
UMPC Wednesday 6 April 2016

M2 Mathématiques & Applications
UE (ANEDP, COCV): Analysis et control of quantum systems.

3-hour exam given by M. Mirrahimi and P. Rouchon

Lecture notes and other written documents are authorized. Access to internet and other
networks is forbidden. The two problems are completely independent and can be treated in
any order in French or English.

Problem 1

We consider two quantum harmonic oscillators coupled through a nonlinear medium. We
assume that one of the harmonic oscillators is driven off-resonance.

ǫd

a

b gab

1

The Hamiltonian is given by

H

~
= ωa

(
a†a + I

2

)
+ ωb

(
b†b + I

2

)
+ gab

(
(a + a†) + (b + b†)

)4

+
(
εde
−iωtb† + ε∗de

iωtb
)
,

where ωa and ωb are the resonance frequencies of
the harmonic oscillators associated to the annihila-
tion operators a and b. Also, gab � ωa, ωb is the
strength of the quartic coupling provided by the
nonlinear medium. Finally εd represents the com-
plex amplitude of the drive at frequency ω applied
to the harmonic oscillator b.

1. Write the Schrödinger equation i ddt |φ〉 = H
~ |φ〉 in the form of a partial differential

equation for the complex-valued wave-function φ(x, y) depending on two real variables
x and y (we will not use this PDE formulation in the sequel).

2. Express the Schrödinger equation i ddt |φ〉 = H
~ |φ〉 in the rotating frame of the Hamilto-

nian H0/~ = ωb†b, i.e. with the new wave-function |φ̃〉 = eitH0/~|φ〉 instead of |φ〉, i.e.
compute Ã = eitH0/~

(
H−H0

~
)
e−itH0/~ where i ddt |φ̃〉 = Ã(t)|φ̃〉

3. Consider the displacement operator Dβ = exp(βb† − β∗b) with β = εd/∆, ∆ = ωb − ω.

Show that the Schrödinger equation i ddt |φ̃〉 = Ã(t)|φ̃〉, after a change of variable |ψ̃〉 =

Dβ|φ̃〉, and up to a change of global phase (i.e. up to ωI with ω ∈ R) , can be written

in the form i ddt |ψ̃〉 = A(t)|ψ̃〉, where

A = ωaa
†a + ∆b†b + gab

(
a + a† + be−iωt + b†eiωt − βe−iωt − β∗eiωt

)4
.
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4. Once again, use the rotating frame of the Hamiltonian A0 = ωaa
†a + ∆b†b, write

the above Schrödinger equation in the form i ddt |ψ〉 = B(t)|ψ〉 with |ψ〉 = eitA0 |ψ̃〉 and
provide the expression of B(t) versus a and b.

5. We take ω = 2ωa−ωb and we assume |gab| � |naωa−nbωb| for all na, nb = 0, 1, 2, 3, 4 such
that na 6= nb. Show that the first-order averaging leads to an approximate dynamics of
the form i ddt |ψ〉 = B̄|ψ〉, where, up to an irrelevant global phase,

B̄ = δaa
†a + δbb

†b + χaaa
† 2a2 + χbbb

† 2b2 + χaba
†ab†b + g2pha

† 2b + g∗2pha
2b†

Determine the parameters δa, δb, χaa, χbb, χab and g2ph as a function of gab and β.
Indication: use [a,a†] = 1, [b, b†] = 1 and

(
U + V +W

)4
=

∑
nU+nV +nW =4

(
4!

nU !nV !nW !

)
UnUV nV WnW

where U , V and W are three operators that commute.

Problem 2

Under the assumption of strong dissipation for the mode b in the previous problem, it is
possible to eliminate the dynamics of the mode b to achieve an approximate Lindblad equation
only for mode a. This leads to a two-photon loss for the quantum harmonic oscillator a where
the density operator ρ(t) is governed by

d

dt
ρ = LρL† − 1

2(L†Lρ+ ρL†L) , L(ρ), ρ(0) = ρ0

with L = a2. We recall that for any integer n ≥ 1, a|n〉 =
√
n|n − 1〉 and a|0〉 = 0 where(

|n〉
)
n∈N

is the Hilbert basis corresponding to photon-number states. We recall also that, for

any scalar function f , af(N) = f(N + 1)a where N = a†a.

1. (a) Show that L†L = N(N − 1).

(b) Set pn = 〈n|ρ|n〉 for n ≥ 0. Show that

d

dt
pn = (n+ 1)(n+ 2)pn+2 − n(n− 1)pn.

(c) Deduce that the density operators ρ̄ such that L(ρ̄) = 0 have their supports in
span(|0〉, |1〉):

∃p̄0 ∈ [0, 1], ∃c̄ ∈ C, ρ̄ = p̄0|0〉〈0|+ (1− p̄0)|1〉〈1|+ c̄|1〉〈0|+ c̄∗|0〉〈1|.

2. For any operator J (not necessarily Hermitian) prove that d
dt

(
Tr (ρJ)

)
= Tr (ρL∗(J))

where L∗(J) = L†JL − 1
2(L†LJ + JL†L) (the adjoint super-operator associated to L

for the Frobenius scalar product between two Hermitian matrices).

3. (a) For any increasing scalar function f , prove that L∗(f(N)) ≤ 0.

(b) Deduce that V (ρ) = Tr (Nρ) is a Lyapunov function.
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(c) Prove that, formally, for any initial density operator ρ0, limt7→+∞ ρ(t) exists and
corresponds to a steady state ρ̄ characterized in question 1c.

(d) Show that ρ̄ depends linearly on the initial condition ρ0.

Such dependence is denoted by ρ̄ = K(ρ0). The remaining part of the problem consists
in providing an explicit formulation of this map.

4. An operator J is said to be invariant if and only if L∗(J) = 0. Show that, for any
invariant operator J , Tr (ρJ) is a first integral of d

dtρ = L(ρ).

5. Prove that f(N) is an invariant operator if f is 2-periodic. Show that J0 =
∑

n≥0 |2n〉〈2n|
is invariant and deduce that

〈
0
∣∣K(ρ0)

∣∣0〉 = Tr (J0ρ0) and
〈
1
∣∣K(ρ0)

∣∣1〉 = 1−Tr (J0ρ0).

6. Prove that f(N)a is an invariant operator if f(1) = 0 and for all integer n ≥ 2 we have
nf(n) = (n− 1)f(n− 2).

7. Consider a real function f such that f(0) = 1 and, for all n ≥ 1, f(2n − 1) = 0 with
f(2n) =

∏n
k=1

2k−1
2k .

(a) Show that the series gn =
√

2n+ 1f(2n) is strictly decreasing.

(b) Check that J1 = f(N)a is a bounded and invariant operator.

(c) Prove that

K(ρ0) = Tr (J0ρ0) |0〉〈0|+
(

1−Tr (J0ρ0)
)
|1〉〈1|+Tr (ρ0J1) |1〉〈0|+Tr

(
ρ0J

†
1

)
|0〉〈1|.

8. (a) Show that Tr (ρ0J1) =
∑

n≥0 gn
〈
2n+ 1

∣∣ρ0

∣∣2n〉 =
〈
1
∣∣K(ρ0)

∣∣0〉 .
(b) Show that K(ρ0) admits a Kraus formulation of the following form

K(ρ0) =
∑
n≥0

Anρ0A
†
n +Bnρ0B

†
n + Cnρ0C

†
n

where An = an|0〉〈2n|, Bn = bn|0〉〈2n+ 1| and Cn = cn

(
|0〉〈2n|+ |1〉〈2n+ 1|

)
and

express the values of the scalars an, bn and cn versus gn. Check that
∑

n≥0A
†
nAn+

B†nBn + C†nCn = I.
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UMPC Wednesday 6 April 2016

M2 Mathématiques & Applications
UE (ANEDP, COCV): Analysis et control of quantum systems.

Solution of the 3-hour exam given by M. Mirrahimi and P. Rouchon

Problem 1

1. Since a†a + 1/2 stands for the operator −1
2
∂2

∂x + 1
2x

2 and a + a† for
√

2x (the same for
b with y instead of x), we get

i
∂φ

∂t
= −ωa

2

∂2φ

∂x
− ωb

2

∂2φ

∂y
+
(
ωa
2 x

2 + ωb
2 y

2 + 4gab(x+ y)4
)
φ

+
√

2<(εde
−iωt)yφ+ i

√
2=(εde

−iωt)
∂φ

∂y
.

2. In this frame a remains unchanged, i.e. eitH0/~ae−itH0/~ = a and b becomes be−iωt,
i.e. eitH0/~be−itH0/~ = be−iωt. Thus we have

Ã = ωa

(
a†a + I

2

)
+ (ωb − ω)b†b + ωb

I
2 + gab

(
a + a† + be−iωt + b†eiωt

)4
+ εdb

† + ε∗db.

3. In this frame a remains unchanged and b becomes be−iωt, i.e. DβbD−β = b− β. Thus
we have

DβÃD−β = ωa

(
a†a + I

2

)
+ (ωb − ω)(b† − β∗)(b− β) + ωb

I
2

+ gab

(
a + a† + (b− β)e−iωt + (b† − β∗)eiωt

)4
+ εd(b

† − β∗) + ε∗d(b− β).

= ωaa
†a + (ωb − ω)b†b + gab

(
a + a† + (b− β)e−iωt + (b† − β∗)eiωt

)4

+
(ωa

2
+ (ωb − ω)|β|2 +

ωb
2
− εdβ∗ − ε∗dβ

)
I

Thus, up-to the global phase term
(
ωa
2 + (ωb − ω)|β|2 + ωb

2 − εdβ
∗ − ε∗dβ

)
I, we have

DβÃD−β = A.

4. In this frame a becomes ae−iωat, i.e. eitA0/~ae−itA0/~ = ae−iωat and b becomes be−i∆t,
i.e. eitA0/~be−itA0/~ = be−i∆t. Thus

B(t) = gab

(
− βe−iωt − β∗eiωt + ae−iωat + a†eiωat + be−iωbt + b†eiωbt

)4
.

5. Since the three operators ae−iωat + a†eiωat, be−iωbt + b†eiωbt and −(βe−iωt + β∗eiωt)I
commute, we have

B(t) =
∑

n+na+nb=4

4!(−1)n

na!nb!n!

(
βe−iωt+β∗eiωt

)n (
ae−iωat + a†eiωat

)na
(
be−iωbt + b†eiωbt

)nb

.
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Since ω = 2ωa − ωb and naωa − nbωb 6= 0, secular terms appear only in the monomials
associated to the following values of (n, na, nb):

(n, na, nb) ∈
{

(4, 0, 0), (0, 4, 0), (0, 0, 4), (2, 2, 0), (2, 0, 2), (0, 2, 2), (1, 2, 1)
}
.

The secular term associated to (n, na, nb) = (4, 0, 0) is 6gabβ
2β∗ 2, i.e. an irrelevant

global phase term.

The secular term associated to (n, na, nb) = (0, 4, 0) is given by

gab

(
a†(a†aa + aa†a + aaa†) + a(aa†a† + a†aa† + a†a†a)

)
since a and a† do not commute. Using aa† = 1 +a†a, we have a†aa+aa†a+aaa† =
3(a†a + 1)a and

a†(a†aa + aa†a + aaa†) = 3a† 2a2 + 3a†a.

Similarly aa†a† + a†aa† + a†a†a = 3a†(a†a + 1) and thus

a(aa†a† + a†aa† + a†a†a) = 3a† 2a2 + 3a†a + 3

The secular term associated to (n, na, nb) = (0, 4, 0) reads, up-to an irrelevant global
phase

6gab

(
a† 2a2 + a†a

)
.

The computation are the same for the secular term of (n, na, nb) = (0, 0, 4) (swap a and
b):

6gab

(
b† 2b2 + b†b

)
.

For (n, na, nb) = (2, 2, 0) and (n, na, nb) = (2, 0, 2) we get, up-to an irrelevant global
phase,

24gab|β|2a†a and 24gab|β|2b†b

For (n, na, nb) = (0, 2, 2) we get, up-to an irrelevant global phase,

24gaba
†ab†b + 12gab

(
a†a + b†b

)
For (n, na, nb) = (1, 2, 1) we have only two secular terms in

−12gab
(
βe−i(2ωa−ωb)t + β∗ei(2ωa−ωb)t

) (
ae−iωat + a†eiωat

)2 (
be−iωbt + b†eiωbt

)
that are −12gabβa

† 2b and its Hermitian conjugate.

Gathering these secular terms, we get

B̄ = 6gab

(
(3 + 4|β|2)

(
a†a+ b†b

)
+
(
a† 2a2 + b† 2b2

)
+ 4a†ab†b− 2

(
βa† 2b+ β∗a2b†

))
.

Thus

δa = δb = 6gab(3 + 4|β|2), χaa = χbb = 6gab, χab = 24gab, g2ph = −12gabβ.
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Problem 2

1. (a) We have

L†L = a† 2a2 = a†(a†a)a = a†Na = a†a(N − 1) = N(N − 1).

(b) From d
dtpn =

〈
n
∣∣ d
dtρ
∣∣n〉 and a† 2|n〉 =

√
(n+ 1)(n+ 2)|n+ 2〉 we get

d

dt
pn =

〈
n
∣∣∣a2ρa† 2

∣∣∣n〉− 1

2
〈n |N(N − 1)ρ+ ρN(N − 1)|n〉

= (n+ 1)(n+ 2) 〈n+ 2 |ρ|n+ 2〉 − n(n− 1) 〈n |ρ|n〉
= (n+ 1)(n+ 2)pn+2 − n(n− 1)pn.

(c) Set p̄n = 〈n |ρ̄|n〉. Then (n + 1)(n + 2)p̄n+2 = n(n − 1)p̄n for all n ≥ 0. Thus
for all n ≥ 2, p̄n = 0. Since ρ̄ ≥ 0, this means that for all n,m with n ≥ 2 or
m ≥ 2, we have 〈n |ρ̄|m〉 = 0. The support of ρ̄ is in span(|0〉, |1〉) and thus reads
ρ̄ = p̄0|0〉〈0|+(1− p̄0)|1〉〈1|+ c̄|1〉〈0|+ c̄∗|0〉〈1| since Tr (ρ̄) = 1 and ρ̄ ≥ 0. Moreover
p̄0(1− p̄0) ≥ |c̄|2.

2. We have

d

dt

(
Tr (ρJ)

)
= Tr

(
J
(
LρL† − 1

2(L†Lρ+ ρL†L)
))

= Tr
(
L†JLρ− 1

2(JL†Lρ+ JρL†LJ)
)

= Tr (L∗(J)ρ) .

3. (a) We have

L∗(f(N)) = a† 2f(N)a2 − 1
2(N(N − 1)f(N) + f(N)N(N − 1))

= a† 2a2f(N − 2)−N(N − 1)f(N) = N(N − 1)(f(N − 2)− f(N)).

Since N(N − 1) ≥ 0 and f(N − 2) ≤ f(N) we have L∗(f(N)) ≤ 0.

(b) We have d
dtV (ρ) = Tr (L∗(N)ρ) = −2 Tr (N(N − 1)ρ) since L∗(N) = −2N(N −

1). Thus d
dtV ≤ 0 and V is a Lyapunov function in the sense that its time-derivative

is non-positive.

(c) Assume that d
dtV = 0. Then Tr (N(N − 1)ρ) = 0. Since N(N−1) and ρ are non-

negative Hermitian operators,Tr (N(N − 1)ρ) = 0 implies that N(N − 1)ρ = 0:
the range of ρ is included in the kernel of N(N−1), i.e. in span(|0〉, |1〉). According
to question 1c, this means that ρ is a steady state, i.e., L(ρ) = 0.

(d) Since for each t ≥ 0, ρ(t) depends linearly on its initial condition ρ0, its limits for
t tending to infinity depends also linearly on ρ0.

4. This results from the fact that d
dt Tr (Jρ) = Tr (JL(ρ)) = Tr (L∗(J)ρ) = 0.

5. With question 3a, we have L∗(f(N)) = 0 when f(N − 2) = f(N). The oper-
ator J0 = (1 + (−1)N )/2 is defined via a function f that is 2-periodic. For any
t ≥ 0, Tr (J0ρ(t)) = Tr (J0ρ0). Since limt7→+∞ ρ(t) = K(ρ0), we get the result since
Tr (J0K(ρ0)) =

〈
0
∣∣K(ρ0)

∣∣0〉 and 1 = Tr (K(ρ0)) =
〈
0
∣∣K(ρ0)

∣∣0〉+
〈
1
∣∣K(ρ0)

∣∣1〉.
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6. We have

L∗(f(N)a) = a† 2f(N)a3 − 1
2(N(N − 1)f(N)a + f(N)aN(N − 1))

=
(
a† 2a2f(N − 2)− 1

2N(N − 1)f(N)− 1
2f(N)N(N + 1)

)
a

= N
(

(N − 1)f(N − 2)−Nf(N)
)
a.

This means that L∗(f(N)a)|0〉 = 0, L∗(f(N)a)|1〉 = 0 and

∀n ≥ 2, L∗(f(N)a)|n〉 = (n− 1)
√
n
(
(n− 2)f(n− 3)− (n− 1)f(n− 1)

)
|n− 1〉.

Thus when f(1) = 0 and nf(n) = (n−1)f(n−2) for all n ≥ 2, we have L∗(f(N)a)|n〉 =
0 for all n ≥ 0.

7. (a) For n ≥ 1, we have gn+1/gn =

√
(2n+1)(2n+3)

2n+2 < 1 (geometric mean smaller than

arithmetic mean). Thus g is strictly decreasing and gn < g1 =
√

3/4 < 1 = g0.

(b) For n ≥ 0, J1|2n〉 = 0 and J1|2n+1〉 = gn|2n〉. Since gn is bounded, J1 is bounded.
Since for any n ≥ 0 the norm of J1|n〉 is less than 1 and J1|1〉 = |0〉, this implies
that

sup
〈ψ|ψ〉=1

〈
ψ|J†1J1|ψ

〉
= 1.

(c) From question 1c, we have

K(ρ0) = p̄0|0〉〈0|+ (1− p̄0)|1〉〈1|+ c̄|1〉〈0|+ c̄∗|0〉〈1|.

By definition of J0 and J1, we have p̄0 = Tr (J0K(ρ0)) and c̄ = Tr (J1K(ρ0)). Since
J0 and J1 are invariant operators, we have Tr (JsK(ρ0)) = Tr (Jsρ0) for s = 0, 1.

8. (a) This results directly from the fact that for all n, J1|2n〉 = 0 and J1|2n+1〉 = gn|2n〉.
(b) From Tr (J0ρ0) =

∑
n 〈2n|ρ0|2n〉 and Tr (J1ρ0) =

∑
n gn

〈
2n+ 1

∣∣ρ0

∣∣2n〉 we have

K(ρ0) =
∑
n≥0

〈2n|ρ0|2n〉 |0〉〈0|+ 〈2n+ 1|ρ0|2n+ 1〉 |1〉〈1|

+
∑
n≥0

gn
〈
2n+ 1

∣∣ρ0

∣∣2n〉 |1〉〈0|+ gn
〈
2n
∣∣ρ0

∣∣2n+ 1
〉
|0〉〈1|.

where we have used 1−Tr (J0ρ0) = Tr (ρ0)−
∑

n 〈2n|ρ0|2n〉 =
∑

n 〈2n+ 1|ρ0|2n+ 1〉.
For each n we have〈

2n+ 1
∣∣ρ0

∣∣2n〉 |1〉〈0|+ 〈2n∣∣ρ0

∣∣2n+ 1
〉
|0〉〈1|

=
(
|0〉〈2n|+ |1〉〈2n+ 1|

)
ρ0

(
|2n〉〈0|+ |2n+ 1〉〈0|

)
− 〈2n|ρ0|2n〉 |0〉〈0| − 〈2n+ 1|ρ0|2n+ 1〉 |1〉〈1|.

With identity 〈n′|ρ0|n′〉 |0〉〈0| = |0〉〈n′|ρ0|n′〉〈0|, we get

K(ρ0) =
∑
n≥0

(1− gn)|0〉〈2n|ρ0|2n〉〈0|+ (1− gn)|1〉〈2n+ 1|ρ0|2n+ 1〉〈1|

+
∑
n≥0

gn

(
|0〉〈2n|+ |1〉〈2n+ 1|

)
ρ0

(
|2n〉〈0|+ |2n+ 1〉〈0|

)
.
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Since 0 < gn ≤ 1, we have an = bn =
√

1− gn and cn =
√
gn.

From A†nAn = (1 − gn)|2n〉〈2n|, B†nBn = (1 − gn)|2n + 1〉〈2n + 1| and C†nCn =
gn|2n〉〈2n|+ gn|2n+ 1〉〈2n+ 1| we get∑

n≥0

A†nAn +B†nBn + C†nCn =
∑
n≥0

|2n〉〈2n|+ |2n+ 1〉〈2n+ 1| = I.
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