UMPC Wednesday 6 April 2016

M2 Mathématiques & Applications
UE (ANEDP, COCV): Analysis et control of quantum systems.
3-hour exam given by M. Mirrahimi and P. Rouchon

Lecture notes and other written documents are authorized. Access to internet and other
networks is forbidden. The two problems are completely independent and can be treated in
any order in French or English.

Problem 1

We consider two quantum harmonic oscillators coupled through a nonlinear medium. We
assume that one of the harmonic oscillators is driven off-resonance.
The Hamiltonian is given by

% = Wy (aTa + %) + wyp (bTb+ %)
4
H + g ((a+al) + (b+h))

+ (Gde*imer + efleimb),

€d b Gab

where w, and wp are the resonance frequencies of
the harmonic oscillators associated to the annihila-
tion operators a and b. Also, gup < wg,wp is the
strength of the quartic coupling provided by the
nonlinear medium. Finally €; represents the com-

plex amplitude of the drive at frequency w applied
to the harmonic oscillator b.

1. Write the Schrodinger equation i%\@ = %|¢> in the form of a partial differential
equation for the complex-valued wave-function ¢(x,y) depending on two real variables
x and y (we will not use this PDE formulation in the sequel).

2. Express the Schrodinger equation i%kﬁ) = %\qﬁ) in the rotating frame of the Hamilto-

nian Ho/h = wb'b, i.e. with the new wave-function |$>~: eitfo/hlcb) instead of |¢), i.e.
compute A = ¢/*Ho/h (@) e Ho/h where i%|¢> = A(t)|o)

3. Consider the displacement operator Dg = exp(ﬁbJf — (*b) with 5 =€3/A, A = w, — .
Show that the Schrodinger equation i%|¢> = A(t)|¢), after a change of variable |¢)) =

Dg|¢), and up to a change of global phase (i.e. up to wl with w € R) , can be written
in the form i 4 |1)) = A(t)[1)), where

_ _ _ A4
A =wza'a+ AbTb + gy (a + a4+ be ™t 4 ple™t — et _ B*e“"t> )



4. Once again, use the rotating frame of the Hamiltonian Ay = wga'a + AbTb,~ write
the above Schrodinger equation in the form i%hb) = B(t)|¢)) with |¢) = e®40[¢)) and
provide the expression of B(t) versus a and b.

5. We take W = 2w, —wj and we assume |gqp| < |nqw, —npwyp| for all ng, ny = 0, 1,2, 3,4 such
that n, # np. Show that the first-order averaging leads to an approximate dynamics of
the form i%hﬁ} = B|¢), where, up to an irrelevant global phase,

B =d.a'a + 6,b'b + yaaa'?a® + xpub' 2b* + xapa'ab'd + gapna’*b + g5 ,a°b

Determine the parameters dq, b, Xaa» Xob» Xab and gopn as a function of g4, and B.
Indication: use [a,a!] =1, [b,b'] = 1 and

U+v+w)t= Y L B
TLU! nv! nwl
ny+ny +nyw =4

where U, V and W are three operators that commute.

Problem 2

Under the assumption of strong dissipation for the mode b in the previous problem, it is
possible to eliminate the dynamics of the mode b to achieve an approximate Lindblad equation
only for mode a. This leads to a two-photon loss for the quantum harmonic oscillator a where
the density operator p(t) is governed by

d
2P =LpL' = 5(L'Lp+ pLTL) £ L(p),  p(0) = po
with L = a?. We recall that for any integer n > 1, a|n) = \/n|n — 1) and a|0) = 0 where
(|n>) N is the Hilbert basis corresponding to photon-number states. We recall also that, for
ne
any scalar function f, af(IN) = f(IN + 1)a where N = a'a.
1. (a) Show that LTL = N(N —1).
(b) Set p, = (n|p|n) for n > 0. Show that

d
%p" =(n+1)(n+2)pptr2 — n(n — 1)py,.

(¢) Deduce that the density operators p such that £(p) = 0 have their supports in
span(|0), [1)):

Fpo € [0,1],3¢ € C, p = po[0)(0] + (1 = po)[1) (L] + €[1)(0] + &|0)(1].
2. For any operator J (not necessarily Hermitian) prove that %(Tr (pJ)) = Tr (pL*(J))

where £*(J) = LTJL — %(LTLJ + JLTL) (the adjoint super-operator associated to £
for the Frobenius scalar product between two Hermitian matrices).

3. (a) For any increasing scalar function f, prove that £*(f(IN)) < 0.
(b) Deduce that V(p) = Tr (Np) is a Lyapunov function.



(c) Prove that, formally, for any initial density operator pg, limy 4 p(t) exists and
corresponds to a steady state p characterized in question lc.

(d) Show that p depends linearly on the initial condition po.
Such dependence is denoted by p = K (po). The remaining part of the problem consists

in providing an explicit formulation of this map.

. An operator J is said to be invariant if and only if £*(J) = 0. Show that, for any
invariant operator J, Tr (pJ) is a first integral of %p = L(p).

. Prove that f(IV) is an invariant operator if f is 2-periodic. Show that Jo =, - [2n)(2n|
is invariant and deduce that <0|K(p0)|0> = Tr (Jopo) and <1‘K(p0)‘1> =1—"Tr (Jopo).

. Prove that f(IN)a is an invariant operator if f(1) = 0 and for all integer n > 2 we have
nf(n)=(n—1)f(n-2).

. Consider a real function f such that f(0) = 1 and, for all n > 1, f(2n — 1) = 0 with
f(2n) = [Tz, %5

(a) Show that the series g, = v/2n + 1f(2n) is strictly decreasing.
(b) Check that J; = f(IN)a is a bounded and invariant operator.
(c) Prove that

K (po) = Tr (Jopo) [0) 0]+ (1=Tr (Jopo) )11 {11+ Tr (po.11) [1)(0]+Tx (po}) [0 (1]

(a) Show that Tr (poJ1) = ,509n (2n + 1‘p0|2n> = <1‘K(pg)‘0> .
(b) Show that K (pg) admits a Kraus formulation of the following form

K(po) =Y AnpoAl, + BnpoB] + CrpoC}
n>0
wheu,An::anu»<2nL_Bn::bnun<zn-+1\and_cg::cn(u»<2ny+|1x2n-+10 and

express the values of the scalars a,,, b, and ¢, versus g,,. Check that ano ALAn +
BB, +CiC, =1I.
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Problem 1

1.

. In this frame a becomes ae™*“a

Since afa + 1/2 stands for the operator 122 %xz and a + a' for v/2x (the same for

2 0x
b with y instead of x), we get

8¢ w, 82¢ w, an) w o
i = " T, T (33 (e )¢

VIR(cae )y + VIS cae ) 5.
itHo/hae—itHo/fL iwt

In this frame a remains unchanged, i.e. e = a and b becomes be """,

i.e. ettHo/hpe—itHo/l — pe—i@t Thyg we have

. —\4
A=w, <aTa + %) + (wp — @)bT + wyk + gap <a +a' + be ™ 4 bTe““t) + eqb’ + €b.

In this frame a remains unchanged and b becomes be =", i.e. DgbD_5 =b— . Thus
we have

DgAD 3 =w, (aTa + %) + (wp — @) (b — B) (b~ B) + wyl
L —N\4
+ Gab (a +al + (b—B)e ™ + (b — 5*)&“) +eq(b’ — B*) 4+ €5(b — B).
= waa'a + (w, —@)b'b + gab(a +al +(b—pB)e ™ 4+ (b — B*)eim>4

(S @ -DBP + 5 e — B I

Thus, up-to the global phase term (% + (wp — ) |B)? + 2 —ef — e;;ﬂ) I, we have
DsAD_j5 = A.

t je. etAo/hge—itAo/h — ge=iwat and b becomes be At

i.e. eitAo/hpe—itAo/h — pe—iAl Thyg

L _ ) . . . 4
B(t) _ gab< o Befzwt _ ﬂ*Qth + aefzwat + a’[ezwat + befzwbt + bTezwbt> )

. Since the three operators ae ™ot 4 afeiwat pe=iwnt 4 pieiwst and —(Be @t 4 f*e@h) T

commute, we have

B(t) — Z 4|(_1)n (ﬁe‘iwt+ﬁ*eim)n ae—iwat + aTeiwat a be—iwbt + bTeiwbt nb.
ng! np! n!
n+nq+ny=4 @



Since W = 2w, — wp and newg, — npwp # 0, secular terms appear only in the monomials
associated to the following values of (n,ng,np):

(N, na, 1) € {(4,0,0), (0,4,0), (0,0,4), (2,2,0), (2,0,2), (0,2,2), (1,2,1)}.

The secular term associated to (n,n4,1) = (4,0,0) is 6943282, i.e. an irrelevant
global phase term.

The secular term associated to (n,ng,ny) = (0,4,0) is given by
Jab <aT(aTaa + aa'a + aaal) + a(aa’a’ + a'aa’ + aTaTa))
since @ and a' do not commute. Using aa’ = 1+ a'a, we have ataa + aata + aaat =

3(a'a + 1)a and
a'(a'aa + aa’a + aaa’) = 3a"%a® + 3a’a

Similarly aa'a’ + a'aa’ + afa’a = 3af(afa + 1) and thus
a(aa'a’ +a'aa’ + a'a’a) = 3a'%a® + 3a'a + 3
The secular term associated to (n,nq,ny) = (0,4,0) reads, up-to an irrelevant global

phase
6gab< f2 2+a' )

The computation are the same for the secular term of (n, ng, np) = (0,0,4) (swap a and
b):

6Ju (bT2b2 +bf b) .
For (n,ng,np) = (2,2,0) and (n,nq,np) = (2,0,2) we get, up-to an irrelevant global

phase,
2gam|B2a’a and  24g4|5]*b'b

For (n,nqe,np) = (0,2,2) we get, up-to an irrelevant global phase,

24g.pa'ab'b + 129, (a’a + b'b)
For (n,nq,np) = (1,2,1) we have only two secular terms in
_12gab(ﬁe 1(2wa—wp)t + 6* 1(2waq — wb)t) (ae—iwat + aTeiwat>2 (be—iwbt + b'feiwbt>

that are —12¢,,fa’?b and its Hermitian conjugate.

Gathering these secular terms, we get
B= 6gab<(3+4\6| )(a'a +b'd) + (a'?a’® + b'?b?) + 4a’ab'b — 2(5af2b+5*a2bT)>.
Thus

o = 0y = 69ap(3 4+ 41B1%), Xaa = Xob = 69abs Xab = 249abs Goph = —12gap.



Problem 2
1. (a) We have

L'L=a"a’=a'(a'a)a =a'Na=a'a(N -1)= N(N - 1).

(b) From £p, = (n|%4p|n) and a'?n) = /(n + 1)(n + 2)|n + 2) we get

d

o = (n]a?pal?|n) — L (nIN(N = 1)p+ pN(N —1)|n}
=n+1)n+2)(n+2|p|n+2) —n(n—1)(n|p|n)

=(n+1)(n+2)ppr2 —n(n—1)p,.

(¢) Set pp, = (n|p|n). Then (n+ 1)(n + 2)ppy2 = n(n — 1)py, for all n > 0. Thus
for all n > 2, p, = 0. Since p > 0, this means that for all n,m with n > 2 or
m > 2, we have (n|p|m) = 0. The support of p is in span(|0),|1)) and thus reads
p = pol0){0|+(1—po)|1)(1]4¢€|1)(0|+¢c*|0) (1] since Tr (p) = 1 and p > 0. Moreover
po(1 = po) > |ef*.

2. We have
d
Z(Tx(p))) = Tr (J (LpLT ~ N(LLp+ pLTL)))
—Tr (LTJLp ~ JJLTLp+ JpLTLJ)> = Tr (L5(J)p).

3. (a) We have

LX(f(N)) =al?f(N)a® — J(N(N - 1)f(N) + f(N)N(N — 1))
=a?a’f(N —2) -~ N(N - 1)f(N) = N(N = 1)(f(N —2) — f(N)).

Since N(N —1) >0 and f(N —2) < f(IN) we have L*(f(IN)) <0.

(b) We have %V(p) =Tr(L*(N)p) = —2Tr (N(N —1)p) since L*(N) = —2N(N —
1). Thus %V < 0 and V is a Lyapunov function in the sense that its time-derivative
is non-positive.

(c) Assume that 4V = 0. Then Tr (N (NN — 1)p) = 0. Since N (NN —1) and p are non-
negative Hermitian operators,Tr (N (IN — 1)p) = 0 implies that N(IN — 1)p = 0:
the range of p is included in the kernel of N(IN —1), i.e. in span(|0), |1)). According
to question lc, this means that p is a steady state, i.e., L(p) = 0.

(d) Since for each t > 0, p(t) depends linearly on its initial condition po, its limits for
t tending to infinity depends also linearly on pq.

4. This results from the fact that & Tr (Jp) = Tr (JL(p)) = Tr (L*(J)p) = 0.

5. With question 3a, we have £*(f(IN)) = 0 when f(IN —2) = f(N). The oper-
ator Jog = (1 4+ (—1)"N)/2 is defined via a function f that is 2-periodic. For any
t >0, Tr(Jop(t)) = Tr(Jopo). Since limy o0 p(t) = K(pgy), we get the result since
Tr (JoK (po)) = (0| K (p)|0) and 1 = Tr (K (po)) = (0| K (p0)|0) + (1| K (po)|1).

6



6. We have
L*(f(N)a) = a’?f(N)a® = 3(N(N —1)f(N)a+ f(N)aN(N — 1))
- (aﬂa?f(zv —2) — LN(N = 1)f(N) — Lf(N)N(N + 1))a
- N((N ~1)f(N -2) - Nf(N))a.
This means that £*(f(N)a)[0) = 0, £*(f(N)a)|1) = 0 and

vn>2, L(f(N)a)ln) = (n—1vn((n—2)f(n—3) — (n—1)f(n—1))In —1).

Thus when f(1) =0and nf(n) = (n—1)f(n—2) for all n > 2, we have L*(f(N)a)|n) =
0 for all n > 0.

@n+1)(2n+3)
2n+2
arithmetic mean). Thus g is strictly decreasing and g, < g1 = 1/3/4 < 1 = go.

(b) Forn >0, J1|2n) = 0 and J1|2n+1) = g,|2n). Since g, is bounded, J; is bounded.
Since for any n > 0 the norm of Ji|n) is less than 1 and Ji|1) = |0), this implies
that

7. (a) For n > 1, we have gnt1/9n, = < 1 (geometric mean smaller than

sup (vlJ]nlv) = 1.
(Pl)y=1

(¢) From question lc, we have
K (po) = po|0){0] + (1 — po)|1)(L] + €[1)(0] + &*[0)(1].

By definition of Jy and J;, we have pg = Tr (JoK (pp)) and ¢ = Tr (J1. K (pg)). Since
Jo and J; are invariant operators, we have Tr (JsK(pg)) = Tr (Jspo) for s =0, 1.

8. (a) This results directly from the fact that for all n, J;|2n) = 0 and J1|2n+1) = g,|2n).
(b) From Tr (Jopo) = >, (2n|po|2n) and Tr (J1pg) =3, gn (2n + 1‘p0|2n> we have

K(po) = 3 (2nlpo|2n) [0)(0] + (21 + 1]pol2n + 1) 1)1
n>0

+ ) gn (204 1po|2n) [1)(0] + gn (2n|po|2n + 1) |0)(1].
n>0

where we have used 1-Tr (Jopo) = Tr (po)—_,, (2n|po|2n) =, (2n+ 1|po|2n + 1).
For each n we have

(2n + 1| po|2n) [1)(0] + (2n|po|2n + 1) |0)(1]
= (10} 20l + 12+ 1) po (120 0] + 20 + 1) (0]
— (2nlpo[2n) [0){0] — (2n + 1|po[2n + 1) [1)(1].
With identity (n/|po|n’) [0)(0] = |0)(n/|po|n’) (0|, we get
K(po) = Y (1 = gn)|0)(2n]po|2n) (0] + (1 — g,)[1)(2n + 1] po[2n + 1)(1]
n>0

+ 3" g (1020l + 1942+ 1]) po 120)(0] + |20+ 1)(0] ).

n>0



Since 0 < g, < 1, we have a, = b, = /1 — g, and ¢, = \/Gn.
From AL A, = (1 — gn)|2n)(2n|, BiB, = (1 — g,)|2n + 1)(2n + 1| and C}C,, =
gn|2n) (2n| + gn|2n + 1) (2n + 1| we get

> AL A, + BiB,+ClCr = [2n)(2n] + [2n + 1)(2n + 1| = I.
n>0 n>0



