

[
(â2co − α2 Îco)⊗ Îta ⊗ |e⟩⟨g |+ ((â†)2co − α2 Îco)⊗ Îta ⊗ |g⟩⟨e| , ρ

]
+ k2D(â2co−α2 Îco)⊗Îta⊗Îqu

(ρ) + k1Dâco⊗Îta⊗Îqu
(ρ) + k1DÎco⊗âta⊗Îqu

(ρ)

with α = 2, k2 = 1, k1 =
1

1000
, g2 = 10.

Cnot-gate in Hilbert space Hco ⊗Hta ⊗ C2:

▶ e1 = |0L⟩co ⊗ |0L⟩ta ⊗ |g⟩ 7→ f1 = |0L⟩co ⊗ |0L⟩ta ⊗ |g⟩

▶ e2 = |0L⟩co ⊗ |1L⟩ta ⊗ |g⟩ 7→ f2 = |0L⟩co ⊗ |1L⟩ta ⊗ |g⟩

▶ e3 = |1L⟩co ⊗ |0L⟩ta ⊗ |g⟩ 7→ f3 = |1L⟩co ⊗ |1L⟩ta ⊗ |g⟩

▶ e4 = |1L⟩co ⊗ |1L⟩ta ⊗ |g⟩ 7→ f4 = |1L⟩co ⊗ |0L⟩ta ⊗ |g⟩.

8R. Gautier, A. Sarlette, and M. Mirrahimi: Combined dissipative and
hamiltonian con�nement of cat qubits. PRX Quantum, 3:020339, May 2022.
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Cnot-gate between two cat-qubits (n = 578 ≫ 4 = n̄)

Time (s)

0 0.5 1 1.5 2

C
o

n
tr

o
l 
P

u
ls

e
s

0

0.1

0.2

0.3

0.4
Normalized control pulses versus time

Final control 

constant control

initial control   

Tf (s)

1 1.5 2 2.5

In
fi
d

e
lit

y

×10-3

1.2

1.4

1.6

1.8
Infidelity versus Tf for constant adiabatic control

9.8  10^(-4)

1.3  10^(-3)

21 / 24



Conclusion

▶ Key roles of geometric underlying structures: Hilbert space,
unitary operators and invariance, convex set of density
operators, Schrôdinger/Heisenberg view-points.

▶ Well-chosen optimization criteria and Lyapunov-control
function.
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Quantic research group ENS/Inria/Mines/CNRS, June 2023
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BON VENT pour la suite Witold !!!!
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