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Stability Robustness in the Presence of Exponentially
Unstable Isolated Equilibria

David Angeli and Laurent Praly

Abstract—This note studies nonlinear systems evolving on man-
ifolds with a finite number of asymptotically stable equilibria and
a Lyapunov function which strictly decreases outside equilibrium
points. If the linearizations at unstable equilibria have at least one
positive eigenvalue, then almost global asymptotic stability turns
out to be robust with respect to sufficiently small disturbances in
the norm. Applications of this result are shown in the study of
almost global Input-to-State stability.

Index Terms— Almost global stability, gradient-like systems,
input-to-state stability, integral manifolds, nonlinear systems on
manifolds.

I. INTRODUCTION AND MOTIVATIONS

S TABILITY notions with respect to exogenous signals are
a key tool in nonlinear control. On one hand they allow

to analyze stability of interconnected systems in terms of Input-
Output gains of individual subsystems, see for instance [10]. On
the other, they provide quantitative estimates of how the system
reacts to exogenous disturbances. Two approaches have been
particularly fruitful, both from the purely theoretical point of
view as well as successful in several domains of application.
These are the so-called and Input-to-State Stability frame-
work, [20], [23]. Both approaches extend the classical Lyapunov
method, traditionally used to establish internal stability proper-
ties, to systems with inputs and outputs. Indeed, in analogy to
the classical Lyapunov method, they exploit state-space descrip-
tions of system’s dynamics and energy-like functions in order to
asses the stability and robustness of a system with respect to in-
ternal and external perturbations. The theory is very developed
for nonlinear systems which are defined on Euclidean spaces
and with a globally asymptotically stable equilibrium point (or
compact attractor). However, in more general setups this is often
not the case. For instance smooth systems evolving on manifolds
or systems whose attractor is something more complicated than
a single equilibrium, typically do not fulfill global asymptotic
stability as topological obstructions arise even in the absence
of exogenous disturbances. One natural way to relax global re-
quirements is therefore to consider almost global stability no-
tions with respect to a single equilibrium or, more in general, to
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the non-trivial attractor of interest (for instance multiple equi-
libria). This entails a deep revision of the analytical techniques
involved.

An attempt in this direction was discussed in [1], with a new
definition of almost global Input-to-State Stability (aISS) and
the proposition of some analytical techniques which may be em-
ployed to establish aISS for non-trivial examples of nonlinear
systems. The main result in [1] makes use of the so called den-
sity functions, which were recently introduced by Rantzer as a
natural dual to Lyapunov functions, in the study of almost global
stability and attractivity notions, [17], [18]. While software tools
to automatically find density functions for certain classes of
systems are beginning to become available, [15], [16], recent
analysis has also highlighted that explicit closed-form expres-
sions of smooth dual Lyapunov functions in the case of systems
with saddle points of negative divergence, [2], might actually
not exist in most cases.

The difficulties in finding such functions pushed the authors
in the direction of proposing a complementary set of tools for the
study of stability robustness in the presence of unstable and an-
tistable invariant sets. The techniques heavily rely on the stable
and unstable manifolds theory of dynamical systems, in partic-
ular on their time-varying adaptations. This paper was motivated
by an open problem publicly posed by one of the authors during
the 2009 Oberwolfach meeting in Control Theory, [3], and pro-
vides together with a positive answer to the question thereby
formulated, a result to address similar questions in general and
realistic scenarios.

Just as a motivating example, which will later be discussed
in more detail, we recall the question posed in [3]. The system
under consideration is a pendulum with friction, of equations

(1)

whose state variable takes values in the manifold
. For , that is in the absence of exogenous torque

disturbances, it is well-known that almost all solutions will con-
verge to the equilibrium [0, 0], corresponding to the pendulum
pointing downwards. On the other hand, the upright position of
the pendulum is an hyperbolic saddle point of negative di-
vergence (divergence is equal to 1 everywhere in state space).
Therefore, a zero-measure set of initial conditions (in partic-
ular those belonging to the so-called stable manifold which is in
this case one-dimensional) give rise to solutions asymptotically
approaching the upright equilibrium. One might thus wonder
whether, in the presence of non-zero disturbances, almost all ini-
tial conditions will give rise to solutions which are ultimately (in
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positive times) in a ball centered at the downward equilibrium
and with radius bounded from above in terms of the norm
of the applied disturbance, modulated by some function.1

The answer to this question is positive and follows by ap-
plying our Main Result. This is a connection between existence
of Lyapunov functions with strictly negative derivative and ro-
bustness of almost global asymptotic stability to exogenous dis-
turbances of sufficiently small amplitude. While such results are
by now well-known and frequently quoted in the case of GAS
(see for instance the converse Lyapunov theorems provided in
[22]), rather different techniques are needed for almost global
stability analysis. Combined with more standard tools for ulti-
mate boundedness or practical Input-to-State Stability analysis,
the technique configures a separation principle for claiming al-
most global Input-to-State Stability. We also show, by means
of a one-dimensional example defined on the unit circle (see
Section III-B), that in the presence of unstable equilibria even
arbitrarily small disturbances have the potential for changing the
qualitative dynamical behaviour of a system (for instance stabi-
lizing an initially unstable equilibrium or creating basins of at-
traction of positive Lebesgue measure).

II. PROBLEM FORMULATION AND MAIN RESULT

A0: Let be an -dimensional connected, orientable,2

Riemannian manifold without boundary ,
be a -Lipschitz function and be a closed subset

of .
This note deals with nonlinear systems of the following type:

(2)

with state taking value in . We denote by its
solution which is at at time and we call unperturbed system
the following autonomous ordinary differential equation:

(3)

We assume:
A1: existence of a nonnegative and proper3 function

such that we have:4

(4)

A2: any equilibrium which is not asymptotically
stable, is isolated and such that at least one eigenvalue of

has strictly positive real part,
where denotes the differential of at .

1A function � � ������� ������ is of class� if continuous, increasing
and ���� � �.

2Orientability is assumed here to guarantee the existence of a volume form
and makes the statement of our results easier. This assumption is not essential
however. Without it we can still define a notion of volume by considering a
density function, everywhere non-vanishing in M. See for instance [13].

3We recall that a function � is proper provided � ��� is compact for all
compacts � included in the domain of � .

4We use the notation � � � to denote the Lie derivative of � along � at a
point � when the perturbation is �.

Notice that (4) implies that stationary points of are equi-
libria (the converse need not be true). Also, asymptotically
stable equilibria are, by definition, necessarily isolated and with
an open basin of attraction. Moreover, if is compact, it has
stationary points (and minima) which, by the previous remark,
are necessarily equilibria (respectively asymptotically stable
equilibria).

If is a not compact, let be a real number arbitrary up to
the fact that the compact set

contains at least one asymptotically stable equilibrium and no
equlibrium on its boundary. If is compact, we let:

Since equilibria of the undisturbed system are isolated, con-
tains a finite number of them which we denote by with
ranging in . Also, we denote by the finite set of
those which are asymptotically stable.

Proposition 1: Under assumptions A0 to A2, there exist a
real number and a class function such that, for
each measurable perturbation with
norm smaller than , and for each in , there exists a set

which is countably -rectifiable5 and,
being orientable, of zero Riemannian volume such that, any so-
lution of (2) with in is defined at
least on and satisfies:

(5)
where denotes the Riemannian distance between
and in .

To prove this Proposition, we shall need the following Lemma
whose proof is given in Appendix. It relies heavily on the results
in [4].

Lemma 1: Let be an isolated equilibrium of the unper-
turbed system (3) such that at least one eigenvalue of
has strictly positive real part. There exist a neighborhood
of , a strictly positive real number , a non-negative in-
teger and a bounded open set in , such that, for
each measurable perturbation with norm
smaller than , a continuous function
exists such that the map is locally Lipschitz (uni-
formly in ) and any solution defined at least on

and for which there exists such that

necessarily satisfies

5See [11, 3.2.14] for instance for a definition.
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Remark 1:
1) In the above statement, when (as it is always the case

for ), denotes the singleton {0}.
2) For each in , the set is a -rectifiable set.

Since is strictly smaller than , it has a zero volume.6

3) The set may be empty, in which case
no solution exists which is eventually confined within

. This is the case, for instance, if locally to the
system is diffeomorphic to

and has infinite norm. A suitable Lyapunov function
(locally to the equilibrium ) is for instance:

.
Proof of Proposition 1: Let
• be the smallest distance between the equilibria in of

the undisturbed system
•

(6)

where denotes the Riemannian norm of a vector field,
i.e., for each in where is defined, we have

with being the Riemannian metric.
If is a not compact, with our definition of the compact set

, there exists such that

With this, (6) and continuity, we can find a strictly positive real
number such that we have, for all with ,

(7)

It follows that is forward invariant for the system (2) for all
perturbation with norm smaller than .

If is compact, we have . Therefore, is trivially
forward invariant for all perturbation in . In this case, the
real number to be used later on can be chosen arbitrarily
large (but fixed) and (7) holds again.

To facilitate our forthcoming analysis, we impose also
backward completeness. When is not compact this can be
achieved simply by modifying outside as

6Simply because, for each fixed �, the function ��� �� � � ��
� ��� ��

�
� ��� �� � � is locally Lipschitz, it maps zero Lebesgue mea-

sure subsets of into zero volume subsets of� . Moreover,� � � � �
� � �����where the subset ���� of ���� has zero Lebesgue mea-
sure in .

where is a function satisfying

In order not to overload our notations in this proof, we forget
the subscript for and we still denote by the
solutions of

(8)

Actually, this modification is used only at the very end in the
construction of the set . Indeed in the remaining part of
this proof, we restrict our attention to in , and with

norm smaller than , so there is no difference on
between solutions of (2) and solutions of (8).

Let and denote respectively the Riemannian ball
and sphere centered at and with radius . Let also

• , and be strictly positive real numbers
such that
1) we have

2) Then should be such that

(9)

3) for each equilibrium which is not asymptotically
stable for the undisturbed system, we have

(10)

where and are respectively the set and
the real number given by Lemma 1.

• be a neighborhood of defined as
follows.
— If is asymptotically stable, being strictly de-

creasing along solutions of the undisturbed system,
is a strict local minimum of . Thus, together with (4),
continuity and compactness imply the existence of a
compact neighborhood of which is a con-
nected component of a sublevel set of and a subset
of , and strictly positive real numbers
and so that

(11)
— If is not asymptotically stable, we pick in

so that, by letting

we have

(12)
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The continuity of guarantees that such an ex-
ists. Then again, continuity and compactness imply the
existence of strictly positive real numbers and

so that (11) holds.
With all these definitions, we have

(13)

Also any solution which leaves a ball and reaches
a sphere , with , must “travel” during a time
which is at least . And during this time the Lyapunov
function decreases by an amount which is at least

(14)

From now on, we restrict our attention to perturbations with
norm smaller than .

Pick a solution which at time say is in .
This compact set being forward invariant, the solution is in it
for all times . Since is lower bounded, we conclude
from (13), that this solution must enter or start from one of the
sets and, furthermore, can only spend finite time intervals
outside of .

In the following, we shall prove.
Claim 1: There exists a time and an index such that we

have

Assuming for the time being this claim holds true, then 2 cases
are possible
Case 1) is asymptotically stable. In this case, local

asymptotic stability implies local Input-to-State
Stability (ISS), for suitable restrictions on inputs
and initial conditions. This result is usually stated
for systems defined on Euclidean space (see Lemma
I.1 in [21]), however, due to its local nature, it can be
adapted straightforwardly to systems on manifolds.
The estimate in (5) is a direct consequence of local
ISS.

Case 2) is not asymptotically stable. In this case, with
(10) and Lemma 1, the solution
is in for each and
therefore also in for each
integer larger or equal to . But this says that at
time the solution was at which is in:7

7Recall that in this proof ���� �� � � is a solution of (8), system which by
construction is backward complete.

and therefore in the set defined as

In other words, if is not in then the set
in which the solution ends

must be associated to an equilibrium which is
asymptotically stable. Note finally that, since for any
given pair , the function

is Lipschitz on is a countable union of
images by Lipschitz maps of -rectifiable sets, with

and therefore is countably -rectifi-
able. So it has zero volume.

To complete our proof, it remains to prove claim 1. Since the
solution must enter one of the sets , say at time , 2 cases
are possible.
Case 1) is asymptotically stable. Under such hypotesis

is a connected component of a sublevel set of
which, with (11), is (strictly) forward invariant.

So the solution will never leave it in future times.
Case 2) is not asymptotically stable. In this case if the

solution , which is in the inte-
rior of at time , reaches at time

, then, as shown below, it will never again
enter . Note that since the solution can only
spend finite time intervals outside and the
number of is finite, this proves the claim. So for
the sake of getting a contradiction, assume the solu-
tion does re-enter at a time . Two
sub-cases are possible.

Case 2.1: It did not enter any other set
in the interval . In this case the Lyapunov
function has been decreasing whenever the
solution was not in . Then because we
have ,

, and there
exist such that we have

Specifically
— at time , the solution is in the boundary of

and, on the time interval , the
solution is not in . This implies that
on this time interval the Lyapunov function
decreases.
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— the interval is defined so that the solu-
tion is in while it belongs
to the sphere at time and to the
sphere at time .

— the interval (with is de-
fined so that the solution is back to

, being in the sphere at
time and in the sphere at time

.
All this gives
— between and , the solution is not in

. So decreases with some rate which
we do not evaluate in this proof.

— between and , the solution is in
and decreases by at least

which is lower bounded by .
— between and , continues to decrease.
— between and the solution is in

and decreases at
least by which is again lower
bounded by .

— finally on the interval , the solution is
in not in so is still decreasing again
with some rate which we do not evaluate in
this proof.

Using (6) and (7), we have

This yields

Similarly, we have

and therefore

So, with (9) and (11), we get

This contradicts (12). So, at least in this case, the
solution cannot re-enter .
Case 2.2: It has entered at least another set

, with in the interval .
Let be the finite sequence of
equilibria corresponding to the neighborhoods

, , visited by the solu-
tion before entering again (where
obviously ). Without loss of
generality all of them are distinct from each
other (except the first and the last). Clearly
none of the s can be an asymptotically stable
equilibrium. Moreover, along any solution
leaving a to reach , the Lya-
punov function decreases as long as it belongs
to

, and as long as it does not belong
to it decreases of
at least (see (14)). Finally, when it exits

( ranging in ) the
Lyapunov function may have increased, but less
than

By combining all these considerations, we may
estimate that the Lyapunov function between
the time the solution leaves and the time
it re-enters it, has decreased of at least

. Therefore, we have
the following estimations on the various values
of the Lyapunov function

They give

But, with (14), this contradicts (12).
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III. A SUFFICIENT CONDITION FOR ALMOST GLOBAL

INPUT-TO-STATE STABILITY

The Main result in the previous Section will be used in order
to develop a checkable sufficient condition for the notion of al-
most global Input-to-State Stability (aISS), recently introduced
in [1], which we recall below.

Definition 1: A system as in (2) is said to be almost globally
Input-to-State Stable with respect to a compact subset if

is locally asymptotically stable for and there exists
such that for each locally essentially bounded and measurable

perturbation , there exists a zero volume set
such that, for all , it holds

Notice that in this last inequality we specify , without
loss of generality.

Remark 2: This notion is useful in many different contexts,
both for systems with (for instance when is a limit
cycle or a set of more than one equilibrium point), as well as for
nonlinear systems evolving on manifolds non diffeomorphic to
Euclidean space (in which case even being a single equilib-
rium requires almost global tools to be handled). Despite its po-
tential interest, few sufficient conditions are available to prove
this holds in actual examples. It is also worth pointing out that
it is a purely open-loop notion of robustness; as is depen-
dent, letting be a function of is generally not possible.

Definition 2: A system as in (2) fulfills the ultimate bound-
edness property if there exists a class function , a constant

and a point such that for each , each
and each locally essentially bounded and measurable perturba-
tion , the solution is defined on , and
eventually confined to

We remark that in the previous definition Ultimate Bounded-
ness could have been equivalently defined by considering the
point-set distance to a compact subset of , rather than a sin-
gleton . Our main result for this Section is stated below.

Proposition 2: Consider a system as in (2) which fulfills as-
sumptions A0 to A2. Assume, in addition, that the set of asymp-
totically stable equilibria of (3), denoted by , be finite. If ul-
timate boundedness holds, then, (2) is almost globally ISS with
respect to the set .

Proof: By ultimate boundedness there exist a function
of class and a constant such that for each , each

and each locally essentially bounded and measurable
perturbation , the solution is defined on
and fulfills

(15)

Let the compact set invoked in the main result be selected
to contain the set .
Then, let be given as from our main result. Fix , as an
arbitrary measurable perturbation which is essentially bounded

(for unbounded there is nothing to prove). Since a Riemannian
manifold is -compact,8 we can pick a monotone increasing se-
quence of compact subsets of ,

with the property that . Assume
. By virtue of (15), and continuity of solutions with

respect to initial conditions, for all there exists
such that is a subset of . Then, applying our
main result yields existence of a zero volume set such
that, for all such that is in , it holds

(16)

Since is a diffeomorphism which preserves
zero volume sets and with inverse , it follows
that has zero volume and, for each

(16) holds.
Let . It has zero volume as a countable

union of zero volume sets. Moreover, for all there
exists so that ; thus
and inequality in (16) holds. Finally, almost global ISS follows
simply by combining (16) and condition (15) with given as

Proposition 3: Consider a system as in (2), and assume that
exists, of class , proper and satisfying

(17)

for all and all . Then, system (2) fulfills the
ultimate boundedness property.

Proof: By virtue of (17), it holds

(18)

As is proper, taken any , of class and a constant
exist, so that for all

(19)

Combining (19) and (18) proves ultimate boundedness.

A. A Planar Example: Pendulum With Friction

Consider the following set of differential equations, de-
scribing the motion of a forced pendulum with friction

(20)

We regard them as a system with state taking values
on the cylinder affected by some exogenous distur-
bance , whereas are constant positive parameters. The
following question was publicly posed in Oberwolfach meeting:

8A Riemannian manifold is locally compact (see [6, Theorem VI.6.6 and page
335]) and paracompact (Stone Theorem) (see [25, Theorem 20.9]). Moreover,
a paracompact, locally compact and connected space is �-compact (see [12,
Lemmas 5 and 6]).
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is the above system almost globally Input-to-State Stable? Con-
sider the mechanical energy of the pendulum, that is

. Taking derivatives along (20) yields

with constant . By virtue of (17), system (20) ful-
fills ultimate boundedness. Moreover, it is straightforward to see
that, when , (20) has only two equilibria and

. In particular, is asymptotically stable, whereas
is an hyperbolic saddle point. Let us denote .

In order to build a strict Lyapunov function for (20) we perturb
as follows:

(21)

for some small parameter to be fixed later. Along solutions
of the autonomous system fulfills the following dissipation
inequality:

for all , provided and . The
previous inequalities can be simultaneously fulfilled by taking

sufficiently small. Hence, the pendulum equations fulfill all
assumptions of our previous result, and we can therefore con-
clude almost global Input-to-State Stability.

B. A Scalar Counter-Example

We show next, by means of a simple scalar example, that the
existence of at least one unstable eigenvalue is an assumption
which cannot be removed from the Main Result.

Let be the unit circle and be the corresponding angular
coordinate on . Consider the system

(22)

For the system has two equilibria, namely which
is asymptotically stable and which is antistable. Notice
that the differential of (22) at is , so that the
linearized system does not have positive eigenvalues at the un-
stable equilibrium. We want to show that, even for arbitrarily
small input signals it is not true that almost all solutions con-
verge to a neighborhood of 0 whose volume shrinks to 0 as the
input perturbation norm tends to 0. Indeed, taking constant
inputs we obtain which yields the linearized
system

Therefore, for all we have local asymptotic stability of
the equilibrium at . This proves that, no matter how small
we pick there always exists a basin of attraction of positive
measure for the equilibrium . This simple example justi-
fies our assumption on .

IV. COMPLEMENTARY BIBLIOGRAPHICAL NOTES

It is worth pointing out that Assumption A1 combined with
isolation of equilibria basically amount to an infinitesimal char-
acterization of gradient-like systems, introduced by Conley in
[9] (original definition entails continuous Lyapunov functions
rather than and is formulated in the context of flows on com-
pact metric spaces rather than differential equations on Rie-
mannian manifolds). They should not be confused with gradient
systems which are instead often defined on Riemannian mani-
folds and are for instance studied in [19]. While it is true that a
gradient system whose associated Lyapunov function has only
isolated stationary points is gradient-like, the converse need not
be true.

Gradient-like systems have the peculiarity of having a chain-
recurrent set which is of the simplest possible form, namely a to-
tally disconnected set made up by equilibria only. This property
was actually used as a definition in [9]. It turns out that when this
is the case, then the chain-recurrent set also coincides with the
set of points in state space with the property that all continuous
functions which are globally non-increasing along the flow are
constant along solutions initiated at those points.

Perturbations of gradient-like systems have been studied
in the literature, however, this is the first time (to the best
of our knowledge) that ISS-like estimates are attempted. In
particular, in a recent series of papers [7], [8], [14], small-size
time-varying perturbations of gradient-like systems (evolving
in Banach spaces) are studied and results derived on the conti-
nuity property of the global attractor of gradient-like systems.
Indeed it is proved that the global attractor of a gradient-like
system is “robust” with respect to small time-varying perturba-
tions. In particular it has the same structure of the attractor of
the autonomous system, namely the union of globally bounded
solutions resulting as perturbation of autonomous systems
equilibria and their unstable manifolds. The results presented
in this paper differ in several respects from those in the above
mentioned papers.

1) Global attractors are the object of interest in [7], [8], [14];
an attractor is not necessarily asymptotically stable, and
this allows to formulate global convergence notions also
in the presence of multiple equilibria (some of which are
typically unstable). As we deal with a generalization of
almost global asymptotic stability, a global approach is not
possible in our case and only almost global ISS estimates
and robustness results are guaranteed.

2) In addition, papers [7], [8], [14] assume hyperbolic equi-
libria (which is not a requirement in this note) and do
not immediately apply to dynamical systems evolving on
manifolds.
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In [5], instead, asymptotically autonomous gradient-like sys-
tems are considered and it is shown that their -limit sets are
necessarily equilibria.

It is worth pointing out that in the recent paper [24], density
and Lyapunov functions are jointly used in order to claim almost
global Input-to-State Stability properties. The tools developed
in this note are meant to complement these techniques which
are seemingly hard to use in the context of systems with unstable
equilibria of negative divergence, as emphasized in [2].

APPENDIX

PROOF OF LEMMA 1

It suffices to show that the assumptions of Theorem 4.1 in [4]
are satisfied.

Let be an equilibrium point of (3) with having at
least one eigenvalue with strictly positive real part. Let be a
coordinate map defined on a neighborhood of in , with
values in and with a locally Lipschitz inverse. By we de-
note coordinates (in ) so that is the origin. Associated
to these coordinates, we have a neighborhood of the
origin and a locally -Lipschitz function
satisfying

and such that the image by of any solutions of (2) restricted
to the preimage by of is a solution of

(23)

We define the functions and matrices

They are defined on , locally Lipschitz and satisfy

Then, possibly by restricting our attention to an open subset of
with a compact closure, there exists such that we have for

all and all with

(24)

(25)

Now, from the identity

we get

where

Notice that, with (25), we have

Now, without loss of generality, we can assume that the coor-
dinates are such that the matrix has the following block
diagonal structure:

where the real parts of the eigenvalues of are strictly smaller
than those of , the latter being strictly positive. The only case
where this structure would not exist would be if had all its
eigenvalues with the same, and therefore strictly positive, real
part. This particular case will be considered at the end of this
proof.

The spectral separation for and implies the existence of
real numbers , (with ) satisfying for all

From these numbers, we define the non negative real number
as

Corresponding to the decomposition of , we have the
decompositions

with of dimension and of dimension , and (23) reads

(26)
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This system is defined only on . We extend it to
as follows. Let and be real numbers defined as

(27)

In particular the choice for is made to get

We show next that follows by taking into account sepa-
rately the two cases, and in the definition of .

1) yields and therefore

2) yields and therefore

Then follows by noticing that
.

Similarly, by taking into account separately the cases and
, it is easy to show that and are

strictly positive.
Let also the positive real satisfy

(28)

and be such that the closed ball centered at the origin with
radius is contained in . We let

if
if
if .

and define

if

if ,

if

if .

With (24), (26), (27) and (28), for any function in
with -norm smaller than , we have for all
and in and almost all9 in ,

9This is not for all � as requested in the statement of [4, Theorem 4.1] But this
Theorem holds also in this case.

(29)

where is a class- function (which bounds ). Also any solu-
tion of (26) satisfies

(30)

as long as it is in the open ball . As a consequence, any
solution of (2) whose image by the coordinate map stays in

for all times in an interval like is a solution of
(30) on this interval and can be extended as a solution of (30)
on This system (30) satisfies all the assumptions of
[4, Theorem 4.1] except that, here, the right-hand side of (29)
is not zero. By adapting10 the proof of this Theorem, we can
show the existence of a unique continuous function

such that is Lipschitz uniformly
in and any solution of (30),

10Since the right-hand side of (29) is not zero, we may have � ��� �� non
zero. Also in the proof of [4, Theorem 4.1], we have to make sure �� � is
bounded. In our case, we get that what is before [4, (63)] becomes

��� � ���� ������	�

�
�

� � 
���
���� � �� ��� �� ��� �

and [4, (64)] becomes

�
 ��� ����� ������ ��������

� ���� � ���� � �
��� �� ��� ��������

� ����� ������	� �
��

� � 
���
��� � ����

�
��

� � 
���
�� ��� �� ��� � �
����� ���

� ����� ������	� �
� � 


� � 
���
���

�
��

� � 
���
�� ��� �� ��� � �
����� ��� �

Then, with [4, Lemma 3.6], we have

�� � �
�

������
�
 ��� ����� ������

�
�

������

� ����� ������	��
��


��
���
���

�
��

��
���
�� ��� �� ��� ��
����� ���

With (29) and ��� � � , this yields

�� � �
�

� � � ���
������ ������	�

�
��� � 
�

� � 
���
��� �

� � 


� � 
���
� ���� � ������	�

Hence the fixed point � (and therefore the function � �� � ��� ��) of the
operator � satisfies the bound

��
�

� � � ���

��� � 
�

� � 
���
� �

�

� � � ���

� ����� ������	� �
� � 


� � 
���
� ���� � ������	� �
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passing through at time , (necessarily defined on )
which satisfies

for some satisfies also

In view of the relation between solutions of (26) and solutions
of (30) and since is not negative, this implies that any solution

of (26) which satisfies

(31)

for some satisfies also

Notice for instance that, if for all with norm smaller than ,
and for all , we can find such that is not in

, then the condition (31) can never be satisfied. Hence, the
claim of Lemma 1 holds with: , ,

and

Now, if has all its eigenvalues with the same real part, then
there is no exponential dichotomy, viz. no , i.e.,
and the system (26) reduces to

(32)

Again this system satisfies all11 the assumptions of Lemma 3.6
in [4]. It follows that there exists a unique continuous function

such that any solution of (32), passing
through at time , (necessarily defined on ) which satisfies

for some satisfies also

From this, we can conclude the proof as above.
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