

A tutorial introduction to quantum feedback

58th Control Engineering Colloquium in Boppard February 22, 2024

pierre.rouchon@minesparis.psl.eu

Quantic team, Mines Paris, ENS-PSL, Inria, CNRS, Université PSL

Underlying issues

Quantum Error Correction (QEC) is based on a discrete-time feedback loop

- Current experiments: 10⁻³ is the typical error probability during elementary gates (manipulations) involving few physical qubits.
- High-order error-correcting codes with an important overhead; more than 1000 physical qubits to encode a controllable logical qubit¹.
- Today, no such controllable logical qubit has been built.
- Key issue: reduction by several magnitude orders of such error rates, far below the threshold required by actual QEC, to build a controllable logical qubit encoded in a reasonable number of physical qubits and protected by QEC.

Control engineering can play a crucial role to build a controllable logical qubit protected by adapted feedback schemes increasing precision and stability.

¹A.G. Fowler, M. Mariantoni, J.M. Martinis, A.N. Cleland: Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 2012.

Two kinds of quantum feedback²

Measurement-based feedback: controller is classical; measurement back-action on the quantum system of Hilbert space \mathcal{H} is stochastic (collapse of the wave-packet); the measured output y is a classical signal; the control input u is a classical variable appearing in some controlled Schrödinger equation; u(t) depends on the past measurements $y(\tau), \tau \leq t$.

Coherent/autonomous feedback and reservoir/dissipation engineering: the system of Hilbert space \mathcal{H}_s is coupled to the controller, another quantum system; the composite system of Hilbert space $\mathcal{H}_s \otimes \mathcal{H}_c$, is an open-quantum system relaxing to some target (separable) state. Relaxation behaviors in open quantum systems can be exploited: optical pumping of Alfred Kastler, physics Nobel prize 1966.

²Wiseman/Milburn: Quantum Measurement and Control, 2009, Cambridge University Press.

Outline

Feedback with classical controllers

The Haroche Photon-Box Super-conducting qubit Dynamics of open quantum systems

Feedback with quantum controllers

Quantum dissipation engineering Cat-qubit and autonomous correction of bit-flips GKP-qubit and autonomous correction of bit and phase flips

Quantum feedback engineering

Outline

Feedback with classical controllers

The Haroche Photon-Box

Super-conducting qubit Dynamics of open quantum systems

Feedback with quantum controllers

Quantum dissipation engineering Cat-qubit and autonomous correction of bit-flips GKP-qubit and autonomous correction of bit and phase flips

Quantum feedback engineering

The first experimental realization of a quantum-state feedback

Experiment: C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.M. Raimond, **S. Haroche**: Real-time quantum feedback prepares and stabilizes photon number states. Nature, **2011**, 477, 73-77.

Theory: I. Dotsenko, M. Mirrahimi, M. Brune, **S. Haroche**, J.M. Raimond, P. Rouchon: Quantum feedback by discrete quantum non-demolition measurements: towards on-demand generation of photon-number states. Physical Review A, **2009**, 80: 013805-013813.

- M. Mirrahimi et al. CDC 2009, 1451-1456, 2009.
- H. Amini et al. IEEE Trans. Automatic Control, 57 (8): 1918–1930, 2012.
- R. Somaraju et al., Rev. Math. Phys., 25, 1350001, 2013.
- H. Amini et. al., Automatica, 49 (9): 2683-2692, 2013.

Experimental closed-loop data

C. Sayrin et. al., Nature 477, 73-77, Sept. 2011.

Decoherence due to finite photon life-time (70 ms)

Detection efficiency 40% Detection error rate 10% Delay d = 4 sampling periods

The quantum filter includes cavity decoherence, detector imperfections and delays (Bayes law).

Truncation to 9 photons

Feedback stabilization around 3-photon state: experimental data

Outline

Feedback with classical controllers

The Haroche Photon-Box

Super-conducting qubit

Dynamics of open quantum systems

Feedback with quantum controllers

Quantum dissipation engineering Cat-qubit and autonomous correction of bit-flips GKP-qubit and autonomous correction of bit and phase flips

Quantum feedback engineering

Transmon regime ³

$$\begin{array}{c} & & & & & & & \\ \hline Q & & & & \\ D$$

- anharmonic spectrum with frequency transition between the ground and first excited states larger than frequency transition between first and second excited states.
- qubit model based on restriction to these two slowest energy levels, $|g\rangle$ and $|e\rangle$, with pulsation $\omega_q \sim 1/\sqrt{LC}$.

Two weak coupling regimes:

resonant, in/out wave pulsation ω_q ;

▶ off-resonant , in/out wave pulsation $\omega_q + \Delta$ with $|\Delta| \ll \omega_q$.

³ J. Koch et al.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A, 76:042319, 2007.

A key physical example in circuit quantum electrodynamics⁴

with y_t given by $dy_t = 2\sqrt{\eta\gamma} \operatorname{Tr}(\widehat{\sigma}_z \rho_t) dt + dW_t$ where $\gamma \ge 0$ is related to the measurement strength and $\eta \in [0,1]$ is the detection efficiency.

⁴M. Hatridge et al. Quantum Back-Action of an Individual Variable-Strength Measurement. Science, 2013, 339, 178-181.

one

First SISO measurement-based feedback for a superconducting qubit ⁵

⁵R. Vijay, ..., I. Siddiqi. Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback. Nature 490, 77-80, October 2012.

First MIMO measurement-based feedback for a superconducting qubit ⁶

⁶P. Campagne-Ibarcq, ..., B. Huard: Using Spontaneous Emission of a Qubit as a Resource for Feedback Control. Phys. Rev. Lett. 117(6), 2016.

Outline

Feedback with classical controllers

The Haroche Photon-Box Super-conducting qubit Dynamics of open quantum systems

Feedback with quantum controllers

Quantum dissipation engineering Cat-qubit and autonomous correction of bit-flips GKP-qubit and autonomous correction of bit and phase flips

Quantum feedback engineering

Dynamics of open quantum systems based on three quantum features ⁷

1. Schrödinger ($\hbar = 1$): wave funct. $|\psi\rangle \in \mathcal{H}$, density op. $\rho \sim |\psi\rangle\langle\psi|$

$$\frac{d}{dt}|\psi\rangle = -i\widehat{H}|\psi\rangle, \quad \widehat{H} = \widehat{H}_0 + u\widehat{H}_1 = \widehat{H}^{\dagger}, \quad \frac{d}{dt}\rho = -i[\widehat{H},\rho].$$

2. Origin of dissipation: collapse of the wave packet induced by the measurement of $\hat{O} = \hat{O}^{\dagger}$ with spectral decomp. $\sum_{y} \lambda_{y} \hat{P}_{y}$:

• measurement outcome y with proba.

$$\mathbb{P}_{y} = \langle \psi | \hat{P}_{y} | \psi \rangle = \operatorname{Tr} \left(\rho \hat{P}_{y} \right)$$
 depending on $|\psi\rangle$, ρ just before the measurement

measurement back-action if outcome y:

$$|\psi\rangle \mapsto |\psi\rangle_{+} = \frac{\widehat{P}_{y}|\psi\rangle}{\sqrt{\langle\psi|\widehat{P}_{y}|\psi\rangle}}, \quad \rho \mapsto \rho_{+} = \frac{\widehat{P}_{y}\rho\widehat{P}_{y}}{\operatorname{Tr}\left(\rho\widehat{P}_{y}\right)}$$

3. Tensor product for the description of composite systems (A, B):

▶ Hilbert space
$$\mathcal{H} = \mathcal{H}_a \otimes \mathcal{H}_b$$

▶ Hamiltonian $\hat{H} = \hat{H}_a \otimes \hat{I}_b + \hat{H}_{ab} + \hat{I}_a \otimes \hat{H}_b$

Hamiltonian H = H_a \otimes I_b + H_{ab} + I_a \otimes H_b
 observable on sub-system B only: \$\tilde{O} = \hildsymbol{l}_a \otimes \tilde{O}_a\$.

⁷S. Haroche and J.M. Raimond (2006). *Exploring the Quantum: Atoms, Cavities and Photons.* Oxford Graduate Texts.

Structure of discrete-time dynamical models

Four modeling features⁸:

- 1. Schrödinger equations defining unitary transformations.
- 2. **Randomness**, irreversibility and dissipation induced by the measurement of observables with degenerate spectra.
- 3. Entanglement and tensor product for composite systems.
- 4. Classical probability (e.g. Bayes law) to include classical noises, measurement errors and uncertainties.

\Rightarrow Hidden-state controlled Markov system

Control input u, state ρ (density op.), measured output y:

$$\begin{split} \rho_{t+1} &= \frac{\mathcal{K}_{u_t,y_t}(\rho_t)}{\text{Tr}(\mathcal{K}_{u_t,y_t}(\rho_t))}, \text{ with proba. } \mathbb{P}\Big(y_t \ \big/ \rho_t, u_t\Big) = \ \text{Tr}\left(\mathcal{K}_{u_t,y_t}(\rho_t)\right) \\ \text{where } \mathcal{K}_{u,y}(\rho) &= \sum_{\mu=1}^m \eta_{y,\mu} \widehat{M}_{u,\mu} \rho \widehat{M}_{u,\mu}^{\dagger} \text{ with left stochastic matrix } (\eta_{y,\mu}) \text{ and} \\ \text{Kraus operators } \widehat{M}_{u,\mu} \text{ satisfying } \sum_{\mu} \widehat{M}_{u,\mu}^{\dagger} \widehat{M}_{u,\mu} = \widehat{I}. \\ \text{Kraus map } \mathcal{K}_u \text{ (ensemble average, quantum channel)} \end{split}$$

$$\mathbb{E}\left(\rho_{t+1}|\rho_{t}\right) = \mathcal{K}_{\mathsf{u}}(\rho_{t}) = \sum_{\mathsf{y}} \mathcal{K}_{\mathsf{u},\mathsf{y}}(\rho_{t}) = \sum_{\mu} \widehat{\mathcal{M}}_{\mathsf{u},\mu}\rho_{t}\widehat{\mathcal{M}}_{\mathsf{u},\mu}^{\dagger}.$$

⁸See, e.g., books: E.B Davies in 1976; S. Haroche with J.M. Raimond in 2006; C. Gardiner with P. Zoller in 2014/2015.

Continuous dynamical models relying on Stochastic Master Equation (SME) ⁹

Continuous-time models: stochastic differential systems (Itō formulation) Control input u, state ρ (density op.), measured output y:

$$d\rho_{t} = \left(-i[\widehat{H}_{0} + u_{t}\widehat{H}_{1}, \rho_{t}] + \sum_{\nu=d,m} \widehat{L}_{\nu}\rho_{t}\widehat{L}_{\nu}^{\dagger} - \frac{1}{2}(\widehat{L}_{\nu}^{\dagger}\widehat{L}_{\nu}\rho_{t} + \rho_{t}\widehat{L}_{\nu}^{\dagger}\widehat{L}_{\nu})\right)dt \\ + \sqrt{\eta_{m}}\left(\widehat{L}_{m}\rho_{t} + \rho_{t}\widehat{L}_{m}^{\dagger} - \operatorname{Tr}\left((\widehat{L}_{m} + \widehat{L}_{m}^{\dagger})\rho_{t}\right)\rho_{t}\right)dW_{t}$$

driven by the Wiener process W_t , with measurement y_t ,

$$\mathsf{dy}_{\mathsf{t}} = \sqrt{\eta_m} \operatorname{\mathsf{Tr}}\left((\widehat{L}_m + \widehat{L}_m^\dagger) \,
ho_t
ight) \, dt + \mathsf{dW}_{\mathsf{t}} \quad \text{detection efficiencies } \eta_m \in [0,1].$$

Measurement backaction: $d\rho_t$ and dy_t share the same noises dW_t . Very different from Kalman I/O state-space description used in control engineering.

⁹A. Barchielli, M. Gregoratti (2009): Quantum Trajectories and Measurements in Continuous Time: the Diffusive Case. Springer Verlag. Qubit (2-level system, half-spin) ¹⁰

- $\begin{array}{l} \textbf{Hilbert space:} \\ \mathcal{H} = \mathbb{C}^2 = \Big\{ c_g | g \rangle + c_e | \boldsymbol{e} \rangle, \ c_g, c_e \in \mathbb{C} \Big\}. \end{array}$
- Quantum state space: $\mathcal{D} = \{ \rho \in \mathcal{L}(\mathbb{C}^2), \rho^{\dagger} = \rho, \text{ Tr}(\rho) = 1, \rho \ge 0 \}.$

- Hamiltonian: $\widehat{H} = \omega_q \widehat{\sigma}_z / 2 + u_q \widehat{\sigma}_x$.
 - Bloch sphere representation: $\mathcal{D} = \left\{ \frac{1}{2} (\widehat{l} + x \widehat{\sigma}_x + y \widehat{\sigma}_y + z \widehat{\sigma}_z) \mid (x, y, z) \in \mathbb{R}^3, \ x^2 + y^2 + z^2 \le 1 \right\}$

¹⁰ See S. M. Barnett, P.M. Radmore (2003): Methods in Theoretical Quantum Optics. Oxford University Press.

Quantum harmonic oscillator (spring system)¹⁰

► Hilbert space:

$$\mathcal{H} = \left\{ \sum_{n \ge 0} \psi_n | n \rangle, \ (\psi_n)_{n \ge 0} \in \ell^2(\mathbb{C}) \right\} \equiv L^2(\mathbb{R}, \mathbb{C})$$

- Quantum state space: $\mathcal{D} = \{ \rho \in \mathcal{K}^1(\mathcal{H}), \rho^{\dagger} = \rho, \text{ Tr}(\rho) = 1, \rho \ge 0 \}.$
- Operators and commutations: $\widehat{\boldsymbol{a}}|\boldsymbol{n}\rangle = \sqrt{n} ||\mathbf{n}-1\rangle, \ \widehat{\boldsymbol{a}}^{\dagger}|\boldsymbol{n}\rangle = \sqrt{n+1}||\boldsymbol{n}+1\rangle; \\
 \widehat{\boldsymbol{N}} = \widehat{\boldsymbol{a}}^{\dagger}\widehat{\boldsymbol{a}}, \ \widehat{\boldsymbol{N}}|\boldsymbol{n}\rangle = n|\boldsymbol{n}\rangle; \\
 [\widehat{\boldsymbol{a}}, \widehat{\boldsymbol{a}}^{\dagger}] = \widehat{\boldsymbol{l}}, \ \widehat{\boldsymbol{a}}f(\widehat{\boldsymbol{N}}) = f(\widehat{\boldsymbol{N}} + \widehat{\boldsymbol{l}})\widehat{\boldsymbol{a}}; \\
 \widehat{\boldsymbol{D}}_{\alpha} = e^{\alpha\widehat{\boldsymbol{s}}^{\dagger} - \alpha^{\dagger}\widehat{\boldsymbol{s}}} = e^{i\Re\alpha\Im\alpha}e^{i\sqrt{2}\Im\alpha}e^{i\sqrt{2}\Re\alpha}\frac{\partial}{\partial x}, \\
 \widehat{\boldsymbol{a}} = \widehat{\boldsymbol{X}} + i\widehat{\boldsymbol{P}} = \frac{1}{\sqrt{2}}\left(\boldsymbol{x} + \frac{\partial}{\partial x}\right), \ [\widehat{\boldsymbol{X}}, \widehat{\boldsymbol{P}}] = i\widehat{\boldsymbol{l}}/2.$
- ► Hamiltonian: $\hat{H} = \omega_c \hat{a}^{\dagger} \hat{a} + u_c (\hat{a} + \hat{a}^{\dagger}).$ (associated classical dynamics: $\frac{dx}{dt} = \omega_c p, \quad \frac{dp}{dt} = -\omega_c x - \sqrt{2}u_c).$
- ► Quasi-classical pure state \equiv coherent state $|\alpha\rangle$ $\alpha \in \mathbb{C}$: $|\alpha\rangle = \sum_{n\geq 0} \left(e^{-|\alpha|^2/2} \frac{\alpha^n}{\sqrt{n!}} \right) |n\rangle$; $|\alpha\rangle \equiv \frac{1}{\pi^{1/4}} e^{i\sqrt{2}\Im\alpha x} e^{-\frac{(x-\sqrt{2}\Re\alpha)^2}{2}}$ $\widehat{a}|\alpha\rangle = \alpha|\alpha\rangle$, $\widehat{D}_{\alpha}|0\rangle = |\alpha\rangle$.

 $|n\rangle$

Outline

Feedback with classical controllers

The Haroche Photon-Box Super-conducting qubit Dynamics of open quantum systems

Feedback with quantum controllers Quantum dissipation engineering

Cat-qubit and autonomous correction of bit-flips GKP-qubit and autonomous correction of bit and phase flips

Quantum feedback engineering

Watt regulator: classical analogue of a quantum controller. ¹¹

The first variations of speed $\delta \omega$ and governor angle $\delta \theta$ obey to

$$\frac{\mathrm{d}}{\mathrm{d}t}\delta\omega = -\mathrm{a}\delta\theta$$
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}\delta\theta = -\tilde{d}_t\delta\theta - \tilde{d}_t\delta\theta - \tilde{d}_t\delta\theta - \tilde{d}_t\delta\theta$$

with (a, b, Λ, Ω) positive parameters.

$$rac{d^3}{dt^3}\delta\omega+\Lambdarac{d^2}{dt^2}\delta\omega+\Omega^2rac{d}{dt}\delta\omega+ab\Omega^2\delta\omega=0.$$

Characteristic polynomial $P(s) = s^3 + \Lambda s^2 + \Omega^2 s + ab\Omega^2$ with roots having negative real parts iff $\Lambda > ab$: governor damping must be strong enough to ensure asymptotic stability.

Key issues: asymptotic stability and convergence rates.

¹¹J.C. Maxwell: On governors. Proc. of the Royal Society, No.100, 1868.

Reservoir/dissipation engineering and quantum controller $(1)^{12}$

 $\widehat{H} = \widehat{H}_{\rm res} + \widehat{H}_{\rm int} + \widehat{H}$

If $\rho \underset{t \to \infty}{\to} \rho_{res} \otimes \rho_{target}$ exponentially with rate $\kappa > 0$ large enough then

¹²See, e.g., the lectures of H. Mabuchi delivered at the "Ecole de physique des Houches", July 2011.

Reservoir/dissipation engineering and quantum controller (2)

$$\widehat{H} = \widehat{H}_{\rm res} + \widehat{H}_{\rm int} + \widehat{H}$$

 $\begin{array}{ll} \ldots & \rho \underset{t \to \infty}{\to} \rho_{\rm res} \otimes \rho_{\rm target} + \delta \rho, \mbox{ with } \|\delta \rho\| \mbox{ remaining small for } \\ \gamma \ll \kappa. \end{array}$

Quantum dynamics with dissipation (decoherence)

Gorini-Kossakowski -Sudarshan-Lindblad (GKSL) master equation:

$$\frac{d}{dt}\rho = -i[\widehat{H}_{0} + u\widehat{H}_{1}, \rho] + \sum_{\nu} \left(\widehat{L}_{\nu}\rho\widehat{L}_{\nu}^{\dagger} - \frac{1}{2}(\widehat{L}_{\nu}^{\dagger}\widehat{L}_{\nu}\rho + \rho\widehat{L}_{\nu}^{\dagger}\widehat{L}_{\nu})\right)$$

- Invariance under unitary transformations.

A time-varying change of frame $\rho \mapsto \widehat{U}_t^{\dagger} \rho \widehat{U}_t$ with \widehat{U}_t unitary. The new density operator obeys to a similar master equation where $\widehat{H}_0 + u \widehat{H}_1 \mapsto \widehat{U}_t^{\dagger} (\widehat{H}_0 + u \widehat{H}_1) \widehat{U}_t + i \widehat{U}_t^{\dagger} \left(\frac{d}{dt} \widehat{U}_t\right)$ and $\widehat{L}_{\nu} \mapsto \widehat{U}_t^{\dagger} \widehat{L}_{\nu} \widehat{U}_t$.

- "L¹-contraction" properties. Such master equations generate contraction semi-groups for many distances (nuclear distance¹³, Hilbert metric on the cone of non negative operators¹⁴).
- ▶ If the Hermitian operator \widehat{A} satisfies the operator inequality

$$i[\widehat{H}_{0} + u\widehat{H}_{1}, \widehat{A}] + \sum_{\nu} \left(\widehat{L}_{\nu}^{\dagger}\widehat{A}\widehat{L}_{\nu} - \frac{1}{2}(\widehat{L}_{\nu}^{\dagger}\widehat{L}_{\nu}\widehat{A} + \widehat{A}\widehat{L}_{\nu}^{\dagger}\widehat{L}_{\nu})\right) \leq 0$$

then $V(\rho) = \operatorname{Tr}\left(\widehat{A}\rho\right)$ is a Lyapunov function when $\widehat{A} \geq 0$.

 $^{^{13}}$ D.Petz (1996). Monotone metrics on matrix spaces. Linear Algebra and its Applications 14 R. Sepulchre, A. Sarlette, PR (2010). Consensus in non-commutative spaces. IEEE-CDC.

Outline

Feedback with classical controllers

The Haroche Photon-Box Super-conducting qubit Dynamics of open quantum systems

Feedback with quantum controllers

Quantum dissipation engineering

Cat-qubit and autonomous correction of bit-flips

GKP-qubit and autonomous correction of bit and phase flips

Quantum feedback engineering

QEC: 2D redundancy to correct bit-flip and phase-flip errors

Bosonic code with cat-qubits

- Quantum error corrrection requires redundancy.
- Bosonic code: instead of encoding a logical qubit in N physical qubits living in C^{2^N}, encode a logical qubit in an harmonic oscillator living in Fock space span{|0⟩, |1⟩,..., |n⟩,...} ~ L²(ℝ, C) of infinite dimension.
- Cat-qubit ¹⁵: $|\psi_L\rangle \in \text{span}\{|\alpha\rangle, |-\alpha\rangle\}$ where $|\alpha\rangle$ is the coherent state of real amplitude α : $\hat{a}|\alpha\rangle = \alpha|\alpha\rangle$ with $\hat{a} = (\hat{q} + i\hat{p})/\sqrt{2}$ and $[\hat{q}, \hat{p}] = i$:

$$|\psi
angle\sim\psi(q)\in\mathsf{L}^2(\mathbb{R},\mathbb{C}),\ \widehat{q}|\psi
angle\sim q\psi(q),\ \widehat{
ho}|\psi
angle\sim-irac{d\psi}{dq}(q),\ |lpha
angle\simrac{\exp\left(-rac{(q-lpha\sqrt{2})^2}{2}
ight)}{\sqrt{2\pi}}.$$

Stabilisation of cat-qubit via a single Lindblad dissipator $\hat{L} = \hat{a}^2 - \alpha^2$. For any initial density operator $\rho(0)$, the solution $\rho(t)$ of

$$\frac{d}{dt}\rho = \widehat{L}\rho\widehat{L}^{\dagger} - \frac{1}{2}(\widehat{L}^{\dagger}\widehat{L}\rho + \rho\widehat{L}^{\dagger}\widehat{L})$$

converges exponentially towards a steady-state density operator since

$$\frac{d}{dt} \operatorname{Tr}\left(\widehat{L}^{\dagger}\widehat{L}\rho\right) \leq -2 \operatorname{Tr}\left(\widehat{L}^{\dagger}\widehat{L}\rho\right), \quad \ker \widehat{L} = \operatorname{span}\{|\alpha\rangle, |\text{-}\alpha\rangle\}.$$

<u>Any density operator with</u> support in span{ $|\alpha\rangle$, $|-\alpha\rangle$ } is a steady-state. ¹⁵M. Mirrahimi, Z. Leghtas, ..., M. Devoret: Dynamically protected cat-qubits: a new paradigm for universal quantum computation. 2014, New Journal of Physics.

Figure S3. Equivalent circuit diagram. The cat-qubit (blue), a linear resonator, is capacitively coupled to the buffer (red). One recovers the circuit of Fig. 2 by replacing the buffer inductance with a 5-junction array and by setting $\varphi_{\Sigma} = (\varphi_{\text{ext},1} + \varphi_{\text{ext},2})/2$ and $\varphi_{\Delta} = (\varphi_{\text{ext},1} - \varphi_{\text{ext},2})/2$. Not shown here: the buffer is capacitively coupled to a transmission line, the cat-qubit resonator is coupled to a transmon qubit

¹⁶R. Lescanne, M. Villiers, Th. Peronnin, ..., M. Mirrahimi and Z. Leghtas: Exponential suppression of bit-flips in a qubit encoded in an oscillator. 2020, Nature Physics

MAIN IDEA IN A CLASSICAL PICTURE

Driven damped oscillator coupled to a pendulum.

Courtesy of Raphaël Lescanne

A BI-STABLE SYSTEM

information

Courtesy of Raphaël Lescanne

MAIN IDEA IN A CLASSICAL PICTURE

Stabilization regardless of the state

Neither the **drive** nor the **dissipation** can **distinguish** between 0 and 1

Important to preserve quantum coherence

Courtesy of Raphaël Lescanne

Master equations of the ATS super-conducting circuit

Oscillator \hat{a} with quantum controller based on a damped oscillator \hat{b} :

$$\frac{d}{dt}\rho = g_2 \Big[(\hat{a}^2 - \alpha^2) \hat{b}^{\dagger} - ((\hat{a}^{\dagger})^2 - \alpha^2) \hat{b} , \rho \Big] + \kappa_b \Big(\hat{b}\rho \hat{b}^{\dagger} - (\hat{b}^{\dagger} \hat{b}\rho + \rho \hat{b}^{\dagger} \hat{b})/2 \Big)$$

with $\alpha \in \mathbb{R}$ such that $\alpha^2 = u/g_2$, the drive amplitude $u \in \mathbb{R}$ applied to mode \widehat{b} and $1/\kappa_b > 0$ the life-time of photon in mode \widehat{b} . Any density operators $\overline{\rho} = \overline{\rho}_a \otimes |0\rangle \langle 0|_b$ is a steady-state as soon as the support of $\overline{\rho}_a$ belongs to the two dimensional vector space spanned by the quasi-classical wave functions $|\alpha\rangle$ and $|-\alpha\rangle$ (range $(\overline{\rho}_a) \subset \operatorname{span}\{|\alpha\rangle, |-\alpha\rangle\}$)

Usually $\kappa_b \gg |g_2|$, mode \hat{b} relaxes rapidly to vaccuum $|0\rangle\langle 0|_b$, can be eliminated adiabatically (singular perturbations, second order corrections) to provides the slow evolution of mode \hat{a}

$$\frac{d}{dt}\rho_{s} = \frac{4|g_{2}|^{2}}{\kappa_{b}} \Big(\widehat{L}\rho\widehat{L}^{\dagger} - \frac{1}{2}(\widehat{L}^{\dagger}\widehat{L}\rho + \rho\widehat{L}^{\dagger}\widehat{L})\Big) \text{ with } \widehat{L} = \widehat{a}^{2} - \alpha^{2}.$$

Convergence via the exponential Lyapunov function V(
ho)= Tr $\left(\widehat{L}^{\dagger}\widehat{L}
ho
ight)$ 17

¹⁷ For a mathematical proof of convergence analysis in an adapted Banach space, see :R. Azouit, A. Sarlette, PR: Well-posedness and convergence of the Lindblad master equation for a quantum harmonic oscillator with multi-photon drive and damping. 2016, ESAIM: COCV.

Cat-qubit: exponential suppression of bit-flip for large α . Since $\langle \alpha | -\alpha \rangle = e^{-2\alpha^2} \approx 0$:

$$|0_L\rangle \approx |\alpha\rangle, \ |1_L\rangle \approx |-\alpha\rangle, \ |+_L\rangle \propto \frac{|\alpha\rangle + |-\alpha\rangle}{\sqrt{2}}, \ |-_L\rangle \propto \frac{|\alpha\rangle - |-\alpha\rangle}{\sqrt{2}}.$$

Photon loss as dominant error channel (dissipator \hat{a} with $0 < \kappa_1 \ll 1$):

$$\frac{d}{dt}\rho_{a} = \mathcal{D}_{\widehat{a}^{2}-\alpha^{2}}(\rho) + \kappa_{1}\mathcal{D}_{\widehat{a}}(\rho)$$

with $\mathcal{D}_{\widehat{L}}(\rho) = \widehat{L}\rho\widehat{L}^{\dagger} - \frac{1}{2}(\widehat{L}^{\dagger}\widehat{L}\rho + \rho\widehat{L}^{\dagger}\widehat{L}).$

• if $\rho(0) = |0_L\rangle\langle 0_L|$ or $|1_L\rangle\langle 1_L|$, $\rho(t)$ converges to a statistical mixture of quasi-classical states close to $\frac{1}{2}|\alpha\rangle\langle\alpha| + \frac{1}{2}|-\alpha\rangle\langle-\alpha|$ in a time

$${T_{bit-flip}} \sim rac{{e^{2 lpha^2}}}{{\kappa_1}}$$

since $\widehat{a}|0_L\rangle pprox lpha|0_L\rangle$ and $\widehat{a}|1_L\rangle pprox -lpha|1_L\rangle$.

• if $\rho(0) = |+_L\rangle\langle+_L|$ or $|-_L\rangle\langle-_L|$, $\rho(t)$ converges also to the same statistical mixture in a time

$$T_{phase-flip} \sim rac{1}{\kappa_1 lpha^2}$$

since $\widehat{a}|+_L\rangle = \alpha|-L\rangle$ and $\widehat{a}|-_L\rangle = \alpha|+L\rangle$.

Take α large to ignore bit-flip and to correct only the phase-flip with 1D repetition code: important overhead reduction investigated by the startup **Alice&Bob** and also by **AWS**.

Outline

Feedback with classical controllers

The Haroche Photon-Box Super-conducting qubit Dynamics of open quantum systems

Feedback with quantum controllers

Quantum dissipation engineering Cat-qubit and autonomous correction of bit-flips GKP-qubit and autonomous correction of bit and phase flips

Quantum feedback engineering

QEC: 2D redundancy to correct bit-flip and phase-flip errors

Local noise assumption (1)

DV-QEC

Wave function $|\psi\rangle : \mathbb{R} \ni q \mapsto \psi(q) \in \mathbb{C}$, and Wigner function

$$\mathbb{R}^2 \ni (q,p) \mapsto W^{|\psi\rangle\langle\psi|}(q,p) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \psi^*(q-\frac{u}{2})\psi(q+\frac{u}{2})e^{-2ipu}du.$$

Local error operators \hat{q} and \hat{p} $([\hat{q}, \hat{p}] = i)$ on $|\psi\rangle$: small random shifts along q $(e^{i\pm\epsilon\hat{p}} \equiv e^{\pm\epsilon d/dq})$ and p $(e^{i\pm\epsilon\hat{q}} \equiv e^{\pm\epsilon d/dp})$ similar to diffusion along q and p axis for $W^{|\psi\rangle\langle\psi|}$.

Local noise assumption (2)

For a density operator ρ , its Wigner function

$$\mathbb{R}^2 \ni (q, p) \mapsto W^{\rho}(q, p) \in \mathbb{R}$$
reads $(\widehat{a} = \frac{\widehat{q} + i\widehat{\rho}}{\sqrt{2}})$
 $W^{\rho}(q, p) = \frac{1}{\pi} \operatorname{Tr} \left(e^{i\pi \widehat{a}^{\dagger} \widehat{a}} e^{i(p\widehat{q} - q\widehat{\rho})} \rho e^{-i(p\widehat{q} - q\widehat{\rho})} \right)$

Since

$$W^{\mathcal{D}_{\widehat{q}}(\rho)} = \frac{1}{2} \frac{\partial^2}{\partial p^2} W^{\rho}, \quad W^{\mathcal{D}_{\widehat{\rho}}(\rho)} = \frac{1}{2} \frac{\partial^2}{\partial q^2} W^{\rho}$$

and

$$W^{\mathcal{D}_{\widehat{s}}(\rho)} = rac{1}{2}rac{\partial}{\partial q}(qW^{
ho}) + rac{1}{2}rac{\partial}{\partial p}(pW^{
ho}) + rac{1}{2}rac{\partial^2}{\partial q^2}W^{
ho} + rac{1}{2}rac{\partial^2}{\partial p^2}W^{
ho}$$

dominant errors on ρ correspond to local differential operators in the phase-space (q, p).

Wigner function of coherent state
$$|\sqrt{2\pi}
angle\equivrac{1}{\sqrt{2\pi}}\exp\left(-rac{(q-2\sqrt{\pi})^2}{2}
ight)pprox|0_L
angle$$

Wigner function of coherent state
$$|-\sqrt{2\pi}
angle\equivrac{1}{\sqrt{2\pi}}\exp\left(-rac{(q+2\sqrt{\pi})^2}{2}
ight)pprox|1_L
angle$$

Wigner function of $|+_L\rangle \propto \frac{|\sqrt{2\pi}\rangle+|-\sqrt{2\pi}\rangle}{\sqrt{2}}$ ("Schrödinger phase cat")

Wigner function of $|-_L\rangle \propto \frac{|\sqrt{2\pi}\rangle - |-\sqrt{2\pi}\rangle}{\sqrt{2}}$ ("Schrödinger phase cat")

Grid-states and GKP-qubits

A

▶ Poisson summation formula: the Fourier transform of Dirac comb f(q) of period T is a Dirac comb $g(p) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(q) e^{-iqp} dq$ of period $2\pi/T$.

V 2 A		
infinite energy grid-states	q representation	<i>p</i> representation
0 _L >	$\sum_k \delta(q-2k\sqrt{\pi})$	$\sum_k \delta(p - k\sqrt{\pi})$
$ 1_L\rangle$	$\sum_k \delta(q-2(k+1)\sqrt{\pi})$	$\sum_k (-1)^k \delta(p - k\sqrt{\pi})$
$ +_L angle \sim 0_L angle + 1_L angle$	$\sum_k \delta(q-k)\sqrt{\pi}$)	$\sum_k \delta(p-2k\sqrt{\pi})$
$ L angle \sim 0_L angle - 1_L angle$	$\sum_k (-1)^k \delta(q-k) \sqrt{\pi}$	$\sum_k \delta(p-2(k+1)\sqrt{\pi})$
▶ Pauli operators of a GKP-qubit ¹⁸ with Bloch coordinates $(x, y, z) \in \mathbb{R}^3$:		
$\widehat{Z}={ m sign}(\cos(\sqrt{\pi}\widehat{q})),\ \widehat{X}={ m sign}(\cos(\sqrt{\pi}\widehat{ ho}))$ and $\widehat{Y}=-i\widehat{Z}\widehat{X}$.		
4 stabilizer operators \widehat{S} relying on commuting modular operators in \widehat{q} and \widehat{p} :		
$S \in \{e^{i2\sqrt{\pi \dot{q}}}, e^{i2\sqrt{\pi \dot{q}}}, e^{-i2\sqrt{\pi \dot{q}}}, e^{-i2\sqrt{\pi \dot{q}}}\} \text{ and } \forall \psi_L\rangle \in \operatorname{span}\{ 0_L\rangle, 1_L\rangle\}: \ S \psi_L\rangle = \psi_L\rangle$		
Finite energy regularization with $0<\epsilon\ll 1$,		
$ 0_{\epsilon} angle pprox e^{-\epsilon \widehat{a}^{\intercal} \widehat{a}} 0_{L} angle, 1_{\epsilon} angle pprox e^{-\epsilon \widehat{a}^{\intercal} \widehat{a}} 0_{L} angle,$		
where $\widehat{a}^\dagger \widehat{a} = rac{1}{2} (\widehat{q}^2 + \widehat{p}^2) \sim rac{1}{2} (q^2 + \partial^2 / \partial q^2)$, provides a finite-energy code		
space where any small local error can be corrected ¹⁹ .		

¹⁸D. Gottesman, A. Kitaev and J. Preskill: Encoding a qubit in an oscillator. Physical Review A, 2001.

¹⁹ a recent experiments stabilizing GKP-qubits via classical controllers: Ph. Campagne-Ibarcq et al. "Quantum error correction of a qubit encoded in grid states of an oscillator" Nature (2020); B. de Neeve et al. "Error correction of a logical grid state qubit by dissipative pumping" Nature (2022); V. Sivak et al. "Real-Time Quantum Error Correction beyond Break-Even" Nature (2023).

Wigner function of the GKP finite energy grid-state $\left|0_{\epsilon}\right\rangle$ 20

$${}^{20}|0_{\epsilon}\rangle \approx e^{-\epsilon q^2} \sum_{k} \exp\left(-\frac{(q-2k\sqrt{\pi})^2}{\epsilon}\right) \text{ with } \epsilon = \frac{1}{30}.$$
40/48

Wigner function of the GKP finite energy grid-state $|1_{\epsilon} angle$ ²¹

$$^{21}|1_{\epsilon}
angle pprox e^{-\epsilon q^2} \sum_{k} \exp\left(-\frac{(q-(2k+1)\sqrt{\pi})^2}{\epsilon}\right)$$
 with $\epsilon = \frac{1}{30}$.

Wigner function of the GKPfinite energy grid-state $|+_{\epsilon} angle$ ^2

$$^{22}|+_{\epsilon}\rangle\approx e^{-\epsilon q^{2}}\sum_{k}\exp\left(\frac{(q-k\sqrt{\pi})^{2}}{\epsilon}\right)\equiv e^{-\epsilon p^{2}}\sum_{k}\exp\left(\frac{(p-2k\sqrt{\pi})^{2}}{\epsilon}\right).$$

42/48

Wigner function of the GKP finite energy grid-state $|-_{\epsilon} angle$ ²³

$$^{23}|-_{\epsilon}\rangle \approx e^{-\epsilon q^{2}} \sum_{k} (-1)^{k} \exp\left(-\frac{(q-k\sqrt{\pi})^{2}}{\epsilon}\right) \equiv e^{-\epsilon p^{2}} \sum_{k} \exp\left(-\frac{(p-(2k+1)\sqrt{\pi})^{2}}{\epsilon}\right).$$

$$^{43/48}$$

Exponential stabilisation of finite energy GKP-qubits²⁴

▶ 4 regularized stabilizers:

$$\widehat{S}_{\epsilon,k} \triangleq e^{-(\epsilon-i\frac{k\pi}{2})\widehat{\mathfrak{a}}^{\dagger}\widehat{\mathfrak{a}}} e^{i2\sqrt{\pi}\widehat{q}} e^{(\epsilon-i\frac{k\pi}{2})\widehat{\mathfrak{a}}^{\dagger}\widehat{\mathfrak{a}}}, \quad k = 0, 1, 2, 3.$$

• Master equation with 4 dissipators $\widehat{M}_{\epsilon,k} = \widehat{S}_{\epsilon,k} - \widehat{I}$

$$rac{d}{dt}
ho = \sum_{k=0}^3 \mathcal{D}_{\widehat{M}_{\epsilon,k}}(
ho)$$

Lyapunov function:

$$V(
ho) = \sum_{k} \operatorname{Tr}\left(\widehat{M}_{\epsilon,k}^{\dagger}\widehat{M}_{\epsilon,k}
ho
ight)$$
 with $rac{d}{dt}V \leq -\left(32\pi^{2}\epsilon^{2} + O(\epsilon^{3})
ight)V$

ensuring exponential convergence towards the finite-energy code space

$$\text{span}\left\{e^{-\epsilon \widehat{a}^{\dagger} \widehat{a}}|0_L\rangle, e^{-\epsilon \widehat{a}^{\dagger} \widehat{a}}|1_L\rangle\right\}$$

²⁴L.A. Sellem, Ph. Campagne-Ibarcq, M. Mirrahimi, A. Sarlette, PR: Exponential convergence of a dissipative quantum system towards finite-energy grid states of an oscillator: IEEE CDC 2022 (arXiv:2203.16836). Approximated Lindblad dissipators with exponentially small decoherence rates ²⁵

Replace the ideal dissipators $\widehat{M}_{\epsilon,k}$ by more realistic dissipators $\widehat{L}_{\epsilon,k}$ derived from a first-order approximation in ϵ :

$$\widehat{L}_{\epsilon,k} \triangleq e^{i\frac{k\pi}{2}\widehat{\mathfrak{d}}^{\dagger}\widehat{\mathfrak{a}}} \left(e^{-2\pi\epsilon} e^{i2\sqrt{\pi}\widehat{q}} (\widehat{I} - 2\epsilon\sqrt{\pi}\widehat{p}) - \widehat{I} \right) e^{-i\frac{k\pi}{2}\widehat{\mathfrak{d}}^{\dagger}\widehat{\mathfrak{a}}}$$

For ρ governed by master equation $\frac{d}{dt}\rho = \sum_{k=0}^{3} \mathcal{D}_{\hat{L}_{\epsilon,k}}(\rho)$:

- Energy Tr $(\hat{a}^{\dagger}\hat{a}\rho)$ remains finite and for t large is less than $\frac{1}{2\epsilon} + 0(1)$.
- For any 2π periodic function $f(\theta)$, one has

$$\frac{d}{dt} \operatorname{Tr}\left(f(\sqrt{\pi}\widehat{q})\rho\right) = -4\epsilon\pi e^{-2\pi\epsilon} \operatorname{Tr}\left(\left(\sin(2\sqrt{\pi}\widehat{q})f'(\sqrt{\pi}\widehat{q}) - \epsilon\pi e^{-2\pi\epsilon}f''(\sqrt{\pi}\widehat{q})\right)\rho\right)$$

▶ Spect. $(\lambda_n)_{n\geq 0}$ of Witten Laplacian $\mathcal{L}_{\sigma}(f(\theta)) = \sin(2\theta)f'(\theta) - \sigma f''(\theta)$ with 2π -periodic function $f(\theta)$ and $0 < \sigma \ll 1$: $\lambda_0 = 0 < \lambda_1 \sim \frac{4}{\pi} e^{-1/\sigma} < 1 \le \lambda_2 \le \lambda_3 \le \ldots \le \lambda_n \le \ldots$ with eigenfunction $f_1(\theta) \approx \operatorname{sign}(\cos \theta)$ corresponding to λ_1 . Thus $z \approx \operatorname{Tr}(f_1(\sqrt{\pi}\widehat{q})\rho)$ is almost constant: $\frac{d}{dt}z \approx -16\epsilon \exp\left(-\frac{1}{\epsilon\pi}\right) z$. Similar exponentially small decays for (x, y, z) with quadrature noises, i.e. when $\frac{d}{dt}\rho = \sum_{k=0}^{3} \mathcal{D}_{\widehat{L}_{\epsilon,k}}(\rho) + \kappa_q \mathcal{D}_{\widehat{q}}(\rho) + \kappa_p \mathcal{D}_{\widehat{p}}(\rho) (\kappa_q, \kappa_q \ll 1)$

²⁵L.A. Sellem, R. Robin, Ph. Campagne-Ibarcq, PR: Stability and decoherence rates of a GKP qubit protected by dissipation. IFAC WC 2023 (arXiv:2304.03806).

Engineering modular dissipation with super-conducting Josephson circuits ²⁶

High impedance $\sqrt{L_a/C_a}$ and low pulsation $1/\sqrt{L_aC_a}$ for storage mode \hat{a} . High pulsation $1/\sqrt{L_bC_b}$ of damped mode \hat{b} (quantum controller $R_b > 0$). Josephson energy E_J between $\hbar/\sqrt{L_aC_a}$ and $\hbar/\sqrt{L_bC_b}$. Classical open-loop control signals $\Phi_J^{ext}(t)$ and $\Phi_L^{ext}(t)$ made of short pulses. Mathematical analysis to recover master equation with dissipators \hat{L}_k . Numerical simulations to test robustness versus experimental imperfections.

²⁶L.A. Sellem, A. Salette, Z. Leghtas, M. Mirrahimi, PR, Ph. Campagne-Ibarcq: A GKP qubit protected by dissipation in a high-impedance superconducting circuit driven by a microwave frequency comb. Under review in PRX (arXiv:2304.01425).

Quantum feedback engineering for robust quantum information processing

To protect quantum information stored in system S:

- fast stabilization and protection mainly achieved by quantum controllers (autonomous feedback stabilizing decoherence-free sub-spaces);
- slow decoherence and perturbations, parameter estimation mainly tackled by classical controllers and estimation algorithms (measurement-based feedback and estimation "finishing the job")

Need of adapted mathematical and numerical methods for high-precision dynamical modeling and control with (stochastic) master equations.

Quantic research group ENS/Inria/Mines/CNRS, June 2023

