INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, VOL. 6, 329-351 (1992)

ADAPTIVE REGULATION: LYAPUNOYV DESIGN WITH A
GROWTH CONDITION

LAURENT PRALY

Centre Automatique et Systémes, Ecole des Mines de Paris, 35 Rue St Honoré, F-77305 Fontainebleau Cédex,
France

SUMMARY

We propose a new Lyapunov design of an adaptive regulator under some restriction on the dependence
of a Lyapunov function on the parameters.

This restriction has been introduced by Praly et al. Its interest is to involve only a Lyapunov function
and not explicitly the system non-linearities. We show it is satisfied by strict pure feedback systems with
polynomial growth non-linearities and some other non-feedback linearizable systems.

Our new Lyapunov design leads to an adaptive regulator where the adapted parameter vector is
transformed before being used in the control law; namely, the so-called certainty equivalence principle
is not applied. Unfortunately, the implementation of this regulator needs the explicit solution of a fixed
point problem, so in a second stage we propose a more practical solution obtained by replacing the fixed
point static equation by a dynamical system with this fixed point as equilibrium.
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1. INTRODUCTION

For linear systems it is now well established that parameterized controllers can be made
adaptive.!™® In the non-linear case this is not true in general when we are concerned with
global stability. As shown in Reference 4, this follows from the fact that in general the closed-
loop system depends on the parameters. Two routes have been explored to overcome this
difficulty.

The first route assumes that the parameters can be rejected when considered as disturbances
with measured time derivatives. This is the so-called matching condition intreduced by Taylor
et al.,” extended by Kanellakopoulos ef al.® (see also Reference 7) and generalized by Praly
et al.* This generalized matching condition depends on the open-loop system and an assignable
Lyapunov function (i.e. a control Lyapunov function). Kanellakopoulos e a/.® have shown
that, at least for systems in a pure feedback form, a simultaneous design of the control and
the adaptation law allows us to satisfy systematically this generalized matching condition in
a very specific but sufficient way. This technique has been generalized in Reference 9 and
improved by Krstic et al.'® in order to reduce the dynamics of the adaptive controller.

The second route has been followed by Nam and Arapostathis,!’ Sastry and Isidori,'?
Pomet and Praly'*'¥ and Praly ef al.* Robustness is used instead of disturbance rejection as
before and the matching condition is replaced by some growth condition. This latter condition
is such that we can design an adaptive controller making the closed-loop system Lagrange
stability robust with respect to the effects of adaptation. Unfortunately, in contrast to the first
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route where sufficient geometric conditions on the open-loop system are known for the
generalized matching condition to hold,*® there is no precise characterization of the systems
for which the various proposed growth conditions hold.

In this paper we follow the second route. In Section 2 we present our assumptions with, in
particular, the same growth condition as the one introduced in Reference 4 for a least squares
estimation scheme with initialized filters. In Section 3 we show that this condition is satisfied
by some systems in a strict pure feedback form but also by some systems for which no other
adaptive controller is known. In Section 4 we design a first basic adaptive regulator from a
Lyapunov design and prove Lagrange stability. However, this controller involving the solution
of a fixed point problem has reduced practical interest. Thus in Section 5 we propose a more
practical regulator and prove again Lagrange stability. Section 6 is devoted to some extensions.
Finally, conclusions are given in Section 7.

2. ASSUMPTIONS

Let the system to be controlled have a measured state x in R” and an input # in R"™. We
assume:

Assumption LP (linear parameterization) (§))]

There exist two known C'-functions @ and A and an unknown vector p* in R’ such that
the dynamics of the system to be controlled are globally described by

X=alx,u)+ A(x,u)p* (2)

We shall restrict our attention to the case where p* is in a known closed convex set IT* whose
boundary is a level set of a function 4 In fact, for technical reasons, we shall need to know
that IT* is the smallest set in a chain IT* Il € I1; € IT; € I13 € 11 where all the sets are also
closed and convex with a level set of 4 as boundary. Precisely, we assume:

Assumption ICS (imbedded convex sets) 3)
There exists a known convex C*-function #: R’ — R such that:
1. [—1,4] is a subset of #(R") and for each real number A we define the set
Ih={p| #(p) <\ (G
and we denote IT* (respectively Ilo,II,,IIs,I15,I1) the set obtained for A= —1
(respectively A=0, A=1, A=2, A=3, A=4).
2. There exists a strictly positive constant N such that

Hg;j(m 2N, vpelp|-1<Ap)<3) &)

3. The parameter vector p* of the system to be controlled is in IT*.
4, The minimum § among the distances from I to the complement of I1, from II; to the
complement of II; and from II* to the complement of Iy is strictly positive, i.e.

A =inf inf - . inf — 3 inf -pall] >0 (6
[ﬂlﬁnzyﬂzfn”pl pZH P €T, g T H p] p2 ” p;en‘.p:fl]u ” pl P ”] ( )
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To design our adaptive controller, we consider the system to be controlled as a particular
element of {Sppen, the following family of systems indexed by peIl:

Xx=a(x,u)+ A(x,u)p N

We assume that each element in this family is Lagrange stabilizable in the following sense:

Assumption LS (Lagrange stabilizability) (8)
There exist two known functions
Un: R"x IT— R™ which is C' and V:R"xII— R, which is C*
such that

1. For all positive real numbers K, and all compact subsets II. of II, the set
fx|3pell: V(x, p) < K, is a compact subset of R",
2. For all (x, p) in R" x IT we have

oV def
ijpﬂﬁxmumD+Aumdmmm)=—WWLmQO %)
Namely, if we apply the state feedback un(-, p) to the system S, (7), we get the so-called

nominal closed-loop system

X=a(x,un(x, p))+ A(x, ua(x, P))p (10

It is Lagrange stable with Lyapunov function ¥ whose time derivative is — W. For the more
stronger asymptotic Lyapunov stability of a desired setpoint ¢* we will invoke:

Assumption ALS (asymptotic Lyapunov stabilizability) an
For all C' time functions f: R, — II with bounded derivative the only bounded solution of
¥ = a(x, un(x, J)) + A(x, un(x, BN P (12)

satisfying
Wi(x(t),p(t)=0 for all re R, (13)

is the trivial solution x(¢) = &*.

Indeed, with this assumption, asymptotic Lyapunov stability will follow from LaSalle’s
theorem (Reference 13, 5.2.81).

The nominal closed-loop system (10) depends on the parameter vector p. More precisely, the
Lyapunov function ¥ depends on p. As mentioned in Section 1 and discussed in Reference 4,
this is the origin of most of the difficulties in adaptive non-linear control. To specify this
dependence in our approach, we assume:

Assumption GC (growth condition) (14)
There exists a known positive real number v such that for all (x, p) in R” x IT we have

a2V

ar . av . 2 X
B (x, p) 3p? (p)|| s v I+ V(x,p) (15)

’SvU+WLpM
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Assumption GC (14) differs from the following growth condition introduced by Pomet and
Praly: '

However, it is the same as the one considered in Reference 4, Propositien (375) with an
estimation design. The interest of the growth condition (15) is that the system non-linearities
are not involved explicitly — compare with (16). It concerns only the parameter dependence
of the control Lyapunov function V. For instance, it is satisfied if the set IT is compact and
V' is given by

v . ll2v :
H ap (A.P)‘ Ix (x, DYA(x, un (e, p) || < v(1 + VX, p)7) (16)

V(x, p)=®(x)' P(p)®(x) (17)
with a matrix P(p) = N = 0 for all p in the set II.

3. EXAMPLES

Let us illustrate our assumptions by means of examples.

3.1. A three-dimensional system

Let us consider the non-feedback linearizable system

X=piz+ piz’, y=z+p3y’, g=p (18)

where the parameters pi, p> and pi are unknown. We are interested in asymptotically
stabilizing the setpoint " = (0, 0, 0). Since equations (18) are linear in the p;, Assumption LP
(1) is satisfied.

For Assumption ICS (3) to hold, it is sufficient to know that the vector (p{, p3, pih)'
satisfies

(PT — po1)* + (P2 — po2)* + (¥ — pos)’ < R* - 67 (19)
where the pg; and R > 6 > 0 are arbitrary but known. Indeed, in this case we can define the
function # by

1 3
S(pr, P2, P3) = 5 (Pt — po1)” + (P2 — poa)* + (3 — po3)” — R (20)
Clearly we have
AR}y =[— R*6%,0) D [—1,4] (21)
Also, #(p1, p2, p3) = —1 implies
P1— Pot

a7 2 5
H 5y (Pl P2 P3) ‘ =57 || | P2 po2 2§J(R'—52) (22)
P DP3— Po3
Finally we get readily
Jj(PiP?f:Pﬁ S _l (23)

To meet Assumption LS (8), we choose the control Lyapunov function

VX, 7,2, pi, b2, p3) = Y88 + L[z + (p3 + DY’ 12+ 3(x — h(y, b1, 2, p3))° (24)
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where, to simplify the notation, we denote

pa(ps +1)° 4

h(y, p, P2, p3)=pi(p3+ 1)y — m

(25)

Then a Lyapunov design gives the control law
Un(X, ¥,2, 1, P2, p3) = = [2+(p3+ D] = »" = 3(ps + Dy* (2 + psy?)
= (x =) (P22~ ps[p1 = p2(p3 + DY) (26)
It follows that (9) in Assumption LS (8) is satisfied with
W(x,»,%, p1, p2, p3) = y'° + [z + (ps + )y°1* 27
Assumptions ALS (11) holds also if the set IT defined by (20) is such that
(P1,p2, p3) €Il = pip3#0 (28)

Indeed, for any C; time function (5: (), f2(¢), £: (1)) € I1, any solution (x (1), ¥(¢), z(¢)) of (18)
with

u=in(x, y,2,51(2), B2(1), B3 (1)) (29)
which satisfies
W(x, ».2,00(), p2(1), p3(1)) =0, vt (30)
is necessarily such that
y()=z(t)=0, vt (31)
However, from (18) and (25), (26) this implies
nps()x@)=0, vt (32)

The conclusion follows from (28).
It remains to check that Assumption GC (14) holds. A straightforward computation gives

B 0\" (p3+ 1)y !
5= lz+(pa+ D110 —(x=h)| - ps+DH4p* (33)
P »? piy— [p2(ps + Df21 y*
a2V o 0 (x—h)y
= 0 0 —(x=h)[(ps+ D21 y*
P N\x=hy —(x=mps+D20y* ¥ - (x—m)(paf2)y*
(pa+ 1)y (ps+ 1)y B
- — [(p + D321 »* — [(ps + D21 »* (34)
1y — [p2(ps + D41y \pry - [p2(ps + D[4 y*

Therefore there exists positive continuous functions I'; and T'> such that for all
(x, ¥, 2, p1, P2, P3)

av
H E(X’ ¥, 2, 1, P2, P3) ‘ < T'i(p1, p2, p3)(1 + V(x, ¥, 2, pr, P2, P3) (35)
a%v )
a2 (x, ¥,2, 1, p2, p3) || < Talpn, 2, p3 )L+ VX, v, 2, p1, P2, P3)) (36)
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With (20) this implies that (15) holds with

o) Sup {Fl(pla PZaPS); J(FZ(PI, D2, p3))} (37)
(1, p2, py)ell

Finally we remark that for the globally stabilizable system (18) we do not know any
functions V and u, such that Assumption LS (8) and the growth condition (16) hold.

3.2. Strict pure feedback systems

Let us consider now a system which maybe after parameter-dependent diffeomorphism and
feedback can be written in the following form, called the strict pure feedback form in
Reference 8:

X = Xz-*-fl(Xl)PT
./\;j=.\:i+l+ﬁ(xl)'--a x!)}’"’c (38)
Xn=1

where the x; in R are measured, the f; are known C®-function row vectors and the p; are
unknown parameter vectors in known convex compact sets IT;. For this system we are
interested in asymptotically stabilizing the setpoint €* = (0, e3, ..., e,") which is uniquely
defined by

efv1=—fil0,...,el)pi, vizl (39)

Clearly Assumption LP (1) is satisfied. For Assumption ICS (3) we need to state precisely
what was meant above by ‘known convex compact sets I1;’. For instance, if these sets are
defined from proper convex positive functions & by

ILi= {p| #A(p) £ 1} (40)
then the function # involved in Assumption ICS (3) can be chosen as
5 4e
rﬁp(Pl,Pz,---,Pu—l):E(_El A(pi) -1 +?) (41)
=

where / > 2 and e¢€ (0, 1) are two real numbers.

To show that functions u, and V can be found to satisfy Assumptions LS (8), ALS (11) and
GC (14), we apply the iterative Lyapunov design procedure suggested in Reference 16,
Theorem 3.c (see also Reference 17). For this we introduce the following more compact
notation:

Xi={XLix), Xi=x
Be=(PLy, 08 ) Pir=m
X2+ filx1)p
Fi(Xi, Xis1, Pi) = : (42)
Nipr+ filXn, o, XD

Step 2. Initialization. Consider the two-dimensional system

Xi=x:- fi(X)p1, = s (43)
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In this case we propose the C* control Lyapunov function

X ny
Vz(Xl,xz,P1)=%(xz+Xl'*'fl(-’ﬁ)ﬂif'*% (44)
where m; = 2 is an integer number. Its time derivative is
. a mnm, - m
Va=(a+ X1+ fipr) [“” (1 +a_§fllpl) (2 + fip1) + Xo | X |™ 2] —|Xi|™  @5)

Therefore, by choosing the C* control

(X, X, p)=—(x+ X1+ filXi1)p) - (1 +§§1—P1) (x2+ fipr) — Xi| Xa ™72 (46)
1

we get it
Vo= —(a+ X1+ A1) = | X0 |™ = - W, (47
This implies that Assumption LS (8) is satisfied for the sysiem (43). About Assumption GC
(14) we have:
Vs a* V-
== (x4 Xo + f100)N, —=
6p1 31171

Therefore, since py is in a compact set, Assumption GC (14) is satisfied if we can choose m,
such that with some positive real number g; = 0 we have

| AUXD | € a1+ | X0 |™) (49)

Namely, f; has a polynomial growth.
Assumption ALS (11) holds also since W, = 0 implies X; = 0. In addition, the first equation
of (43) implies x; = e3.

fTh (48)

Step i+ I. The induction assumption is: for the system
Xi—1= Fioi(Xiz1, Xiy Pic1), Xi=u; (50)

we know C®-functions Vi(Xi-1, Xi, Pi—1) and w;(Xi—1, xi;, Pi—1) such that Assumptions LS (8),
ALS (11) and GC (14) hold. Precisely, there exist three positive continuous functions W, »;
and & such that for all (Xi—1, xi, Pi-i)

avi av;
Vi=e—— Fi_1 + i= —W:i<g0
axi T T ax S
(51)
aVi BzV,‘
€ vi(Pis)(1+ F7), < E(Pi-1)(] + V5
|55 | < mepenasrvo, | 5| <seenas v

Assume also the following extra condition: there exist a real number @; > 1 and positive
continuous functions p; and X; such that for all (X;—1, xi, Pi-;)

du; azuf
dPi- P,

Under these conditions we shall show that Assumptions LS (8), ALS (11) and GC (14) are
satisfied by C™-functions V;; and u;+, for the system

Xi= Fi(Xi, Xi+1, Pi)

Xip1 = Uity

< w(Pi-)(1 + VY,

uf,M

‘ SNP)AEVE)  (52)

(53)
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Indeed, we consider the following C® control Lyapunov function with m; = 2a; a strictly
positive integer number:

2 1 ,
Vi 1 (Xis Xivry Pi) =5 (Xie1 + fi( Xi)pi — wi( Xi, Pic1))* + ooy Vi(Xi, Piz)™ (54)
We have t
. d du; . avi
Vier= (X410 + fipi — 1) [u;+:+ (aﬁ, BL,;,-)F[.] + Vi l(aXt‘lF; 1+ (t’;+1+fapa))
(55)
In view of (51), by choosing the C™ control
] ou; -1 Vi
Uis1= — (aii a;)ﬂ P 'K—(\m + fipi — ui) (56)
i “v}
we obtain
Vier € = (wt + fipi—wiP = VI ' £ — Wiy, <0 (57)

This is (9) in Assumption LS (8). Also, Assumption ALS (11) follows by induction. On the
other hand, we have

an m— aV!
a’ VH] —(aln',‘/ap,‘_l)T _ au; ; ' T —azllf/aP,;_] 0
9P} ( fi 3B, )+ G+ Jipi— ) 0 0
. V!,,,_Q(V;an;/BP?_I + (mi— 1)@V{aPi- Y aVifoPi_, 0 (59)
! 0 0
Therefore from (51), (52) and (54) we get
H% < @Vie )P )1+ VE) + VI (P} (L + V)
f
< Vs )2 0i(Pic ) [+ (02 Vie 1) ™) 4 (Vg ) D My (P 1)
X [1 4+ (1 Vie)Y'™
€ ria (P + Vigg) (60)
with
vis1 (P 2[J(2m Dpi( Pioy) + mpi Pi )] {(61)
Also, we have
82V Spf 0+ VY + Vi )Y2N( + VEY+ VP72 + V) [EV; 1
aP,'Z \ﬂ-r(*‘ r)+( r‘+l) ,(+';)+ i (1+ 1)[51:‘*‘(”35_)
X pF(1+ Vi)
S pf [+ miVie )™ ™12+ QVie DN + (01 Vig )57 ™)
+ (Vi )DL 4 (0 Vi)Y ™2 L8+ (mi— Do)
< NP1+ Vier) (62)
with

Mo 1(P) T2 02mipi(Pio1 P + J@mON(P-1) + 2mi [ (Piz ) + (i — D vi( i1 1] (63)
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Since vi+1 and \;+; are continuous functions, when P;is in a compact set, (60) and (62) are
exactly (15) of Assumption GC (14). Finally, note that (57), (60) and (62) are nothing but (51)
for Step 7+ 2.

Following this iterative procedure, we can design explicitly Cw-functions ¥ and u, such that
Assumptions LS (8), ALS (11) and GC (14) hold for the system (38). Unfortunately, this
procedure is not systematic. At each step we have to check that the extra assumption (52)
holds. However, as observed for (49), this extra assumption can always be satisfied if the f;
and their successive derivatives have a polynomial growth.

We conclude that Assumptions LP (1), LS (8), ALS (11) and GC (14) are satisfied for
linearly parametrized systems in a strict pure feedback form with polynomial growth non-
linearities and a parameter vector in a known convex compact set — a subclass of the family
of systems considered by Kanellakopoulos et al.®

4. A THEORETICAL ADAPTIVE CONTROLLER

To design a controller guaranteeing at least Lagrange stability for the system (2) with p*
unknown, we follow the standard adaptive control procedure and propose the dynamic state
feedback

p'.‘ =v(x, p), u= Un(xaﬁ) (64)
where v, the control of the extended system, is to be designed.
Let L:R,— R, be some positive proper C'-function with a strictly positive derivative

denoted L'. This function L will be chosen later. For the time being we use it to define the
function

S(x,p) S L(V(x, p)) (65)

The time derivative of this function along the solutions of (2), (64) is

S= L’(V(X,ﬁ))(aa—z (x, ) (a(x, ualx, P)) + A (X, un(x, p)P7) + g—;(x,ﬁ)v(x,ﬁ)) (66)

Then, using (9) in Assumption LS (8) and our dynamic controller (64), we get the differential
inequalities system
/——'---..._
s<-rw-¥ag-p+  GB-pH=v (67)
dx ap
We remark that if I were independent of p, i.e. 8V/dp were identically zero, we would have,
by using the positivity of L’ and W,
: AV * e #
S<-L EA(p—p), p-p)=v (68)
In such a case it would be very easy to find v. Indeed, by applying the very standard Lyapunov
design (see e.g. Reference 18), we would choose a control Lyapunov function

U=S(x,p)+5- 015 p* I (69)
o

with « some strictly positive real number. Its time derivative would satisfy

Ug(_uT-Lfﬂ’A)(ﬁ—p*) (70)
o ax



338 L. PRALY

Thus the control v could be determined so that this time derivative be negative, i.e.

T
u=a(L'%’A) (71)

This would imply that S and p remain bounded. Then, in view of point 1 of Assumption LS
(8), Lagrange stability would hold.

Thus our idea is to transform § in such a way that a system similar to (68) is obtained. For
this we notice that the bad term L'(dV/dp) vin (67) is part of the time derivative of L'(dV]ap)

(- p"), ie !
AT Sl e o TgRR
L@(P—P}—L 5U=L @(P—p) (72)

It follows that by replacing Sin (69) by S— L'(V)(0V]dp) (p - p*), we may readily apply the
Lyapunov design described above. Indeed, with this substitution U is defined now by

av . . |
U=L(N)=-L' W)= B-pY+5-115-p"I* (73)
Je 2a
o avi|* 1 |l. (BV) 2
= Bl +=||p-pF-aL (V) [— 74
L(V)ZL()ap toallP P a()ap (74)
Its time derivative satisfies :
1 av . ap
Tl B B Cune P e s
U (a” o ag)(p %) (75)
It is made negative by choosing the control
ov vy
v=a(L‘—A+L’—) (76)
dax ap

Two questions arise about the definitions (76) and (74) we have obtained.

1. Is the equation for j realizable — a time derivative is involved on the right-hand side of
(76)7

. Is Uin (74) a non-negative and proper function of the state vector (x, §) of the closed-
loop system?

b

The answer to the first question is simple. A state space realization of (64) with (76) is
5 ) A crBOF Lo oot s 1 ‘ e B o
g=al'(V(x,pNA(x, un(x, p)) Ix (x,5), p=q+al’'(V(x, D)) ap (x, )y (7

Unfortunately, a difficulty remains since the last equation is implicit in 5. We shall address this
point after the following answer to the second question.

Since the function L is to be designed as a positive proper function and V is positive and
satisfies point 1 of Assumption LS (8), U is a positive proper function of (x, #) if there exists
a strictly positive real number £ < 1 such that

2
< (1 -¢e)L(V) (78)

o
2
However, from Assumption GC (14) this inequality is satisfied if g is in the set IT and

av
L'(V)ﬁ

%L'(V)szu + V) < (1-e)L(V) (79)
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Therefore it is sufficient to choose
L(V)y=1+log(l + V), o < 2f? (80)

Now, coming back to the problem of implicit definition of 5, we note that, not only should
a solution exist, but also, for (79) to hold with L defined by (80), this solution p should be
in I1. The second equation of (77) is

@V]ap)(x, p)T
I+ V(x,p)

It follows from an elementary fixed point argument (see Lemma [ in Appendix) that
Assumption GC (14) and

P=d+a (81)

o < min{éfy, 11272} (82)
imply the existence of a C'-function p: R” x IT, — IT such that, for all (x,§) in R" x ITs,
@V[ap)(x,p(x,4)"

1+ V(x,0(x,4))

To use this function p in (77), it remains to guarantee that § is in IT;. This is achieved by using
the standard projection trick.

As a result we have designed the adaptive controller

A, un (X, p (5 N T@V]IX) (. p (1, )T ,)
1+ V(x,0(x,4) Y

elx,d)=G+uw (83)

1= un(x, p(x, G))
(84)
where the C'-function p:R" x I, = R' is defined by (83) and, with .# the set of symmetric

positive  definite /x/{ matrices, the locally Lipschitz continuous function
Proj:IIx R'x R x./#— R'is defined by (see Reference 4, Lemma (103))

d = a Proj (c?,

y if ) <\ or ?(q}wo
Proj(g, ¥, \, M) = P
Y @A DMEHAID T T ap D A=) and Fog)y >

and satisfies (83)

(g—p)' M~ Proi(g, y, \ M) < (g— p)"M™ 'y, ¥(g,p,y)eR' XTI\ x R’ (86)

Moreover, an appropriate Lyapunov function to study the dynamics of the closed-loop system
should be

@Vijap)(x,p(x,§))
1+ V(x,o(x,4))
The arguments used up to now are given only to motivate for the controller (84) and the

Lyapunov function (87). By no means are they rigorous enough to substantiate any result.
Nevertheless, we shall prove:

2
| . 2
Ulx, §)=1+log(1 + V(x,p(x,§))) = 5 +o-ld-p"1* @87

Proposition 1
Let Assumptions LP (1), ICS (3), LS (8) and GC (14) hold and « be chosen such that
0 < o < min{dfy, 1/2v%] (88)
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Under these conditions, for any initial condition (x(0), §(0)) in R" x ITp there exists a unique
solution (x(¢), (7)) of (2), (84). This solution is bounded on [0, ) and, if Assumption ALS
(11) holds, it satisfies

lim x(¢) = &

t—

(89)

Proof. The closed-loop system we consider is

X=a(x, ua(x, p(x, N+ A(x, un(x, p(x, G))P"

AQx, un(x, p(x, ) T@V]0X) (x, p(x, §) " 0 I) o
1+ V(x,o0(x, ) o

g = a Proj (é,

From our smoothness assumptions on the functions a, A, u, and ¥, Lemma 1 and Reference
4, Lemma (103) this system has a locally Lipschitz continuous right-hand side in the open set
R* x IT,. It follows that for any initial condition (x(0), g(0)) in this open set and therefore in
particular in R" X ITy there exists a unique solution (x(¢), §(¢)) defined on a right maximal
interval [0, T}, with T maybe infinite. Moreover, from Reference 4, Lemma (103), point 5 we
know that §(r) €T, C II, for all ¢ in [0, T).

Then we compute the time derivative of U(x(¢), §(¢)) defined in (87). With Assumption LS
(8) and (83) we get

T
1 (o oV N __aVap @VIap) 1 . s
1+V( (a+ Ap") + app> Lt T Ul R &0

T T/A T T
W @Vv/ap) _p*) (g_ AT(@V]ax) ) ©2)

& o I .
= I+V+(Q+a 1+ V o 1+ V
However, since §(¢) is in Iy C I, p is in IT. With p in IT, Assumption GC (14) and (88) imply

o @VI8p) (x i
1+ V(ix,p)
Since, from Assumption ICS (3), p" is in IT* and & is defined by (6), this inequality implies

that p* — a:(c'DV[ap) /(1 + V) is in ITy. Therefore with the expression of ¢ and (86) we get
finally

Say<d (93)

< — W(X(f),p(X(I),q(f‘))) 0d)
L+ V(x(2),p(x(1),4(1))

This implies that U(x(f), §(¢)) is a non-increasing time function. Moreover, we have with

Assumption GC (14)

O!')lz o 2 BV/Bp 2 1 - ERTR
> el ot B | Pt ¥ Bl —
U,(l 2)[I+Iog(l+lf’)]+2(w/ H1+V +2a!|q Pl (95)
> (1-92) (1 + log(1 + V)] +—— | G- p* |22 0 (96)
2 2o

It follows from (88), Lemma 1, Assumption GC (14) and point 1 of Assumption LS (8) that,
for ¢ in IL,, U is a positive function proper in x and §. Therefore by contradiction 7 is infinite
and the solution (x(¢), §(#)) is bounded on [0, ).

Finally, it follows from Reference 15, Lemma 5.2.81 and (94) that any solution of the
autonomous system (90) converges to the largest invariant set of points (x, §) satisfying
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W(x,p(x,4))=0. However, any bounded solution in this invariant set is also a solution of
(12), (13) in Assumption ALS (11) with

1) =p(x(1),G(1)) 97)
The conclusion follows readily. 7

Unfortunately, even though from a theoretical point of view the adaptive controller (84) may
be satisfactory, it is not yet a practical solution. Indeed, its implementation requires an explicit
expression for the function p. It is clear from our examples of Section 3 that an analytical
expression for this function is inaccessible in general.

5. A MORE PRACTICAL ADAPTIVE CONTROLLER

An idea to obtain a more practical controller is to replace the fixed point equation (81) by a
dynamical system whose equilibrium point, given x and 4, is this fixed point, i.e. we consider
the dynamic state feedback

G = vg(x, B, ), B =vp(x, B, 4), U = ty(x, P) (98)

To obtain the new controls Up and v, we will again apply a Lyapunov design inspired by

Artstein’s theorem. '*'2® The closed- -loop system (2), (98) can be rewritten in a more compact
form as

X=FCX, 10 ﬁ =Up (99)
with X' = (x, 4). We know from Section 4 that the implication
Vidx)"
p=p(x,8)=p(X) = vg=uProj (q. A I o, 1) (100)
T
guarantees that the time derivative of U, defined in (87), along the solutions of
X=F(X, p* p(X)) (101)
is negative, i.e.
9Y (X)F(X, p*,0(X)) <0 (102)
ax
On the other hand, Artstein’s theorem states that if a positive real function (X, p) satisfies
W 6 4
(X p)=0 = (X PYF(X, p*,p) < (103)

then it is possible to find a control v, such that the time derivative of % along the solutions
of (99) is negative. However, clearly with (102), a function % satisfying

aaf’(X py=01= B=s(1), (X, p(X)) = U(X) (104)

satisfies (103) necessarily. Now we observe from (87) and the fixed point equation (81) that,
with a strictly positive real number § to be chosen later sufficiently large, % defined by

(X, p)= U(x,q,p) 1 1
= [1 +log(l + V(x, )] —ﬁﬂﬁ—rﬂlz +27_;||é—p* &

(105)

15’ g
1+ Vix,p) Vix, p)
satisfies (104) (use (113) and (112) below) and therefore Artstein’s theorem applies.
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To obtain explicit expressions for the controls v, and v,, we compute the time derivative of

4¢. For this we note that .

/‘—"H.Z_r

(@Vfap) * 2

—t - =p+Bp + H 106
TV 14 P (106)

where the /-vector b and the / x / matrices B and H are defined by

A B (5V/6‘p)(x,ﬁ)T) B
b(x,p)—ax(ﬂ1+ V(x.5) a(x, un(x, p))

PO (aVlé‘P)(x,ﬁ)T) i
B(x,f-’)—ax( Tt Ve 5y A (. B)) (107)

. _ 8 (@V]ap)(x, p)"
H(x’p)‘ap( L+ V(x,p) )

Now, by using point 2 of Assumptions LS (8), we get

g - QB4 () BHOR o, 2 (5 0" 0= ) + 5 (6= 20,
+ 8 [ﬁ— d— o (i‘:{ag)T]T[up— vy — (b + Bp* + Hup)l (108)
or
e M [
= [ﬁ—é—a(%)T]T(B(I—aH)—éI)(Z,,—v,,) (109)

where ¢ is an arbitrarily chosen strictly positive real number and Z;(x, ¢, p) and Z,(x, §, b, tq)
are defined by

o  (@HEX)X, ) oAy AT _ 2T @viap)(x,p) o
Zy(x,4,B) = T+ Vix,p) Ax, un(x, p)) Bo:(p j -« T+ V(x,p) )B(A.p) (110)

—1 . oaaT
Zy(x,4.p, Uq)=(é1—ﬁ(l—ozH)) [(ﬁ—ﬁ)uq—ﬁamx,p)(ma%)

aviap\' (@V]ax)(x, p)

I
— Bab(x, f) + U[ﬁ—(}— a(“) ] - ( T+ V(x, p) Alx, un(.\’,ﬁ))) }

(111)

1+V

where the matrix (1fa)l—B({—aH(x, p)) is symmetric negative definite for all (x, p) in
R" x IT if

1 g+28my7 <0 (112)
(2

This follows from Assumption GC (14) and (see (165))

sup || H(x, pY|| €297 (113)
(v, p)eR" % I1
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Now, in the proof of Proposition 1 (see after (93)) we noticed that p* — «(@Vfap)"/ (1 + V)
is in ITo if ay < 6. However, similarly, if § is in I1;, § + «(@¥]ap)"/ (1 + V) is in IT.. With (86)

this implies
B aviap\' T aviap\T]T. . .
[p —q—a(ﬁ)] Zg [p*—q—a(lilf)] Proj(4, Z,, 0, 1)

. aviap\T1T B 1 D N (aV/apTT( Y 1
—[p—q—a(l+V)] (ﬁ([ o) af)zps [p §-a\T 5 B(I—aH) aI

-1
xProj(ﬁ, Zp, 2, (,G(I— aH)_éI) ) (114)

/A

This yields

. W aVviap
i< -ye|o-a-«(5) |
T
+[p*—f?— (al:{ap T] x [Proj(4, Z,, 0, I)——vq)
L aviap\T]T
~|:p—q—a(]+ ”
-1
X(B(I—aH) (Proj(ﬁ,Zp,Z, (B(I—aH)—é) )—vp) (115)

It follows that, by choosing

vg(x, g, p) = a Proi(d, Z,(x,4,p),0, I)

Up(X, G, B, Uq) = Proj(B, Zp(x, 4, B, v4), 2, [BU — aH(x,5)) ~ Ifa] 7") e
we get
U< —%—a‘ﬁ—é—a(%y (117)
As a result we have designed the adaptive controller
4= Proj(g, Zy(x,d,5),0, 1)
B =Proj(p, Zp(x,4,5,5), 2, [BU — «H(x,p)) — I}a] ™) (118)

u=un(x, p)

where the functions Z, and Z, are defined in (110) and (111). Note that {(100) is satisfied, We
have:

Proposition 2

Let Assumptions LP (1), ICS (3), LS (8) and GC (14) hold and « and 8 be chosen such that

1

< min {8y, 1/2v2), 2l —2av2) < 8
0< o mm[ I"Ya /’Yl a(1—2a72)<3

(119)



344 L. PRALY

Under these conditions, for any initial condition (x(0), §(0), 5(0)) in R" x ITp % IT; there exists
a unique solution (x(¢), (), p()) of (2), (118). This solution is bounded on [0, ) and
satisfies

; - . @V]ap)(x(0), BUNY'
1y =gt - =
L Lau) G(t) a( T+ V(). p0) ) 0 (120)
Moreover, if Assumption ALS (11) holds, we also have
lim x(¢) = &* (121)

-

Proof. The closed-loop system we consider is:

x= a(x, (X, p)) + A(x, un(x, NP
G = a Proi(d, Zq(x,4,5),0, 1) (122)
B = Proj(p, Zp(x,d,5,8),2, [BU—aH(x,p))— Ifa] ™)

with the definitions (107), (110) and (111). From our smoothness assumptions on the functions
a, A, un and ¥ and Reference 4, Lemma (103) this system has a locally Lipschitz continuous
right-hand side in the open set R"x Il x I1. It follows that for any initial condition
(x(0), §(0), p(0)) in this open set and therefore in particular in R" X ITo X IT; there exists a
unique solution (x(¢), §(¢), (¢)) defined on a right maximal interval [0, T), with 7 maybe
infinite. Moreover, from Reference 4, Lemma (103), point 5 we know that §(¢)eIl, C I, and
) ell; C II for all zin [0, T).

Then from our design we know that the time derivative of #(x(¢),§(t), p(¢)) defined in
(103) satisfies (see (117))

(123)

PORLCIGN:10) AU‘

1+ V(x(r), (1))

This implies that 2/(x(¢), §(¢), f(?)) is a non-increasing time function. On the other hand, we
remark that for all €€ (0, 8 — 1{e) the inequality

S (Blf’lap)(x(t).ﬁ(r))y >
Hap=all “(wam,ﬁ(r))

Ly o Bl s @V]ep) _ (+as)pa’ \@VED) P ey A A2
218l +3 S def—(—ae)l || 1+V 5 15-4l
(124)
yields with Assumption GC (14) (as in (95))
(1 + ae)Ba’y? 1 5im o013 o Bitom oa i
Wz ] =t F V S 4 2, - _
% ( Sty [ Hloed N+s-la-p IP+3515-4ll (25

Therefore with (119), point 1 of Assumption LS (8) and geIl, #/(x,d, p) is a positive proper
function in (x, §, #). Therefore by contradiction T is infinite and the solution (x(¢), g, pa))
is bounded on [0, ). The conclusion follows from (123) as in Proposition 1. |

From (123) and LaSalle’s theorem we know that all the solutions converge to the largest
invariant set contained in

@M&)] (126)

= {(x,p,q)‘ Wx,py=0,p=g+a—" Vs, )
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In particular, in this set we have

/"‘_'__-""'\T
- (@V]ax)(x,p)
P=adT e T p) R
or, with (106),
(I—aHYp=§4+alb+Bp") (128)

On the other hand, if §€Ily, then p=§+ «(@V/ax)(1 + V) €I, and (110), (111), (118) and
(134) give

(B(I—OJH(-\‘,ﬁ))—é f)ﬁ=ﬁé+ﬁa(b+5ﬁ) (129)

We conclude that, asymptotically, for each time ¢ such that §(¢) € ITy we have
B = — BaB(x(O)BW) - pY) (130)

It follows that if B is a stable matrix — in an appropriate sense — then p(7) converges to p*.
Note also that the fixed point equation is satisfied asymptotically, since with (83) and (167)
we have

A\T
@¥j3p)05 ) (13

(1 -2y | -p(x, @) || < Hﬁ‘é’_“( 1+ V(x, 5)

6. EXTENSIONS

6.1. About point 1 of Assumption LS

In order to facilitate the satisfaction of the growth condition (14), it may be useful to relax
the constraint of V being proper partially in x (see point 1 in Assumption LS (8)). For our
Propositions 1 and 2 it is sufficient that the following so-called boundedness observability
condition holds.*

Assumption BO (boundedness observability)

For all positive real numbers v, all compact subsets IT. of IT and all vectors xg€ R" there
exists a compact set I' such that for any C'-function : R, — IL and for the corresponding
solution x(f) of

Y= a(x, un(x, PO + A(x, un(x, p0)p*, x(0) =z " (133)
defined on [0, T) we have the implication
Vix(t),p") <v, wtel0,T) = x()el', vte[0, T) (134)

Indeed, our adaptive controllers guarantee for each soiution the existence of a positive
constant / and a compact set [1., depending on its initial condition, such that for all f where
it exists we have

log(l + V(x(t),p(1))) <1, pl)ell; (135)
However, with Assumption GC (14) and convexity of IT we get for all (x, p*, p) € R" X II x IT
log(1 + V(x, p*) <log(l + V(x, p)) +v |l p - p" | (136)
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It follows that the right-hand side of (134) is satisfied by any solution of the closed-loop
system.

What Assumption BO (132) actually means is that ¥ is the output function of a minimum
phase system; namely, if we can find a feedback to keep this output bounded, then necessarily
this feedback guarantees boundedness of the full state vector.

6.2. About the set IT*

One of the reasons for the complexity of the adaptive controller (118) is the involvement of
the function Proj. This function is introduced to take into account that the set I1*, where the
parameter vector is supposed to lie, may not be equal to the complete set R'. There are
typically two motivations for IT* to be a strict subset of R!. The first one is that there may not
exist any functions V and u, satisfying Assumption LS (8) and depending smoothly on p
globally for p in IR'. The second motivation is, as can be seen in our examples of Section 3,
that Assumption GC (14) holds only in the form

”—( X, p) H < v(p)(1 + V(x, pY), a .

5 (x, p) H y(p)(1+ V(x, p)) (137)

with v a continuous function of p. This leads us to restrict the set IT* to be a compact subset
of R’. Fortunately, if both ¥ and u, are defined globally for p in R’, this restriction can be
overcome when, for all p in R/,

y(P) S yiexplydd+ ] 2= poll N + s (138)

with 1, v2 and -s some strictly positive real numbers and po a vector in R!. This is satisfied
for example by I'; and T2 in (35) and (36). Indeed, in this case we may replace the given
function F(x, p) by

log(1 + V(x, p)) + exp[2v2J(1 + | p— po ||*)] (139)

since this yields

% (log(1 + V(x, p)) + exp[2y2J(1 + || p— po | D) 1]

S (yi+ 22+ y3l1 +log(l + V(x, p)) +exp2y2{(1 + || p— po||)]}  (140)
and

aa —{log(l + V(x, p)) + exp[2y2)(1 + || p = po||*)]) H 2(y1 +2v3 +73)

X [1+1og(l + V(x, p)) +exp[2v2J(1 + || p— po || )]} (14D)

Therefore, by modifying V as indicated in (139), we are allowed to take I1* = R’. In this case
Assumption ICS (3) is not needed and Proposition 2 holds with the simpler adaptive controller

G =aZy(x,d,Dp), D= Zp(x.8.5.3) U = tn(x, p) (142)

with the functions Z, and Z, still defined by (110) and (111). That such a controller is sufficient
can be readily seen from (109).
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6.3. Qur design as a step in a more complex design

In Reference 9 it has been emphasized that several kinds of Lyapunov designs can be mixed
together to get designs of adaptive controllers for more complex cases. This remark applies
here since the Lyapunov design we have proposed can be used in combination with others.

For example, let us consider the system

X1=x+ pFaw, X=u (143)

where the parameter p* is unknown. We are interested in asymptotically stabilizing the
setpoint &* = (0, 0).
Clearly Assumption LP (1) is satisfied. Also, by choosing the control Lyapunov function
1 Xt 2
V(x1, X2, p) =5 1log[l + x7 —2p0)] +|0+—S—— 144
(x1, X2, p) =3 log[l + x7 exp(—2px;)] 2(\2 Y xT) (144)
and the control law
x1 exp(—2px2) x2(l+p*—xi), % X1
1+ xiexp(=2px2) (1 +p*+ x1)? : 1+ p*+ xi
Lpa(l+pt—xi)
(1+p* + x1)°
Assumption LS (8) is met. The interest of the choice (144) is that Assumption GC (14) holds
with IT = R’. Finally, Assumption ALS (11) holds also since (144) and (145) give (9) with

1 xiexp(—2px2) X1 3
3 3 3 Xt 3 3
1+ p°+x7 1+ x7exp(—2px2) 1+ p~+ x1

un(xy, X2, p)= — (145)

Wixi, x2, p)= (146)

According to Section 6.2, Proposition 2 applies with an adaptive controller of the following
form given in (142):

G = vglxt, X2, G, P), b= up(x1, X2, ,5), u = un(x1, X2, f) (147)

In particular, with (117) we know that the time derivative of %/(xi1, x3, §, p) defined in (103)
satisfies

; W 5o aviap\'||?

v) g i e i) o s

4 7 oHp q a(1+ ) (148)
=~ w(xi, x4, 5) (149)

As observed in Reference 9, what we have done for the system (143) can be used as a first
step towards the design of a controller for the system

¥i=x24 pixiy, X1=y, y=u (150)

where the parameter p" is unknown and the objective is to asymptotically stabilize
" =(0,0,0). Indeed, (150) is a particular case of a system in the form

k=alx, y)+ A(x, »)p", y=u+b(x,p)+Bx,y)p" (151)
with x€R", y€ R and w € R. For such a system, where an integrator is added to the system
x=alx,u)+ Alx,u)p* (152)

for which we know how to solve the problem, we can apply the design proposed by Krstic et
al.t?
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Let us rewrite for convenience the function % defined in (105) as
W0,8,5) = Ho(x,4,0) + 511 G- ") (153)
Following Reference 10, we evaluate the time derivative of
U 3.8 5) = (5,4 + 511 = P 112+ 10 = i, ) (154)

along the solutions of (151) (as long as they exist). By using (148) (or (117)) obtained with
(147), we get

. % . - % - | X
< = W+ B— )+ S G- )+~ (@ - PTG - )
b aq o
. Oy 3 ouy -
+(y—un)(u+b+Bp*— o (a+Ap*)—a—;p

) A C — 4
i d%% alx, y)+ A(x, y)p” — a(x,un) — A(x,un)p ) (155)
dx Y= Un

It follows that, by choosing

. T i T
g=uvg+ o:(B - %A) (y —uy) + a(a o (A(x,y)—- A(x, Hn)))

ax
ﬁ: Up
. Oy . diy a “t
= —(y—tn)—b—-Bi+—(a+ AG)+— vp—
{ (8 ) q ax(a q) op U=
5 8% y) + Alx, )4 — a(x, un) — A(x, un)g
¥V —ln
) ) - Hry = T
o 0% (3—%A+“’ o] 8) (A (x, y — A(x, un)) (157)
a4 dx Y=
we get
@< — W—(y—us) (157)

Specifying the general adaptive controller (156) to the system (150) allows us to give a positive
answer to the stabilization problem we stated.

7. CONCLUSIONS

Our cornerstone in this paper is the growth condition (14). It does not involve explicitly the
system non-linearities. It is satisfied by strict pure feedback systems with polynomial growth
non-linearities and parameter vector in a known compact set, a subclass of the family of
systems considered by Kanellakopoulos ef al.® and Krstic et af.'® It is also satisfied by some
non-globally feedback linearizable systems (see (143)) and even some non-feedback linearizable
systems (see (18)). This condition has been introduced by Praly er a/. in Reference 4,
Proposition (375). The have shown that it is sufficient to obtain an adaptive controller by an
estimation design based on a least squares algorithm. However, for the regulation result to
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hold, the filters feeding this algorithm must be initialized to a particular value depending on
the state initial condition. Here we have applied a Lyapunov design and obtained an adaptive
regulator with a not necessarily vanishing adaptation gain and without requiring a specific
initialization. This regulator is of a new type since the adapted parameter vector is transformed
before being used in the control law. This means that it does not rely on the so-called certainty
equivalence principle. Unfortunately, this transformation is given as the solution of a fixed
point problem which cannot be computed explicitly in general. Thus in a second stage we
proposed another adaptive regulator where the static fixed point equation is replaced by a
dynamical system with this fixed point as equilibrium.
Qur result has been extended in two directions.

1. We have shown that it is not necessary to use a proper function for the Lyapunov design.
In fact, a function satisfying a so-called boundedness observability property (132) is
sufficient. This remark is important since it allows us to make the growth condition less
difficult to achieve.

2. We have observed that our design may be used as an ingredient in a more complex design.
In particular, we have shown that it can be used in combination with the technique
proposed by Krstic, ef al.'° and dealing with the case where integrators are added.
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APPENDIX: THE FIXED POINT p(x, §)

Lemma 1

Let I1> < II be two closed convex subsets of R/ such that
def

6 = inf lpi—p:2|| >0 (158)
pielly, pagll
Let also V¥:R" xIT— R, be a C*-function such that for all (x, p) in R" x IT we have
ar a2V 5
’* (v, p} || £ v(1+ V(x, p)}, — )| £y 1+ Vix, p) (159
ap ap
If « is a positive real number satisfying
o < min (87, 1/2v7) (160)

then there exists a C'-function p: R" x TI; = I such that

o @YD) (e (x )"
Pl @) =g+ e m S (161)

Proof. Let f be defined by

def avia X, T
f(x,p,q)=q+am( [3p)(x, p) (162)
1+ V(x, p)
For all (x, p) in R" x IT we have
N fx.pg)—qll € oy (163)

Therefore from (158) and (160) f(x, ¢, p) is an interior point of IT for all (x, g, p) in R" x IT; x 1. Now
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with assumption (159) we have

((BV,fﬂp)T)
1+V (x, p)e"»’"xn

<2y (165)

Then from this inequality, the mean value theorem and the convexity of IT we have for all (x,q) in
R" x IT; and p; and p, in II.

su
(v, p)eER" xII

(164)

a*vjap® (a V/ap) (a V/ap)T

1+V 1+ V/\1+V

@¥ap)(x, p1) (@V]ap)(x, p2) (166)
1+ V(x, p1) 1+ ¥(x, p2)
< 20v? || pr - p2 || (167)

Since I1 is a complete metric space, it follows from the contraction mapping theorem that (160) implies
the existence of a unique function p:R" x II — II such that

p(x,q)=f(x,0(x,q),q) (168)
Moreover, from (165) and (160) the matrix

| f(x, @) = flx, p2, @) || =

a d aviop)(x,
I——f(x,p,q}=]—a— M (169)
ap \ 1+ V(x, p)
is non-singular for all (x, p) in R" x l'I It follows from the implicit function theorem and the uniqueness
of p that this function p is C!, as are V and aViap. O
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