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SUMMARY

In this document, we present the main ideas and results concerning high-gain observers and some of their
applications in control. The introduction gives a brief history of the topic. Then, a motivating second-order
example is used to illustrate the key features of high-gain observers and their use in feedback control.
This is followed by a general presentation of high-gain-observer theory in a unified framework that accounts
for modeling uncertainty, as well as measurement noise. The paper concludes by discussing the use of high-
gain observers in the robust control of minimum-phase nonlinear systems. Copyright © 2013 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The use of high-gain observers in feedback control appeared first in the context of linear feedback
as a tool for robust observer design. In their celebrated work on loop transfer recovery [1], Doyle
and Stein used high-gain observers to recover, with observers, frequency-domain loop properties
achieved by state feedback. The investigation of high-gain observers in the context of robust lin-
ear control continued in the 1980s, as seen in the work of Petersen and Hollot [2] on H1 control.
The use of high-gain observers in nonlinear feedback control started to appear in the late 1980s
in the works of Saberi [3, 4], Tornambe [5], and Khalil [6]. Two key papers, published in 1992,
represent the beginning of two schools of research on high-gain observers. The work by Gauthier,
Hammouri, and Othman [7] started a line of work that is exemplified by [8–13]. This line of research
covered a wide class of nonlinear systems and obtained global results under global growth condi-
tions. The work by Esfandiari and Khalil [14] brought attention to the peaking phenomenon as an
important feature of high-gain observers. Although this phenomenon was observed earlier in the
literature [15, 16], the paper [14] showed that the interaction of peaking with nonlinearities could
induce finite escape time. In particular, it showed that, in the lack of global growth conditions,
high-gain observers could destabilize the closed-loop system as the observer gain is driven suffi-
ciently high. It proposed a seemingly simple solution for the problem. It suggested that the control
should be designed as a globally bounded function of the state estimates so that it saturates during
the peaking period. Because the observer is much faster than the closed-loop dynamics under state
feedback, the peaking period is very short relative to the time scale of the plant variables, which
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remain very close to their initial values. Teel and Praly [17, 18] built on the ideas of Esfandiari and
Khalil [14] and earlier work by Tornambe [19] to prove the first nonlinear separation principle and
develop a set of tools for semiglobal stabilization of nonlinear systems. Their work drew attention to
Esfandiari and Khalil [14], and soon afterwards, many leading nonlinear control researchers started
using high-gain observers (cf. [20–43]). These papers have studied a wide range of nonlinear control
problems, including stabilization, regulation, tracking, and adaptive control. They also explored the
use of time-varying high-gain observers. Khalil and his coworkers continued to investigate high-gain
observers in nonlinear feedback control for about 20 years converging a wide range of problems
(cf. [44–59]). Atassi and Khalil [60] proved a separation principle that adds a new dimension to
the result of Teel and Praly [17]; namely, the combination of fast observer with control saturation
enables the output feedback controller to recover the trajectories of the state feedback controller as
the observer gain is made sufficiently high.

To illustrate the key properties of high-gain observers, we start with a motivating example in
Section 2. This is followed by a more general presentation of the theory in Section 3. The nonlinear
separation principle is presented in Section 4. As an example of the use of high-gain observers in
nonlinear feedback control, we discuss robust control of minimum-phase systems in Section 5

Warning : In order to keep this presentation not too obscure, we may take some liberties with
rigor and precision. We refer the reader to the references for precise correct statements and proofs.

2. MOTIVATING EXAMPLE

Consider the second-order nonlinear system:

Px1 D x2

Px2 D f .x, u, w, d/

y D x1

(1)

where x D Œx1, x2�T is the state vector, u is the control input, y is the measured output, d is a vector
of disturbance inputs, and w is a vector of known exogenous signals. The function f is locally
Lipschitz in .x, u/ and continuous in .d , w/. We assume that d.t/ and w.t/ are bounded measur-
able functions of time. Suppose the state feedback control u D �.x, w/ stabilizes the origin x D 0
of the closed-loop system,

Px1 D x2

Px2 D f .x, �.x, w/, w, d/
(2)

uniformly in .w, d/, where �.x, w/ is locally Lipschitz in x and continuous in w. To implement this
feedback control using only measurements of the output y, we use the observer

POx1 D Ox2 C h1.y � Ox1/

POx2 D Of . Ox, u, w/ C h2.y � Ox1/
(3)

where Of .x, u, w/ is a model of f .x, u, w, d/, and take

u D �. Ox, w/ . (4)

If f is a known function of .x, u, w/, we can take Of D f . We may also take Of D 0 if no model of
f is available. The estimation error

Qx D
� Qx1

Qx2

�
D
�

x1 � Ox1

x2 � Ox2

�
satisfies the equation

PQx1 D �h1 Qx1 C Qx2

PQx2 D �h2 Qx1 C ı.x, Qx, w, d/,
(5)
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where

ı.x, Qx, w, d/ D f .x, �. Ox, w/, w, d/ � Of . Ox, �. Ox, w/, w/.

In the absence of ı, asymptotic error convergence is achieved when the matrix� �h1 1

�h2 0

�
is Hurwitz, which is the case for any positive constants h1 and h2. In the presence of ı, we design
h1 and h2 with the additional goal of rejecting the effect of ı on Qx. This is ideally achieved if the
transfer function

Go.s/ D 1

s2 C h1s C h2

�
1

s C h1

�
from ı to Qx is identically zero. Although this is not possible, we can try to make sup!2R kGo.j!/k
arbitrarily small. Because we can rewrite

Go.s/ D
1p
h2�

sp
h2

�2 C h1p
h2

sp
h2

C 1

"
1p
h2

sp
h2

C h1p
h2

#
,

this objective is met when the ratio h1p
h2

is chosen as some fixed positive real number, and we let h2

go to infinity. This motivates us for taking

h1 D ˛1

"
, h2 D ˛2

"2
(6)

for some positive constants ˛1 and ˛2, and with " arbitrarily small. In this way, the observer eigen-
values are assigned at 1=" times the roots of the polynomial s2 C ˛1s C ˛2. Therefore, by choosing
" small, we make the observer dynamics much faster than the dynamics of the closed-loop system
under state feedback (2).

The disturbance rejection property of the high-gain observer, and its fast dynamics, can be also
seen in the time domain by using the scaled estimation errors

�1 D Qx1

"
, �2 D Qx2, (7)

which satisfy the singularly perturbed equation

" P�1 D �˛1�1 C �2

" P�2 D �˛2�1 C "ı.x, Qx, w, d/.
(8)

This equation shows that reducing " diminishes the effect of ı and makes the dynamics of � much
faster than those of x. However, the scaling (7) shows that the transient response of the high-
gain observer suffers from a peaking phenomenon. The initial condition �1.0/ could be O.1="/
when x1.0/ ¤ Ox1.0/. Consequently, the transient response of (8) could contain a term of the
form .1="/e�at=" for some a > 0. Although this exponential mode decays rapidly, it exhibits an
impulsive-like behavior where the transient peaks to O.1="/ values before it decays rapidly towards
zero. In fact, the function .1="/e�at=" approaches an impulse function as " tends to zero. In addition
to inducing unacceptable transient response, the peaking phenomenon could destabilize the closed-
loop nonlinear system ([61, Section 14.6]). This phenomenon is an artifact of the high-gain observer.
This being known, we should disregard the large, unrealistic values of the state estimate. To do so,
we can design the control law �. Ox, w/ and the function Of . Ox, u, w/ to be globally bounded in Ox,
that is, bounded for all Ox when w is bounded. This property can be always achieved by saturating
u and/or Ox outside compact sets of interest. The global boundedness of � and Of in Ox provides a
buffer that protects the plant from peaking because during the peaking period, the control �. Ox, w/
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saturates. Because the peaking period shrinks to zero as " tends to zero, for sufficiently small ", the
peaking period is so small that the state of the plant x remains close to its initial value. After the
peaking period, the estimation error becomes of the order O."/, and the feedback control �. Ox, w/
becomes O."/ close to �.x, w/. Consequently, the trajectories of the closed-loop system under the
output feedback controller approach its trajectories under the state feedback controller as " tends to
zero. This leads to recovery of the performance achieved under state feedback.

Let us now analyze the closed loop system we have obtained by designing the output feedback as
a state feedback fed with state estimates given by a high-gain observer. We start by observing that
this system can be represented in the singularly perturbed form

Px1 D x2

Px2 D f .x, �. Ox, w/, w, d/

³
(9)

" P�1 D �˛1�1 C �2

" P�2 D �˛2�1 C "ı.x, Qx, w, d/

μ
, (10)

where Ox1 D x1 � "�1 and Ox2 D x2 � �2. The slow equation (9) coincides with the closed-loop
system under state feedback (2) when � D 0. The homogeneous part of the fast equation (10) is

" P� D
� �˛1 1

�˛2 0

�
�

defD A0�. Let V.x/ be a Lyapunov function for the slow subsystem, which is

guaranteed to exist for any stabilizing state feedback control by the converse Lyapunov theorem
[61, Theorem 4.17]. Let W.�/ D �T P0� be a Lyapunov function for the fast subsystem, where
P0 is the solution of the Lyapunov equation P0A0 C AT

0 P T
0 D �I . Define the sets �c and † by

�c D ¹V.x/ 6 cº and † D ¹W.�/ 6 �"2º, where for any c > 0, �c is in the interior of the
region of attraction of (2). The analysis is divided in two steps. In the first step, we show that, for
appropriately chosen � , there is "�

1 > 0 such that, for each 0 < " < "�
1 , the origin of the closed-loop

system is asymptotically stable, and the set �c � † is a positively invariant subset of the region of
attraction. The proof makes use of the fact that � is O."/ in �c �†. In the second step, we show that
for any compact sets C � R2 and �b D ¹V.x/ 6 bº, with 0 < b < c, there is "�

2 > 0 such that, for
0 < " < "�

2 , Ox.0/ 2 C and x.0/ 2 �b , the trajectory enters the set �c � † in finite time. The proof
makes use of the fact that �b is in the interior of �c and �. Ox, w/ is globally bounded. There exists
T1 > 0, independent of ", such that any trajectory starting in �b remains in �c for all t 2 Œ0, T1�.
Using the fact that � decays faster than an exponential mode of the form .1="/e�at=", we can show
that the trajectory enters the set �c � † within a time interval Œ0, T ."/� where lim"!0 T ."/ D 0.
Thus, by choosing " small enough, we can ensure that T ."/ < T1. Figure 1 illustrates the fast con-
vergence of the trajectories to the set �c � †. Furthermore, because of the global boundedness of
the right-hand side of (9) uniformly in ", by choosing " small enough, we can make the difference
jx.T ."// � x.0/j arbitrarily small. Using this together with the fact that for t > T ."/ � is O."/, it
can be shown that the trajectories of x under state and output feedback can be made arbitrarily close
to each other for all t > 0.

Figure 1. Illustration of fast convergence to the set �c � †.
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The foregoing discussion shows that the design of the output feedback controller (4) is based
on a separation procedure, whereby the state feedback controller is designed as if the whole state
was available for feedback, followed by an observer design that is independent of the state feed-
back control. By choosing " small enough, the output feedback controller recovers the stability
and performance properties of the state feedback controller. This is the essence of the separation
principle that is discussed in Section 3. The separation principle is known in the context of linear
systems where the closed-loop eigenvalues under an observer-based controller are the union of the
eigenvalues under state feedback and the observer eigenvalues; hence, stabilization under output
feedback can be achieved by solving separate eigenvalue placement problems for the state feedback
and the observer. Over the last two decades, there have been several results that present forms of
the separation principle for classes of nonlinear systems. It is important to emphasize that the sep-
aration principle in the case of high-gain observers has a unique feature that does not exist in other
separation-principle results, linear systems included, and that is the recovery of state trajectories by
making the observer sufficiently fast. This feature has significant practical implications because it
allows the designer to design the state feedback controller to meet transient response specification
and/or constraints on the state or control variables. Then, by saturating the state estimate Ox and/or
the control u outside compact sets of interest to make the functions �. Ox, w/ and Of . Ox, u, w/ globally
bounded in Ox, he/she can proceed to tune the parameter " by decreasing it monotonically to bring
the trajectories under output feedback close enough to the ones under state feedback. This feature is
achieved not only by making the observer fast but also by combining this property with the global
boundedness of � and Of in Ox. We illustrate this point by considering the linear system

Px1 D x2

Px2 D u,
(11)

which is a special case of (1) with f D u. A linear state feedback that assigns the eigenvalues at
�1 ˙ j is given by u D �2x1 � 2x2. The observer

POx1 D Ox2 C .3="/.y � Ox1/

POx2 D u C .2="2/.y � Ox1/
(12)

is a special case of (3) with Of D u. It assigns the observer eigenvalues at �1=" and �2=". The
observer-based controller assigns the closed-loop eigenvalues at �1 ˙ j , �1=" and �2=". The
closed-loop system under output feedback is asymptotically stable for all " > 0. As we decrease
", we make the observer dynamics faster than the closed-loop dynamics under state feedback.
Will the trajectories of the system under output feedback approach those under state feedback as
" approaches zero? The answer is shown in Figure 2, where the state x is shown under state feed-
back and under output feedback for " D 0.1 and 0.01. The initial conditions of the simulation
are x1.0/ D 1 and x2.0/ D Ox1.0/ D Ox2.0/ D 0. Contrary to what intuition may suggest, we
see that the trajectories under output feedback do not approach the ones under state feedback as "
decreases. In Figure 3, we repeat the same simulation when the control is saturated at ˙4; that is,
u D 4sat..�2 Ox1 � 2 Ox2/=4/. The saturation level 4 is chosen such that 4 > max� j � 2x1 � 2x2j,
where � D ®

1.25x2
1 C 0.5x1x2 C 0.375x2

2 6 1.4
¯

is an estimate of the region of attraction under
state feedback control that includes the initial state .1, 0/ in its interior. This choice of the saturation
level saturates the control outside �. Figure 3 shows a reversal of the trend we saw in Figure 2.
Now the trajectories under output feedback approach those under state feedback as " decreases.
This is a manifestation of the performance recovery property of high-gain observers when equipped
with a globally bounded control. Figure 4 shows the control signal u with and without saturation
during the peaking period for " D 0.01. It demonstrates the role of saturation in suppressing the
peaking phenomenon.

One of the challenges in the use of high-gain observers is the effect of measurement noise. This
stems from the fact that the high-gain observer (3) is an approximate differentiator, which can be
easily seen in the special case when Of D 0; for then the observer is linear and the transfer function

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:993–1015
DOI: 10.1002/rnc



998 H. K. KHALIL AND L. PRALY

0 1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time

x 1
x 2

 

 
State FB
Output FB ε = 0.1
Output FB ε = 0.01

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

Time

Figure 2. The state trajectories under state and output feedback for linear example without saturated control.
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Figure 3. The state trajectories under state and output feedback for linear example with saturated control.

from y to Ox is given by

˛2

."s/2 C ˛1"s C ˛2

�
1 C ."˛1=˛2/s

s

�
"!0�!

�
1

s

�
.

In the presence of measurement noise, the output equation y D x1 in (1) changes to y D x1 C v.
Before we get to the main issue of concern, let us note that if v is a low-frequency (slow) bounded
signal, such as a constant bias in measurements, its effect can be handled by the state feedback
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Figure 4. The control signal for the linear example with and without control saturation when " D 0.01.

design. This can be done by redefining the state variables as the output and its derivative, that is,
´1 D x1 C v and ´2 D x2 C Pv, resulting in the state model

Ṕ1 D ´2

Ṕ2 D f .´1 � v, ´2 � Pv, u, w, d/ C Rv
y D ´1.

Provided the derivatives Pv and Rv are appropriately bounded, their impact can be handled by the
design of the feedback control. The main concern, however, is in the more typical case when mea-
surement noise takes the form of a low-amplitude, high-frequency fluctuating signal. Differentiation
of the output in this case leads to a major deterioration in the signal-to-noise ratio. Assuming that v

is a bounded measurable signal, the closed-loop equation takes the form

Px1 D x2

Px2 D f .x, �. Ox, w/, w, d/

" P�1 D �˛1�1 C �2 � .˛1="/v

" P�2 D �˛2�1 C "ı.x, Qx, w, d/ � .˛2="/v.

In this case, kx � Oxk satisfies an inequality of the form

kx.t/ � Ox.t/k 6 c1" C c2

�

"
, 8 t > T (13)

for some positive constants c1, c2, and T , where � D supt>0 jv.t/j. This ultimate bound, sketched
in Figure 5, shows that the presence of measurement noise puts a lower bound on the choice of
". For higher values of ", we can reduce the steady-state error by reducing ", but " should not be
reduced lower than ca

p
� because the steady-state error will increase significantly beyond this point.

Another trade-off we face in the presence of measurement noise is the one between the steady-state
error and the speed of state recovery. For small ", � will be much faster than x. Fast convergence of �

plays an important role in recovering the performance of the state feedback controller. The presence
of measurement noise prevents us from making the observer as fast as we wish. How to let " vary to
improve performance is discussed in Section 3.2.3.

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:993–1015
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Figure 5. A sketch of c1" C c2�="; ca Dp
c2=c1, ka D 2

p
c1c2.

3. DIFFERENTIAL OBSERVABILITY AND HIGH-GAIN OBSERVERS

3.1. Differential observability of order m

The following paragraph is inspired by [62].
In the previous section, we have seen that high-gain observers provide a very ‘natural’ solution

to the observer problem when the system dynamics is poorly known. Moreover, they can be appro-
priately combined with state feedback to give output feedback. Let us make clear now when such
a solution is possible. For this, we consider the problem of estimating the n-dimensional state x of
a dynamical system whose evolution with respect to time t is dictated by the following ordinary
differential equation:

Px D f .x, t , u.t//, (14)

where f W Rn � R � Rp ! Rn and u W R ! Rp are sufficiently smooth known functions. The
information we have for this estimation is the knowledge of the functions f and the value at each
time t of u.t/ and of

y.t/ D h.x, t , u.t//, (15)

where h W Rn � R � Rp ! Rq is a sufficiently smooth function.
We denote by X.x, t , sI u/ the solution of (14) at time s passing through x at time t and generated

using the function u. The estimation problem at time t is, given the a posteriori information on some
time window, that is, the function s 2 .t � T , t � 7! .u.s/, y.s//, and knowing the function f and h,
find x possibly solution of :

y.s/ D h.X.x, t , sI u/, s, u.s// 8s 2 .t � T , t � .

Assuming there is absolutely no error in the modeling, data acquisition, or whatever, we know that
there exists at least one x solution to these equations. It is the one that created y. So the true issue is
the uniqueness of this x, or in other words, do we have injectivity of the function

Ht W x 7�! .s 2 .t � T , t � 7! h.X.x, t , sI u/, s, u.s/// ‹

To study such a property, it is fruitful to consider the case where the length T of the observation
time window is very small. Indeed in this case, we can write a Taylor expansion :

h.X.x, t , sI u/, s, u.s// D
m�1X
iD0

hi .x, t , Nui .t //
.s � t /i

i Š
C o..s � t /m�1/

where

Nui .t / D
�
u.t/, : : : , u.i/.t /

�
(16)

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:993–1015
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and hi is a function obtained recursively starting from

h0.x, t , Nu0/ D h.x, t , u/

and using

It follows that, if there exists an integer m such that, in some uniform way with respect to t , we have
that the map

x 7! Hm.x, t , Num�1/ D

0B@ h0.x, t , Nu0/
...

hm�1.x, t , Num�1/

1CA
is injective, then we do have the injectivity of Ht for all t > 0. We say, in this case, the system is
differentially observable of order m. It means that we can reconstruct x from the knowledge of y

and u and their m � 1 first derivatives :

x.t/ D ˆ .t , Nym�1.t /, Num�1.t // , (17)

with the notation :

Nym�1.t / D
�
y.t/, : : : , y.m�1/.t /

�
. (18)

We should not be misled by the way (17) is written. The function ˆ is not defined for all vectors
Nym�1 of dimension m � q. It is at most defined on Hm.Rn, t , Num�1/ only, that is, only when y is
given by (15), and y.i/ is its i th derivative using (14). This implies in particular that a rigorous, but
heavy, writing of (17) is :

x.t/ D ˆ

�
t ,
�
h0.x, t , Nu0.t // , : : : , hm�1.x, t , Num�1.t //

�
, Num�1.t /

�
.

To go on, we assume that we have chosen an extension‡ ˆe of ˆ with R�Rmq �Rmp as domain of
definition. Our main interest in this function follows from the fact that to each solution of (14) and
(15), there corresponds at least one solution of :

P� D Am � C Em '.mC1/e.�, t , Num.t // , y.t/ D ET
1 �.t/ ,

x.t/ D ˆe .t , �.t/, Num�1.t // ,
(19)

with the notations

'.mC1/e.�, t , Num/ D hm .ˆe .t , �, Num�1/ , t , Num/

and

Am D

0BBBBBBB@

0 I 0 : : : 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . I
0 : : : : : : : : : 0

1CCCCCCCA
, Ei D

0BBBBBB@
0
...
I
...
0

1CCCCCCA

9>>>>>>>=>>>>>>>;
mq rows .

‡See Tietze extension theorem, Kirszbaum extension theorem, and Whitney extension theorem.
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Actually, we can say more when f is affine in u, h does not depend on u, both do not depend on
t , and m D n, q D 1, that is when we have

Px D a.x/ C b.x/ u , y D h.x/ . (20)

Indeed in this case, we can find a function ˆ, which does not depend on .t , Nu/ and m C 1 functions
'i satisfying

'1.h.x// D Lbh.x/ ,

'2.h.x/, Lah.x// D LbLah.x/ ,

...

'm.h.x/, Lah.x/, : : : , Lm�1
a h.x// D LbLm�1

a h.x/ ,

'mC1

�
h.x/, Lah.x/, : : : , Lm�1

a h.x/
	D Lm

a h.x/ ,

x D ˆ
�
h.x/, Lah.x/, : : : , Lm�1

a h.x/
	

.

Again these functions 'i are not defined on R, R2, . . . but only on h.Rn/, .h.Rn/ � Lah.Rn//, . . . .
However, once we have chosen extensions 'ie and ˆe on Ri and Rn, we get that to each solution
of (20), there corresponds at least one solution of

P� D Am � C Em '.mC1/e.�/ C
mX

iD1

Ei 'ie.�/ u ,

y.t/ D ET
1 �.t/ , x.t/ D ˆe .�.t// .

(21)

3.2. High-gain observer for the � variables

3.2.1. High-gain observer design The following paragraph is inspired by the many publications
dealing with the almost disturbance decoupling problem in state observation. See [63, Theorem 13]
or [64, Section 4.4] for instance.

With (19) or (21), we have made an important step towards the design of an observer for x.
Indeed these two systems can be seen as linear systems disturbed by NL, which collects all the
nonlinearities, that is :

P� D Am � C NL.t , �, Num.t // , y D ET
1 � . (22)

See Figure 6. In the following, we restrict ourselves with looking only at the class of observers made
of a copy of the dynamics plus a linear correction term, that is to observers of the form

PO� D Am O� C cNL.t , O�, Num.t // C K
�
y � ET

1 O�	 , Ox.t/ D Ô
e.t , O�.t/, Num�1.t // (23)

Figure 6. Block representation of the error system generated by (22) and (23).
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where . O�, Ox/ is an estimate of .�, x/, and cNL and Ô
e are approximations of NL and ˆe , respectively.

Note that, in the case of (19), this requires that, not only u but also its m first-time derivatives are
known. Now, we are left with the design of the correction gain K .

To motivate the following, we first concentrate our attention on (19). Let Q� D O� � � be the
estimation error for �. We have

PQ� D �
Am � KET

1

	 Q� C Em

� O'.mC1/e. Q� C �, t , Num.t // � '.mC1/e.�, t , Num.t //
	

.

We see this system as the interconnection of a linear system

PQ� D �
Am � KET

1

	 Q� C Em wm (24)

with a static nonlinear one

wm D O'.mC1/e. Q� C �, t , Num.t // � '.mC1/e.�, t , Num.t // .

Assume for the time being that the latter has a linear gain L with an offset d, that is there exist two
real numbers L and d such thatˇ̌ O'.mC1/e. Q� C �, t , Num/ � '.mC1/e.�, t , Num/

ˇ̌
6 d C L j Q�j 8. Q�, �, t , Num/ . (25)

L here plays the role of a Lipschitz constant. Then it follows from the small-gain theorem that, if the
H 1 gain of

�
sI � �Am � KET

1

		�1
Em is strictly smaller than L, then there exists a ball centered

at the origin with radius proportional to d, which is asymptotically stable uniformly in .t , �, Num/. To
design a gain vector K to match this small-gain condition, we may follow the bounded real Lemma,
which says that it is sufficient to find a triple .P , K , q/ of a non-negative symmetric matrix, a gain
vector, and a strictly positive real number satisfying the following matrix inequality

P
�
Am � KET

1

	C �
Am � KET

1

	T
P C qI C 1

q�2
PEmET

mP 6 0 (26)

where � satisfies

� L < 1 . (27)

A key remark for getting such a triple .P , K , q/ is to observe that we have

"diag.I , : : : , "m�1I / Am D Am diag.I , : : : , "m�1I / ,

"i�1 Ei D diag.I , : : : , "m�1I / Ei .

Because the pair
�
Am, ET

1

	
is observable, there exists a pair .P0, K0/, with P0 positive definite,

satisfying

P0

�
Am � K0ET

1

	C �
Am � K0ET

1

	T
P0 C I D 0

then a triple satisfying (26) and (27) for any " 6 1

1C �max.P0/2

�2

is

P."/ D diag.I , : : : , "m�1I / P0 diag.I , : : : , "m�1I / ,

K."/ D 1

"
diag.I , : : : , "m�1I /�1 K0 ,

q."/ D "2.m�1/ .

(28)

Actually, this triple .P."/, K."/, andq."// previously discussed gives us more. To see this,
consider the following system, more general than (24) :

PQ� D Am Q� � K."/
�
ET

1 Q� C V.t /
	 C

mX
iD1

Eiwi .t / (29)
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where V and wi are exogenous inputs, the former capturing the effect of a measurement noise,
whereas the latter captures the effect of the unmodeled and/or non linear terms on PQ�i . We get

This establishes that (29) is input-to-state stable (ISS) with linear gain,

s
	max.P0/

	min.P0/

3jP0K0j
"j �1

from V to Q�j

and s
m

	max.P0/

	min.P0/

3jP0Ei j
"j �i�1

from wi to Q�j .

Mimicking (25), assume wi is produced by some nonlinear system with Q� as input such that there
exist nonnegative real numbers Lil and wi , and time functions Wi such that wi satisfies :

jwi .t /j2 6 Wi .t /
2 C

iX
lD1

L2
il j Q�l .t /j2 , jWi .t /j 6 wi . (30)

Assume also that V is bounded, that is, there exists a nonnegative real number v satisfying

jV.t /j 6 v 8t .

Then, because this other system does not depend on " and " is to be small, the small-gain theorem
implies the existence of an asymptotically stable ball centered at the origin. Indeed, for any 
 in

Copyright © 2013 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2014; 24:993–1015
DOI: 10.1002/rnc



HIGH-GAIN OBSERVERS IN NONLINEAR FEEDBACK CONTROL 1005

.0, 1/, we can find c such that, for all " sufficiently small to satisfy§

. 1 > / 
 > max

´
1 ,

9m	max.P0/

	min.P0/
max

l2¹1,:::,mº

mX
iDl

L2
il jP0Ei j2

μ
"2 , (31)

we have, for all t > s,

j Q�j .t /j2 6 1

"2.j �1/

	max.P0/

	min.P0/
exp

�
�c.t � s/

"

�
j Q�.s/j2 (32)

C 1

"2.j �1/

3jP0K0j2
c	min.P0/

sup
r2Œs,t�

jV.r/j2

C "2

mX
iD1

"2.i�j / 3mjP0Ei j2
c	min.P0/

sup
r2Œs,t�

jWi .r/j2 .

We will come back to this inequality in the succeeding text. For the time being, let us study the
implication of the fact that " should be small enough to satisfy inequality (31). In the case of the
model (19), if the extended function '.mC1/e and its modelb'.mC1/e are close enough to satisfy, with
some nonnegative real numbers L.mC1/l ,ˇ̌b'.mC1/e. Q� C �, t , Num/ � '.mC1/e.�, t , Num/

ˇ̌2 6 Nw2 C
mX

lD1

L2
.mC1/l j Q�l .t /j2 ,

for all .�, Q�, t , Num/ in the domain of interest, inequality (31) is satisfied when " satisfies

1 > 
 > max
²

1 ,
9m	max.P0/jP0Emj2

	min.P0/
max

l2¹1,:::,mº
L2

.mC1/l

³
"2 .

In the case of the model (21), if the extended function 'ie and its model b'ie are close enough to
satisfy, with some nonnegative real numbers Lil ,

jb'ie. Q� C �, u/ � 'ie.�/uj2 6 Nw2

.m C 1/2
C

mX
lD1

L2
il j Q�l .t /j2 ,

ˇ̌b'.mC1/e. Q� C �/ � '.mC1/e.�/
ˇ̌2 6 Nw2

.m C 1/2
C

mX
lD1

L2
.mC1/l j Q�l .t /j2 ,

for all .�, Q�, u/ in the domain of interest, then the parameter " has to satisfy

1 > 
 > max

´
1 ,

9m	max.P0/

	min.P0/
max

´
max

l2¹1,:::,mº

mC1X
iDl

L2
il jP0Ei j2 , max

l2¹1,:::,mº
L2

.mC1/l jP0Emj2
μμ

"2

This says that, when the model functions 'ie are bounded on the domain of interest, their approxi-
mating functionsb'ie can very well be taken as constant. But in this case, the estimation error may
not converge because of the term Nw. When the model functions are Lipschitz, their approximations
can simply be copies. But in this case, the parameter " has to be small enough with respect to the
Lipschitz constant.

§

mX
iD1

"2.i�1/ jP0Ei j2

iX
lD1

L2
il j Q�l .t/j2

6
mX

lD1

 
"2.l�1/j Q�l .t/j2

 
mX

iDl

"2.i�l/ jP0Ei j2 L2
il

!!

6 max
l2¹1,:::,mº

 
mX

iDl

"2.i�l/ jP0Ei j2 L2
il

!
Q�T P."/ Q�
�min.P0/
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3.2.2. Some words on performance. Inequality (32) is nothing but the general version of what we
saw in (13). Each of the three terms in its right-hand side is meaningful.

1. The last term with "2 in factor, that is,

"2

mX
iD1

"2.i�j / 3mjP0Ei j2
c	min.P0/

sup
r2Œs,t�

jWi .r/j2

shows that, by picking " smaller, we can almost decouple each estimation error component
Q�j from each dynamic noise wi but only for i satisfying the triangular restriction i > j . This
establishes that we can reconstruct the vector � in a robust way with respect to dynamic noise
as long as the aforementioned triangular restriction is satisfied.

2. There is a price to pay for this robustness. It is shown in the second term, that is

1

"2.j �1/

3jP0K0j2
c	min.P0/

sup
r2Œs,t�

jV.r/j2 .

By decreasing ", we make stronger the effect of the measurement noise on each component
of the estimation error, this being even worse as j increases and so, in particular, for higher
dimensional systems. With the previous point, this is the trade-off in the choice of " discussed
after (13).

Note also that smaller " implies higher sampling rates. Indeed as " is reduced, the observer
bandwidth is increased. This requires higher sampling rates in digital implementation, and
consequently larger word length [65].

3. Finally, in the case where there is no measurement nor dynamic noise, we get from the first
term that, for each t strictly positive

lim
"!0

�
1

"2.j �1/

	max.P0/

	min.P0/
exp

�
�c.t � s/

"

�
j Q�.s/j2

�
D 0 .

This shows that the estimation error can be made arbitrarily small after an arbitrarily small
amount of time. This property is known as the tunability property. But here again, there is a
price to pay for this. As already observed after equation (8), it is the peaking phenomenon.
The j th component of the estimation error may have a peak of size 1

"2.j �1/

�max.P0/
�min.P0/

j Q�.0/j2
during this amount of time. And the faster we want the transient or the smaller we want the
estimation error, the bigger this peak may be.

In summary, smaller " is needed for estimation error boundedness, which is good for reducing
dynamic noise effects and increasing convergence speed, but bad as measurement noise effects;
peaking may increase, and digital implementation is more demanding.

Peaking can be rounded by using a priori information on the state to be estimated. As we
mentioned already, we can disregard the large values of the state estimate because they are
unrealistic.

With the advancement of technology, the digital implementation issue will be less of a challenge
over time.

Dealing with measurement noise remains the key issue.

3.2.3. Observer parameter adaptation. In many practical problems, the measurement-noise level
is much smaller than the initial conditions of the estimation error; hence, the transient response is
dominated by the effect of initial conditions. Therefore, a sound strategy to achieve fast convergence
while reducing the impact of measurement noise at steady state is to use a smaller " during the tran-
sient time and then increase it at steady state. But, for this, we need to know the upperbound on "

required to guarantee at least estimate boundedness, that is, for (31) to be satisfied.
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Several observer parameter adaptation strategies have been proposed. They differ mainly on a
priori information the designer has.

� When no bounds are known a priori on the nonlinearities nor their (local) Lipschitz constants
nor on the measurement noise [3,66–68], the task is difficult, and there is no solution of interest
in practice. Indeed in this case, we can only let " decrease. But then we are facing the same
kind of problems as those described in the adaptive control literature for online tuning of con-
trol parameters. In this context, it is known that a gain adaptation may lead to serious growth
problems when perturbations such as measurement noise are present (see, e.g., [69, Example
4.2], [70, Figure 6.a], and [71]).

� When a bound on the level of measurement noise is available, the aforementioned strategy of
decreasing " can be modified depending on whether or not the estimation error jy � O�1j is
larger or smaller than the bound. This is the so-called dead-zone technique [66, 69, 70]. It can
be improved by letting the parameter " decrease when this estimation error is larger than a
threshold, and increase if not [72]. But in this case again, there may be unsatisfactory behavior
like the so-called bursting phenomenon, which results from a possible destabilization when "
gets too large.

� When a bound on the nonlinearities or the (local) Lipschitz constants is known as function of
the measurement or is observable, a possible strategy consists in letting " follows this bound,
somehow making (31) an equality [20, 36, 68]. But in doing so, only estimate boundedness is
considered, nothing is performed directly to improve performance. Performance may still be
improved because the strategy aims at keeping " as large as possible.

� When bounds both on the nonlinearities or the (local) Lipschitz constants and on the
measurement-noise level are known, the strategy consists in letting " evolve between an upper
value, given by the former bound and a lower value given by the latter [57,73,74].

3.3. Estimation of x

The estimation of � is not our ultimate goal, but we want an estimation of x. For this, as written
in (23), we use an approximation Ô

e of the function ˆe in both (19) and (21). The convergence
property of O� to � or the smallness of the corresponding estimation error is transferred into the same
property of Ox with respect to x at least when there exist a real number x and a class K function such
that we have ˇ̌̌

Ô
e.t , Q� C �, Num/ � ˆe.t , �, Num/

ˇ̌̌
6 x C �.j Q�j/

for all .t , �, Q�, Num/ in the domain of interest. It must be noticed that, if x is nonzero or � is not
linearly bounded around 0, that is, if ˆe is not Lipschitz, the possible exponential convergence of O�
to � may not be preserved for Ox going to x.

4. SEMIGLOBAL SEPARATION PRINCIPLE

The following paragraph is inspired by [17, 60]. Many other very significant contributions are
available on this topic.

Assume the system,

Px D f .x, u/ , y D h.x/, (33)

with state x in Rn, control u in R, and measured output y in R, is such that:

1. We know integers my and mu and a continuous function ˆ such that ¶,||

x D ˆ. Nymy�1, Numu�1/.

¶See the comment following (18).
||This needs to be satisfied only on A.
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2. We know a state feedback law ˛ W Rn � Rmu ! R stabilizing a point used as origin of the
coordinates for the extended system, controlled by umu

,

Px D f
�
x, ET

1 Numu�1

	
, PNumu�1 D Amu

Numu�1 C Emu�1 umu

with domain of attraction (containing) the open set A.

Let C be an arbitrary compact set contained in A. Let C0 be a compact neighborhood of the origin,
also contained in A. Let Ce be a compact set whose interior contains C0 [ C . Let � be a strictly
positive real number such that Ce is forward invariant and C0 is asymptotically stable with domain
of attraction containing Ce for the system

Px D f
�
x, ET

1 Numu�1

	
, PNumu�1 D Amu

Numu�1 C Emu�1˛
�
.x, Numu�1/ C ıumu

	
,

where ıumu
2 RnCmu is a disturbance whose norm is smaller than �. Such a � exists because of

the robustness of the asymptotic stability property.
Let B� be the ball in RnCmu�1, centered at the origin, with radius �, and ˛ be defined as :

˛ D max
..x, Numu�1/,ıumu

/2Ce�B�

ˇ̌
˛
�
.x, Numu�1/ C ıumu

	ˇ̌
There exists a real number F , such that, as long as the control umu

takes its values in Œ�˛, ˛�,
we have : ˇ̌̌̌� Px

PNumu�1

�ˇ̌̌̌
6 F 8.x, Numu�1/ 2 Ce

So, because C is in the interior of Ce , there exists a time T such that any solution, initialized in C ,
remains in Ce at least on Œ0, T � provided its control is in Œ�˛, ˛�. From this definition of T and the
property of �, it follows that if, we have an observer able to deliver an estimation of .x, Numu�1/

with estimation error smaller than � after the time T , that is, with the tunability property, we have
seen the high-gain observer has, and if we enforce the control umu

to remain in Œ�˛, ˛� then, by
using this estimation instead of the true value as argument of ˛, we are guaranteed that any solution
initialized in C will converge to C0. Hence, we get something like the converging input-bounded
state property [75], which, together with the convergence to zero of the estimation error (when there
is no modeling error), implies the asymptotic stability.

However, we should not forget that the tunability property of the high-gain observer holds only
when the functions are globally Lipschitz on the domain of interest and that we have the peaking
phenomenon. The two problems can be rounded in the same way, that is, modify the functions when
their values or their arguments do not comply with the data. For instance, we can arbitrarily deform
the state function outside the compact set Ce because the solutions will remain in this set (which
has to be proved). Similarly, if the estimated state takes values outside Ce , we can modify it. This
kind of argument leads, for instance, to the following output feedback :

PNum�1 D Amu
Num�1 C Emu�1umu

,

PO� D Amy
O� C Emy

'mye. O�, . Num�1, umu
// C K."/

�
y � ET

1 O�	 ,

Ox D ˆe . O�, Numu�1/ ,

umu
D ˛e. Ox, Num�1/ ,

where K."/ is given by (28), the functions 'mye, ˆe and ˛e are modified extensions of the functions
'my

and ˆ, given by the system, and ˛ given by the state feedback. As discussed after (8), a usual
modification of ˛ is simply :

˛e.x, Num�1/ D N̨ sat
�

˛.x, Num�1/

N̨
�

where sat is the standard saturation function.
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The output feedback we have obtained does depend on our choice of C0, C , and Ce compact
subsets of A. Because C and Ce can be as close as we want from A, the asymptotic stabilization is
called semiglobal.

Another property of this particular output feedback we have illustrated in Section 2 is that we can
recover the performance of the state feedback itself for sufficiently small observer parameter ", that
is as " approaches zero; the trajectory obtained with the output feedback approaches the one given
by the state feedback.

5. ROBUST CONTROL OF MINIMUM-PHASE SYSTEMS

We can go beyond the semiglobal separation principle stated in the previous section when the sys-
tem has more structure. Under geometric and smoothness conditions, that can be found in Isidori
[76] or Marino and Tomei [77], for example, the system (31), with f affine in u, can be transformed
into the normal form

P
 D q.
, �/

P�i D �iC1, for 1 6 i 6 r � 1

P�r D b.
, �/ C a.
, �/u

y D �1

where � D col.�1, : : : , �r / and a.�/ ¤ 0 over a domain D. This form is similar to what we have in
(19), except for the presence of the extra dynamics P
 D q.
, �/ and for having u simply instead of
Num�1 D �

u, : : : , u.m�1/
	
.

As observed previously, if the goal is to stabilize the system at an equilibrium point, the coor-
dinates can be chosen such that this point is the origin .
 D 0, � D 0/ for the normal form in
open-loop, and it is in the interior of the domain D.

A system that can be written in such a form is said to have relative degree r (r 6 n), and the
equation P
 D q.
, 0/ is called the zero dynamics, as it represents the internal dynamics of the
system when the output is constrained to zero; equivalently, �.t/ � 0. The system is said to be min-
imum phase if the zero dynamics have an asymptotically stable equilibrium point at 
 D 0. When
the functions f and h depend on a vector p of unknown constant parameters in a way that does not
change the relative degree of the system and in the presence of matched disturbances/uncertainties,
the normal form takes the perturbed form

P
 D q.
, �, p/

P�i D �iC1, for 1 6 i 6 r � 1

P�r D b.
, �, p/ C a.
, �, p/Œu C ı.�/�
y D �1

(34)

where ı.�/ D ı.t , 
, �, u, p/.
In Section 4, we were assuming we were given a state feedback for the general system (33). Here

instead, we can take advantage of the special structure of the normal form to actually design it. The
design of robust state and even output feedback control for the system (34) is well developed in the
special case when the system has relative degree one and is minimum phase; that is,

P
 D q.
, y, p/

Py D b.
, y, p/ C a.
, y, p/Œu C ı.�/� (35)

In this case, a feedback control that depends only on y can be designed to dominate the nonlinear
functions b and ı, and bring y arbitrarily close to the origin over a finite time, whereas the minimum-
phase property ensures a similar behavior for 
. Nonlinear control techniques that can achieve this
goal using a Lipschitz feedback control law include high-gain feedback, Lyapunov redesign, and
continuously implemented sliding mode control [61]. We illustrate the idea by describing the con-
tinuously implemented sliding mode control. Suppose the system P
 D q.
, y, p/ is ISS uniformly
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in p; that is, there are class K function ˛ and class KL function ˇ, independent of p, such that the
solution of P
 D q.
, �, p/ satisfies

j
.t/j 6 ˇ.j
.t0/j, t � t0/ C ˛

 
sup
�>t0

jy.�/j
!

Suppose further that the functions a, b, and ı satisfy the inequalities

a.�/ > c1, jı.�/j 6 c2 C c3jujˇ̌̌̌
c2 C jb.�/=a.�/j

.1 � c3/

ˇ̌̌̌
6 K � c4

uniformly in p, for some known positive constants K and c1 to c4 with c3 < 1 and K > c4, over a
compact subset of D and for all t > 0. Then the control

u D �K sat

�
y

�

�
, � > 0 (36)

ensures that y is bounded and reaches the set ¹jyj 6 �º in finite time because when jyj > � the
derivative of 1

2
y2 satisfies

y Py 6 �c1c4.1 � c3/jyj
The ISS property of P
 D q.
, y, p/ ensures that 
 also will be bounded and will, in finite time, reach
a set of the form ¹j
j 6 �.�/º for some class K function �. By choosing � small enough, the set
�� D ¹j
j 6 �.�/º � ¹jyj 6 �º can be contained inside any given neighborhood of the origin,
showing that the control (36) achieves practical stabilization. If the function ı vanishes at the origin,
that is, ı.t , 0, 0, 0, p/ D 0, some additional assumptions would ensure that the control law stabilizes
the origin. The simplest case is when all functions are locally Lipschitz in .
, �, u/ and the origin ofP
 D q.
, 0, p/ is locally exponentially stable uniformly in p. In that case, we can use a Lyapunov
function of the form V.
, y/ D V0.
/ C y2, where V0.
/ is obtained from the converse Lyapunov
theorem [61, Theorem 4.17], to show that, for sufficiently small �, the origin is exponentially stable
and �� is a subset of its region of attraction.

Turning now to the relative-degree r system (34), we note that if the vector � had been available
for feedback, we could have designed a partial state feedback control, dependent only on �, that
reproduces the results we have just described for relative-degree-one systems. This is so because if
we define

s D k1�1 C k2�2 C � � � C kr�1�r�1 C �r

and perform a change of variables to replace �r by s, the system (34) can be rewritten as

Ṕ D Nq.´, s, p/

Ps D Nb.´, s, p/ C Na.´, s, p/Œu C Nı.�/� (37)

where ´ D col.
, �1, : : : , �r�1/,

Nq.´, s, p/ D

266664
q.
, �, p/

�2

...
�r�1

�r

377775
�r Ds�Pr�1

iD1 ki �i

and Na, Nb, and Nı are new notations for a, b CPr�1
iD1 ki �iC1, and ı, respectively, when �r is replaced

by s � Pr�1
iD1 ki�i . The system (37) has relative degree one when s is viewed as the output. By

designing k1 to kr�1 such that the polynomial

	r�1 C kr�1	r�2 C � � � C k2	 C k1
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is Hurwitz, it follows from asymptotic stability of the origin of P
 D q.
, 0, p/ and smoothness condi-
tions that the origin of Ṕ D Nq.´, 0, p/ is asymptotically stable. Moreover, if the system P
 D q.
, �, p/

is ISS uniformly in p, so is the system Ṕ D Nq.´, s, p/.
In output feedback control, the vector � is not available for feedback; only the output y D �1 is

measured. Here comes the role of the high-gain observer. The vector � satisfies equation (19) of the
previous section with m D r . We saw there how to design a high-gain observer to estimate � by O� in
such a way that the estimation error .� � O�/ can be made arbitrarily small over an arbitrarily small
period. In the current notation, the observer is given by

PO�i D O�iC1 C ˛i

"i
.y � O�1/, for 1 6 i 6 r � 1

PO�r D O'.t , O�, u/ C ˛r

"r
.y � O�1/

(38)

where ˛1 to ˛r are chosen such that the polynomial

	r C ˛1	r�1 C � � � C ˛r�1	 C ˛r

is Hurwitz, O'.t , �, u/ is an approximation b.
, �, p/ C a.
, �, p/Œu C ı.�/�, which is not allowed
to depend on 
, and " is the observer parameter that is chosen sufficiently small. We saw in the
previous section also that if the state feedback control is saturated outside a compact set of inter-
est, to overcome the peaking phenomenon, then the output feedback control recovers the stability
properties of the state feedback control when " is chosen small enough. In particular, if the state
feedback control brings the trajectories to a compact set �� in finite time, so will the output feed-
back control. If ı.�/ vanishes at the origin and the conditions for exponential stability are satisfied,
the output feedback control will ensure that the origin of the closed-loop system is exponentially
stable. Finally, by choosing " small enough, we can ensure that the trajectories of .
, �/ under output
and state feedback control can be made arbitrarily close to each other for all t > 0.

The foregoing discussion lays down a procedure for designing output feedback control for
minimum-phase systems of the form (34), which is comprised of the following steps:

1. Design a partial state feedback control that uses only measurements of � to achieve the control
objective and meet the design specifications/constraints.

2. Estimate a compact positively invariant set to which the state trajectories will be confined
under state feedback and saturate the control u and the function O' outside this set; control
saturation can be achieved by saturating the control signal or saturating the estimates O�i .

3. Implement the high-gain observer, replace � by O� in the control law, and tune the observer
parameter ", by monotonically decreasing it, to recover the performance of the state feedback
control.

Steps 2 and 3 are exactly the same as for the general case of Section 4, whereas Step 1 was assumed
to be done already.

The foregoing procedure for the design of output feedback control for minimum-phase systems
has been applied to a number of control problems beyond stabilization. In the remainder of this
section, we briefly describe the tracking and regulation problems. In the tracking problem, the out-
put y is required to asymptotically track a reference signal R.t /, while maintaining boundedness
of all state variables. It is assumed that R and its derivatives up to R.r/ are bounded and R.r/ is
piece-wise continuous function of time. In the error coordinates

ei D �i � R.i�1/, for 1 6 i 6 r

equation (34) takes the form

P
 D q.
, �, p/

Pei D eiC1, for 1 6 i 6 r � 1

Per D b.
, �, p/ C a.
, �, p/Œu C ı.�/� �R.r/

ym D e1

(39)
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with e1 D y � R as the measured signal. From this point on, the design of output feedback control
proceeds as in the stabilization case with two main differences. First, it is sufficient to the require
the system P
 D q.
, �, p/ to be bounded-input–bounded-state stable instead of the stronger ISS
condition because � is required only to be bounded, as opposed to requiring its convergence to zero
in the stabilization problem. Second, because the function ı.�/ is not likely to vanish at e D 0, it is
typical that we can only achieve practical tracking where je.t/j can be made arbitrarily small over a
finite time.

In the regulation problem, the output feedback controller is designed to achieve asymptotic track-
ing of a reference signal R and/or rejection of disturbance signals, all of which are generated by a
known dynamical model, referred to as the exosystem. This of course is to be achieved while main-
taining boundedness of all variables in the closed-loop system. The exosystem is a neutrally stable
system Pw D s.w/ whose initial conditions belong to a compact set.** A neutrally stable system has
bounded solutions that are persistent in time; that is, they do not converge to zero as time tends to
infinity. A linear system Pw D Sw is neutrally stable if the matrix S has simple eigenvalues on the
imaginary axis, which can model constant signals as well as a finite number of sinusoids of known
frequencies. We have already seen how we can use a high-gain observer to reduce a relative-degree
r problem to a relative-degree-one problem. So for convenience, we will describe the solution of the
regulation problem only for relative-degree-one systems of the form (35), which we rewrite as

P
 D q.
, e, w, p/

Pe D b.
, e, w, p/ C a.
, e, w, p/Œu C ı.
, e, w, p/�
(40)

where e D y � R is the regulation error and w.t/ is generated by the exosystem. It is seen from
(40) that at steady state, when e.t/ � 0, 
.t/ must satisfy the equation P
 D q.
, 0, w, p/, and the
steady-state control uss.t / must satisfy

uss D �ı.
, 0, w, p/ � b.
, 0, w, p/

a.
, 0, w, p/

Suppose there is a map �.w, p/ that satisfies the partial differential equation

@�

@w
s.w/ D q.�.w, p/, 0, w, p/

and set

�.w, p/ D �ı.�.w, p/, 0, w, p/ � b.�.w, p/, 0, w, p/

a.�.w, p/, 0, w, p/
,

then uss D �.w, p/. Any controller that solves the regulation problem must contain a dynamical
model that generates the steady-state control uss, a property known as the internal model principle
[78, 79]. The controller, in fact, has to define an invariant subset of ¹e D 0º where u D �.w, p/

and has to stabilize this invariant set to ensure that e.t/ converges to zero. A special case where
the internal model is linear occurs when the exosystem is Pw D Sw and �.w, p/ is a polynomial in
the components of w with coefficients dependent on p. In this case, there is a single-output observ-
able pair .ˆ, �/, independent of p, with ˆ having simple eigenvalues on the imaginary axis, and a
mapping �.w, p/ such that �.w, p/ is generated by the system

P� D ˆ�, � D ��

The spectrum of ˆ contains the eigenvalues of S . Moreover, as a number of higher order harmon-
ics of the sinusoidal components of w may be generated by the nonlinearities of the system, the
spectrum of ˆ may contain eigenvalues that are multiples of the eigenvalues of S . Let .F , G/ be
a single-input controllable pair in which F is Hurwitz and has the same dimensions as ˆ. Let ‰

**See [76] for the definition of neutral stability.
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be the unique matrix that assigns the eigenvalues of .F C G‰/ at the spectrum of ˆ. Augment the
system (40) with the internal model

P� D .F C G‰/� C Ge

and define s D e C ‰� and � D 
 � �.w, p/. The augmented system is given by

P� D Qq.�, s � ‰� , w, p/

P� D F� C Gs

Ps D b.�/ C a.�/Œu C ı.�/�
(41)

where Qq.�, e, w, p/ D q.�C� , e, w, p/�q.� , e, w, p/. When s is viewed as its output, the augmented
system (41) has relative degree one and its zero dynamics are given by

P� D Qq.�, �‰� , w, p/, P� D F� (42)

It can be easily seen that if the origin � D 0 is an asymptotically stable equilibrium point of
P� D Qq.�, 0, w, p/ uniformly in .w, p/, which is a minimum-phase condition, so is the origin
.� D 0, � D 0/ of (42). On the basis of our earlier discussion of the stabilization of relative-
degree-one minimum-phase systems, it is now clear that regulation can be achieved by a high-gain
feedback control of the form u D �Ks or a continuously implemented sliding mode control of the
form u D �K sat.y=�/ with positive constants K and �.
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