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1 Introduction

1.1 What we do

This text is an introduction to some designs of control laws providing global asymptotic
stability with, maybe, disturbance attenuation1, for a nonlinear system of the form :

ẋ = f(x, u, d) (1)

with state x in R
n, control u in R

m and disturbance d in L∞
loc([0,∞), Rp). More specifically,

we are interested in those designs which follow directly from the will to make negative the
time derivative of a Lyapunov function also to be designed.

Lyapunov functions are known to be a very efficient tool for stability analysis but of
restricted applicability since exhibiting such a function is usually difficult. The point here is
different. We are dealing with stabilization and not stability; i.e., we are dealing with synthesis
and not analysis. The system we consider is under-determined, the control not being specified
a priori. So a possible route is to choose a Lyapunov function first and then to specify the
system by designing its control law. This scheme does not work for any Lyapunov function.
Those for which it works are called Control Lyapunov Functions (CLF). This way of
designing control laws is called Lyapunov design and has a long history (see for example
[4, 19, 29, 40, 41, 49]).

We are dealing with global asymptotic stability. This does not mean that the equilibrium
point of interest should have the whole universe as basin of attraction but, more realistically,
that we impose a priori an open set, diffeomorphic to R

n, as basin of attraction. Then we
are working with the coordinates x given by this diffeomorphism so that, when |x| goes to ∞,
the point goes actually to the boundary of the prescribed open set (see Example 217 for an
illustration).

Since we do not want here to pay any attention to smoothness, we consider controllers
which are only continuous. Systems with continuous only right hand side being less in the
common knowledge, we start by recalling some basic facts in section 2.

In section 3, we give a precise definition of Control Lyapunov functions and show how they
allow us to design global asymptotic stabilizers. By applying straightforwardly this definition
we show how asymptotic stabilization can be obtained for systems whose dynamics have a
triangular form, built recursively by adding differentiators, and called feedback form.
The corresponding design is the so called backstepping technique.

In section 4, we consider systems which are C1 dissipative. They can be stabilized by
adding damping. By generalizing this property, we can deal with systems whose dynam-
ics have the other triangular form, built recursively by adding integrators, and called
feedforward form. The corresponding design is the so called forwarding technique. This
section 4 is a reproduction of [56] with some slight modifications.

A short glossary and some generic notations are given at the end of these notes. We do
recommend at least a quick look at that section before entering the technical part of this text.

1.2 What we do not do

This text is only an introduction and only to some control designs. The topics we cover are
hardly sketched but our references should allow the reader to enter them more deeply. A more

1 The expressions in bold face are explained in the glossary at the end of these notes.
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complete but compact overview can be found in [31].
Also these topics are only in the context of Lyapunov design. There are many other

techniques proposed in the literature to address the problem of global asymptotic stabilization
or disturbance attenuation. They rely on :

• regular or singular perturbations or averaging (see [30] for instance),

• on the small nonlinear gain theorem (see [28, 72] for instance) or passivity (see [53] for
instance),

• on partial or full state feedback linearization (see [24] for instance),

• . . .

We deal with the problems of asymptotic stabilization and disturbance attenuation only.
The problem of performance is not considered. In other words we tackle with existence prob-
lems and not with the choice among existing solutions.

Finally we consider only static state feedback. But many results are also available in output
or adaptive feedback (see [17, 35, 37, 47, 50] for instance).

As will be clear after reading the following paragraphs the design of stabilizers requires
a preliminary step of finding particular state coordinates allowing us to write the system
dynamics in a form with a very specific structure. We do not address this topic at all. It is
referable to differential geometry while we are invoking only analysis. See the books [24, 47, 51].

We illustrate our presentation with examples. For the sake of clarity and conciseness, they
are academic, although some times inspired from real world applications. But we insist on the
fact that all the techniques we are presenting have been at least considered in the design of
controllers tested on real world applications. Experiments of backstepping-based controllers
are reported for instance for electric motors [10], control of ship position and motion [14] or
vehicle control [6]. Forwarding-based controllers are used for instance for controlling down-
range distance in guided atmospheric entry [52] or for swinging up 1D or 2D inverted pendulum
[71].
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2 Basic facts

Let f : R
n × R

p → R
n be a continuous function.

Definition 2
Given x in R

n and d in L∞
loc([0,∞), Rp), X(x, t; d) is called a solution of :

ẋ = f(x, d) , X(x, 0; d) = x (3)

if there exists T > 0 such that :

• X(x, ·; d) : [0, T ) → R
n is continuous,

• X(x, t; d) = x +

∫ t

0

f(X(x, ; d(s))ds ∀t ∈ [0, T ) . (4)

Theorem 5 ([20, Theorem I.5.1] for instance)
For each x in R

n and each d in L∞
loc([0,∞), Rp), there exists a solution to (3).

Remark 6
The main difference with the more common case where f is Lipschitz continuous lies in the
fact that there is no guarantee of uniqueness of solutions •

2.1 Case without disturbance

For the case with no input d, we have :

Definition 7
Let the origin be a solution of :

ẋ = f(x) . (8)

It is said to be :

• globally stable if there exists a class K function α such that, for each x in R
n, all the

solutions X(x, t) are defined on [0,∞) and satisfy :

|X(x, t)| ≤ α(|x|) ∀t ≥ 0 . (9)

• globally asymptotically stable if there exists a class KL function β such that, for each x
in R

n, all the solutions X(x, t) are defined on [0,∞) and satisfy :

|X(x, t)| ≤ β(|x|, t) ∀t ≥ 0 . (10)

Remark 11
Equivalent definitions of global asymptotic stability can be found for instance in [44, Remark
2.4, Proposition 2.5] and [5].

The property of global asymptotic stability is by nature robust :
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Theorem 12 ([5, 33])
The origin is a globally asymptotically stable solution of (8) if and only if there exists a continu-
ous positive definite function δ such that for any function fδ : R

n → R
n which is continuous

and such that :

∀x ∈ R
n , ∃y ∈ R

n : |y − x| + |fδ(x) − f(y)| ≤ δ(x) , (13)

the origin is also a globally asymptotically stable solution of :

ẋ = fδ(x) . (14)

The interpretation of (13) is that global asymptotic stability is robust to measurement
noise and regular perturbation of the differential equation provided they are bounded by a
continuous positive definite function of the state which typically goes to 0 as |x| goes to ∞.

With the help of Lyapunov functions, we have sufficient (and even necessary) conditions
for the various notions of stability we have mentioned.

Definition 15
A set S is said to be quasi-invariant if, for all x in S, there exists at least one solution X(x, t)
defined on (−∞, +∞) taking values in S.

Theorem 16 ([60, Theorem 2])
Let :

• U be a non empty subset of R
n,

• V be a C1 function satisfying the inequality :

˙︷ ︷
V (x) = LfV (x) ≤ 0 ∀x ∈ U , (17)

• X(x, t) be a solution, defined on [0, +∞), bounded and taking values in U .

Then there exists a real number v such that, when t tends to +∞, X(x, t) tends to the largest
quasi-invariant set contained in

{x ∈ closure(U) : V (x) = v , LfV (x) = 0}

Moreover, if V is positive definite (respectively proper), then the origin is (respectively
globally) stable.

Definition 18
The system (8) with continuous output function h(x) is said zero-state detectable if each solu-
tion X(x, t), right maximally defined on [0, T ), for some T > 0, which satisfies :

h(X(x, t)) = 0 ∀t ∈ [0, T ) (19)

is actually defined on [0, +∞) and converges to the origin as t goes to +∞.
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Theorem 20 ([25, p.44])
If the system is zero-state detectable with h as continuous output function and V is a C1

Lyapunov function satisfying :

˙︷ ︷
V (x) = LfV (x) ≤ −|h(x)| ∀x ∈ R

n , (21)

then the origin is globally asymptotically stable.

Conversely, we have :

Theorem 22 ([39])
If the origin is globally asymptotically stable, there exists a C1 Lyapunov function V satisfying :

˙︷ ︷
V (x) ≤ −V (x) ∀x ∈ R

n . (23)

2.2 Case with disturbance

When there is an input d, we can quantify its action on solutions as follows :

Definition 24
The system :

ẋ = f(x, d) (25)

is said to be Input to State Stable (ISS) if there exists a function γ of class K, called the
nonlinear L∞ gain, and a function β of class KL such that, for each d in L∞

loc([0,∞), Rp) and
each x in R

n, all the solutions X(x, t; d) are defined on [0,∞) and satisfy :

|X(x, t; d)| ≤ max
{
β(|x|, t) , γ

(∥∥∥ d
∣∣
[0,t]

∥∥∥
∞

)}
∀t ≥ 0 . (26)

Example 27 : An ISS system
Consider the system : 



ẋ1 = −x3
1 + d3

ẋ2 = −x2 + x3 + x1 d

ẋ3 = −x2

(28)

Let us show that it is ISS.
We look first at the x1 subsystem. With Young’s inequality (605), we get :

˙︷ ︷
1
2
x2

1 = −x4
1 + x1 d3 , (29)

≤ −3
4

[
1 −

(
1
2

)4]
x4

1 − 3
4

(
1
2

)4 (
x4

1 − 24 d4
)

. (30)

We observe that
∥∥∥ d
∣∣
[0,t]

∥∥∥
∞

is a non decreasing function of time and that any solution y of the

differential inequality :
˙︷ ︷

1
2
y2 ≤ −

[
1 −

(
1
2

)4] (1
2
y2
)2

, (31)
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satisfy :

|y(t)| ≤
√√√√ y(0)2

2 + 3
[
1 −

(
1
2

)4]
y(0)2t

. (32)

It follows that all the solutions of the x1 subsystem satisfy (see [66]) :

|X1(x1, t; d)| ≤ max



√√√√ x2

1

2 + 3
[
1 −

(
1
2

)4]
x2

1t
, 2
∥∥∥ d
∣∣
[0,t]

∥∥∥
∞


 . (33)

So this subsystem is ISS with a nonlinear L∞ gain :

γ1(s) ≤ 2 s . (34)

We consider now the (x2, x3) subsystem with input (x1, d). We let :

V (x2, x3) = x2
2 − x2x3 + x2

3 . (35)

By using the inequality :
x2

2 + x2
3 ≤ 2V , (36)

and completing the squares, we get the derivative :

˙︷ ︷
V (x2, x3) = −V (x2, x3) + (2x2 − x3)x1 d , (37)

≤ −V (x2, x3) + 1
4

(
x2

2 + x2
3

)
+ 5x2

1 d2 , (38)

≤ −1
2
V (x2, x3) + 5x2

1 d2 , (39)

≤ −1
2
V (x2, x3) + 5

6
x4

1 + 15
2

d4 . (40)

With the notations :

V (t) = V (X2(x2, x3, t; x1, d), X3(x2, x3, t; x1, d)) , x1(t) = X1(x1, t; d) , (41)

it follows :

V (t) ≤ exp(−t/2)V (0) +

∫ t

0

exp(−(t − s)/2)
[

5
6
x1(s)

4 + 15
2

d4(s)
]
ds , (42)

≤ exp(−t/2)V (0) (43)

+

∫ t

0

exp(−(t − s)/2)

[
5
6

max

{
β1(|x1|, t)4, 16

(∥∥∥ d
∣∣
[0,t]

∥∥∥
∞

)4
}

+ 15
2

d4(s)

]
ds ,

≤
(

exp(−t/2)V (0) + 5
6

∫ t

0

exp(−(t − s)/2)β1(|x1|, t)4

)
+ 47

(∥∥∥ d
∣∣
[0,t]

∥∥∥
∞

)4

. (44)

With (36), we conclude that there exists a function β23 of class KL such that, for all the
solutions X23(x2, x3, t; x1, d), we have :

|X23(x2, x3, t; x1, d)| ≤ β23((|x1| + |x2| + |x3|), t) + 9
(∥∥∥ d

∣∣
[0,t]

∥∥∥
∞

)2

. (45)

Collecting (33) and (45), we have (26); i.e., the system (28) is ISS.
To summarize, the key point of this example is the use of Lyapunov functions to exhibit

the ISS property (see Theorem 75) •

Remark 46
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1. Other ways of quantifying the action of disturbances on solutions have been proposed
and studied (see for instance [68] for the deterministic case and [35] for the stochastic
case).

2. In the following we are dealing with systems in the form :

ẋ = f(x, u, d) (47)

and we are looking for continuous functions φ : R
n → R

m such that the the closed loop
system

ẋ = f(x, φ(x), d) (48)

is ISS with a nonlinear L∞ gain γ as small as possible. This is the problem of disturbance
attenuation. We shall look at it only in the L∞ case (i.e. the ISS framework). But it
has received attention in others cases like the L2 case (see for instance [24, Section 9.5]
or [17, 35, 54, 61, 75] and the references therein) •

With the ability of designing controllers attenuating the effect of a disturbance, we can
tackle the more complex global asymptotic stabilization problem. In particular we can “hide”
in d things which are too intricate or poorly known, namely we work with a model of reduced
complexity (see Example 342). To check if such an approach is successful we can apply the
following small gain Theorem (see also [25, 23]) :

Theorem 49 ([28])
Consider the following two systems :

ẋ = f(x, d) , (50)

ẏ = g(y, e) . (51)

Assume they are ISS. In particular, given two continuous functions h and k which are zero at
the origin, let βe and βd, of class KL, and γe and γd, of class K, be such that, for each d in
L∞

loc([0,∞), Rpd), each e in L∞
loc([0,∞), Rpe), each x in R

n and each y in R
m, all the solutions

X(x, t; d) and Y (y, t; e) are defined on [0,∞) and satisfy, for almost all t ≥ 0 :

|h(Y (y, t; e), e(t))| ≤ max
{
βd(|y|, t) , γd

(∥∥∥ e
∣∣
[0,t]

∥∥∥
∞

)}
, (52)

|k(X(x, t; d))| ≤ max
{
βe(|x|, t) , γe

(∥∥∥ d
∣∣
[0,t]

∥∥∥
∞

)}
. (53)

Under these conditions, if :

γe(γd(s)) < s (resp. γd(γe(s)) < s) ∀s > 0 , (54)

then the origin is a globally asymptotically stable solution of the interconnection :




ẋ = f(x, d) ,

e = k(x) ,
,




ẏ = g(y, e) ,

d = h(y, e) .
(55)
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Remark 56
Local versions of this result are available. See [74, 72] for instance.

Example 57 : Application of the small gain Theorem
Consider the system : 



ẋ1 = −x1 + x3
1 x2 ,

ẋ2 = −x2 − x6
1 x2 + y2 ,

ẏ = −y3 + 1
2
|x1|

3
2 .

(58)

Let us show that the origin is a globally asymptotically stable solution by applying the small
gain Theorem2.

To do this we look at the system (58) as being made of the interconnection of the x and y
subsystems.

To establish the ISS property for the x subsystem, we let :

Vx(x1, x2) =
1

2

(
x2

1 + x2
2

)
. (59)

We get, by completing the squares,

˙︷ ︷
Vx(x1, x2) = −

(
x2

1 + x2
2

)
+ x1 (x3

1x2) − x6
1x

2
2 + x2 y2 , (60)

≤ −1

2
x2

1 − 1

2
x2

2 − 1

2
x6

1x
2
2 +

1

2
y4 , (61)

≤ −Vx +
1

2
y4 . (62)

This implies, with the same notation as in (41),

Vx(t) ≤ exp(−t)Vx(0) +
1

2

∫ t

0

exp(−(t − s)) y(s)4ds . (63)

This establishes that the x subsystem is ISS and proves the existence of a function βe of class
KL such that, for all the solutions and all positive times, we have :

|X1((x1, x2); y, t)| ≤ max
{

βe(|x1| + |x2|, t) , γe

(∥∥∥ y
∣∣
[0,t]

∥∥∥
∞

})
, (64)

where :
γe(s) = s2 . (65)

Similarly, for the y subsystem, we let :

Vy(y) =
1

2
y2 . (66)

Young’s inequality (605) says :

y |x1|
3
2 ≤ 1

4
y4 +

3

4
x2

1 . (67)

2Global asymptotic stability can also be established with the Lyapunov function x2
1 + x2

2 + y2. But this is
not the point here.
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This implies, for any ε in (0, 1),

˙︷ ︷
Vy(y) = −y4 +

1

2
y |x1|

3
2 , (68)

≤ −7

8
y4 +

3

8
x2

1 , (69)

≤ −7ε

2
Vy(y)2 − 7(1 − ε)

2

(
Vy(y)2 − 3

28(1 − ε)
x2

1

)
. (70)

This establishes that the y subsystem is ISS. In particular this implies the existence of a
function βd of class KL such that, for all the solutions and all positive times, we have :

|Y (y, t; x1)| ≤ max
{

βd(|y|, t) , γd

(∥∥∥ x1

∣∣
[0,t]

∥∥∥
∞

})
. (71)

where :

γd(s) =

(
3

7(1 − ε)

) 1
4

s
1
2 . (72)

Having established the inequalities (53) and (52), it remains to check the small gain con-
dition (54). We have, for s strictly positive,

γe(γd(s)) =

((
3

7(1 − ε)

) 1
4

s
1
2

)2

, (73)

=

(
3

7(1 − ε)

)1
2

s < s . (74)

With Theorem 49, this implies that the origin is globally asymptotically stable for the system
(58) •

As for asymptotic stability, Lyapunov functions are an efficient tool to deal with problems
on ISS. For example, we have :

Theorem 75 ([69])
The system (25) is ISS if and only if there exist a C1 Lyapunov function V , a class K∞

function3 a and a class K function b such that :

˙︷ ︷
V (x) =

∂V

∂x
(x) f(x, d) ≤ −a(V (x)) + b(|d|) ∀(x, d) ∈ R

n × R
p . (76)

More specifically, the above inequality implies that the nonlinear L∞ gain is smaller than the
function α−1 ◦ a−1 ◦ b, where α is a class K∞ function satisfying :

α(|x|) ≤ Vx(x) . (77)

We have already used this result in Example 27 to show that the system (28) is ISS. In this
context of the ISS property written in terms of Lyapunov functions, we have another version
of the small gain Theorem which is helpful for design (see Example 154).

3Without loss of generality, we can take a(s) = s (see [59]).
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Theorem 78 ([58])
Assume the y system (51) is ISS. In particular, given a continuous function h which are zero
at the origin, let βd, of class KL and γd, of class K be such that, for each e in L∞

loc([0,∞), Rp)
and each y in R

n, all the solutions Y (y, t; e) are defined on [0,∞) and satisfy, for almost all
t ≥ 0 :

|h(Y (y, t; e), e(t))| ≤ max
{
βd(|y|, t) , γd

(∥∥∥ e
∣∣
[0,t]

∥∥∥
∞

)}
. (79)

For the x system (50), assume there exist Vx, a C1 Lyapunov function, γx, a class K function,
and λ, a strictly positive real number, satisfying :

˙︷ ︷
Vx(x) =

∂Vx

∂x
(x) f(x, d) ≤ −λVx(x) + γx(|d|) ∀(x, d) ∈ R

n × R
p . (80)

Under these conditions, if, for some ε in (0, 1), we have :

γx(γd(|k(x)|)) ≤ (1 − ε)λVx(x) ∀x ∈ R
n , (81)

then the origin is a globally asymptotically stable solution of the interconnection (55).

10



3 Control Lyapunov functions and application to sys-

tems in feedback form

3.1 Control Lyapunov functions (CLF)

Consider a continuous control system which is affine in the control u :

ẋ = f(x) + g(x)u . (82)

Let V be a C1 Lyapunov function. Its derivative along the solutions of (82) is :

˙︷ ︷
V (x) = LfV (x) + LgV (x)u . (83)

For each point x where |LgV (x)| is not zero, this derivative can be made strictly negative for
instance by taking the control as :

u = −LfV (x) + |x|
|LgV |2 LgV (x)T . (84)

But for all x where |LgV (x)] is zero, the control has no action on this derivative and we get :

˙︷ ︷
V (x) = LfV (x) . (85)

It follows that, for the given Lyapunov function V to be eligible to get a global asymptotic
stabilizer, we must have at least the implication :

|LgV (x)| = 0 =⇒ LfV (x) ≤ 0 . (86)

In other words, the Lyapunov function V must be such that the restriction of the function
LfV to the set {x : |LgV (x)| = 0} has non positive values.

Definition 87
A C1 Lyapunov function V is called a Control Lyapunov Function (CLF) for the system (82)
if we have :

{x 
= 0 , |LgV (x)| = 0} =⇒ LfV (x) < 0 . (88)

Definition 89
A C1 Lyapunov function V is said to satisfy the Small Control Property (SCP) for the system
(82) if we have4 :

lim sup
|x|→0

LfV (x)

|LgV (x)| ≤ 0 . (90)

Example 91 : Verification of the CLF property and the SCP
Consider the system : 


ẋ1 = x1 x2 ,

ẋ2 = −x2 + u ,
(92)

4In (90), the limit may very well be −∞.
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and the Lyapunov function :

V (x1, x2) = 1
2

(
x2

1 + (x2 + x2
1)

2
)

. (93)

Let us check that V is a CLF. We have :


LfV (x1, x2) = x2
1x2 + (x2 + x2

1)(−x2 + 2x2
1x2) ,

LgV (x1, x2) = x2 + x2
1 .

(94)

It follows that LgV (x1, x2) is zero if and only if :

x2 = −x2
1 . (95)

In this case, we have :
LfV (x1, x2) = −x2

2 (96)

which, with (95), is strictly negative when (x1, x2) is not at the origin.
Also we have :

LfV (x1, x2) = −x2
2 − 2x4

1 LgV (x1, x2) + 2x2
1 LgV (x1, x2)

2 . (97)

It follows that the SCP holds •

Theorem 98 ([65, 17, 21])
Let V be a CLF for the system (82).

• If V satisfies the SCP, the functions φS and φF below are continuous and give global
asymptotic stabilizers :




φS(x) = φF (x) = 0 if |B| = 0 ,

φS(x) = −A +
√

A2 + |B|4
|B|2 BT if |B| 
= 0 ,

φF (x) = −max{A + |B|2 , 0}
|B|2 BT if |B| 
= 0 ,

(99)

with the notation :
A = LfV (x) , B = LgV (x) . (100)

• If there exists α > 1 such that :

lim sup
|x|→0

LfV (x)

|LgV (x)|α < +∞ , (101)

then there exists a C1 positive definite and proper function 	 whose derivative is positive
and such that :

φL(x) = −|Lg	(V )(x)|α−2 Lg	(V )(x)T (102)

is a continuous global asymptotic stabilizer.

Remark 103
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1. Theorem 98 has been extended to the case where the control is subject to some magnitude
limitations (see [45] and the references therein).

2. In [12] it is shown that the condition (88) can be relaxed. Specifically, the result in
Theorem 98 is still right if the Lyapunov function V satisfies only :

lim sup
|LgV (x)|→0

LfV (x)

|LgV (x)| ≤ 0 . (104)

But then we must add that, for each non negative real number v, the largest quasi
invariant set of :

ẋ = f(x) (105)

contained in the set :

{x ∈ R
n : V (x) ≤ v , LfV (x) = |LgV (x)| = 0}

is reduced to the origin.

3. The controller (102) is often called an LgV -controller or a gradient controller (see
[34, 64]). When α = 2, its interest lies in the fact that the system :




ẋ = f(x) + g(x) [φL(x) + v] ,

y = φL(x) ,
(106)

with input v and output y is strictly passive. This property guarantees for instance
robustness of the global asymptotic stabilization to some neglected actuator dynamics.
However, with the presence of 	′ which has to be large enough, an LgV controller requires
a higher effort (see [64, Example 3.36]). For more details, see [64] (see also [21]).

4. If SCP or (101) does not hold, we may loose continuity at the origin and even local
boundedness of the controllers. But these controllers may still be used to make a neigh-
borhood of the origin globally asymptotically stable •

Example 107 : Lyapunov design from a CLF
For the system (92), we have seen in Example 91 that :

V (x1, x2) = 1
2

(
x2

1 + (x2 + x2
1)

2
)

(108)

is a CLF which meets the SCP. We conclude from Theorem 98 that the functions :


φS(x) = 0 if |x2 + x2
1| = 0 ,

φS(x) = −x2
1x2+(x2+x2

1)(−x2+2x2
1x2)+

√
[x2

1x2+(x2+x2
1)(−x2+2x2

1x2)]2+|x2+x2
1|4

x2+x2
1

if |x2 + x2
1| 
= 0 ,

(109)
or : 


φF (x) = 0 if |x2 + x2

1| = 0 ,

φF (x) = −max{x2
1x2+(x2+x2

1)(−x2+2x2
1x2)+(x2+x2

1)
2 , 0}

x2+x2
1

if |x2 + x2
1| 
= 0 ,

(110)
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are continuous and give global asymptotic stabilizers. We can also take advantage of the
particular decomposition (97) of LfV to design a controller from the CLF. Indeed, we get :

˙︷ ︷
V (x1, x2) = −x2

2 + LgV (x1, x2)
(
−2x4

1 + 2x2
1LgV (x1, x2) + u

)
. (111)

So :
φ(x1, x2) = −

(
−2x4

1 + 2x2
1LgV (x1, x2)

)
− LgV (x1, x2) (112)

is a continuous global asymptotic stabilizer.
The steps above are typical in Lyapunov design. Namely, they consist in writing an

upperbound for the derivative V̇ as the sum :

V̇ ≤ T− + LgV × (u + T ) , (113)

where T− is a non positive term and T is an arbitrary term. Such a decomposition is not
unique. For instance, (111) can also be written as :

˙︷ ︷
V (x1, x2) = −x4

1 + LgV (x1, x2)
(
x2

1 − x2 + 2x2
1x2 + u

)
. (114)

From such decompositions, we can proceed with cancellation as above. Namely the control
cancels all the terms in factor of LgV and add an extra negative term multiplied by LgV :

u = − T − Q− × LgV . (115)

where Q− is a non positive term. We can also take advantage of inequalities like (605) and
proceed with domination. For instance :

• in the decomposition (111), we see that there is no need to cancel the product

LgV (x1, x2)
(
−2x4

1 + 2x2
1LgV (x1, x2)

)

when it is non positive. So a domination design gives (compare with (110)) :

φ(x1, x2) = −max{LgV (x1, x2) (−2x4
1 + 2x2

1LgV (x1, x2)) + LgV (x1, x2)
2 , 0}

LgV (x1, x2)
. (116)

• in the decomposition (114), by completing the squares, the product LgV x2
1 can be up-

perbounded as :
LgV (x1, x2)x2

1 ≤ 1
2
x4

1 + 1
2
(LgV (x1, x2))

2 . (117)

So we get the inequality :

˙︷ ︷
V (x1, x2) ≤ −1

2
x4

1 + LgV (x1, x2)
(

1
2
LgV (x1, x2) − x2 + 2x2

1x2 + u
)

. (118)

Hence another global asymptotic stabilizer is :

φ(x1, x2) = −
(
LgV (x1, x2) − x2 + 2x2

1x2

)
. (119)
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Now to know if there is an LgV or gradient controller, we check whether or not condition
(101) holds. We observe from the decomposition (97) that we have :

LfV (x1, x2) = −
(
x2

2 + 2x4
1x2 + 2x6

1

)
+ 2x2

1 (LgV (x1, x2))
2 . (120)

The first term in parentheses in the right hand side is a positive definite quadratic form of x2

for all |x1| <
√

2. This implies :

lim sup
|x1|+|x2|→0

LfV (x1, x2)

|LgV (x1, x2)|2
≤ lim sup

|x1|+|x2|→0

2x2
1 = 0 . (121)

So, from (102), we get the following LgV or gradient controller :

φL(x1, x2) = −(x2 + x2
1)	

′(V (x1, x2)) , (122)

where the function 	′ is to be found. By using the inequality (605), it can be shown that,

with this controller, the derivative
˙︷ ︷

V (x1, x2) in (114), is negative definite if 	′(V ) satisfies the
following constraint :

(1 + x2)
2 < 1 + 	′(V (x1, x2)) . (123)

On the other hand, we get from (108) :

(1 + x2)
2 ≤ 2 + 4V (x1, x2) + V (x1, x2)

2 . (124)

So a possible expression for 	′ is :

	′(v) = v2 + 4 v + 3 . (125)

To summarize, the key points of this example are :

• the decomposition of the derivative V̇ as in (113).

• The design of the asymptotic stabilizer from (113) via a cancellation design as in (115)
or via a domination design obtained by further upperbounding the right hand side of
(113) with in particular the possibility of getting an LgV or gradient controller •

For systems without disturbance, we have seen that a CLF allows us to design global
asymptotic stabilizers. For the case with disturbance, the same procedure can be used (see
also [37, Lemma 5.2]) :

Theorem 126 ([70])
Let V be a CLF for the system (82) which satisfies also the SCP. There exists a continuous
function φ which makes the following closed loop system ISS :

ẋ = f(x) + g(x)φ(x) + p(x) d , (127)

if and only if we have :

lim
|x| → ∞

LgV (x) = 0

− LfV (x)

|LpV (x)| = +∞ . (128)
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Remark 129

1. The proof of this Theorem is constructive in that the condition (128) guarantees the
existence of a class K∞ function α such that :

{x 
= 0 , |LgV (x)| = 0} =⇒ LfV (x) + |LpV (x)|α(|x|) < 0 . (130)

From there, the controller is given for instance by φS or φF in Theorem 98 with A given
now by :

A = LfV (x) + |LpV (x)|α(|x|) . (131)

2. For the general case where the system is not affine in d as in (127), the condition (128)
is more involved. Those Lyapunov functions which still give rise to a controller design
are called robust control Lyapunov functions (RCLF). They have been introduced and
studied in [17] •

Example 132 : Making a system ISS by feedback
For the system : 


ẋ1 = x1 x2 + d ,

ẋ2 = −x2 + u ,
(133)

we look for a continuous control law making the closed loop system ISS.
From Example 91, we know that the Lyapunov function :

V (x1, x2) = 1
2

(
x2

1 + (x2 + x2
1)

2
)

(134)

is a CLF satisfying SCP (for the undisturbed system). So let us see if condition (128) holds.
We have : 



LfV (x1, x2) = x2
1x2 + (x2 + x2

1)(−x2 + 2x2
1x2) ,

LgV (x1, x2) = x2 + x2
1 ,

LpV (x1, x2) = x1 + 2x1 (x2 + x2
1) .

(135)

Hence, for each point (x1, x2) so that LgV (x1, x2) is zero, we have :

LfV (x1, x2) = −x4
1 , LpV (x1, x2) = x1 (136)

This implies :

lim
|x| → ∞

LgV (x) = 0

− LfV (x)

|LpV (x)| = lim
|x1|→∞

|x1|3 = +∞ . (137)

So we know the existence of an appropriate feedback. To get an expression, we write (see
(114)), with Young’s inequality (605),

˙︷ ︷
V (x1, x2) = −x4

1 + x1 d + LgV (x1, x2)
(
x2

1 − x2 + 2x2
1x2 + u + 2x1d

)
, (138)

≤ −ε x4
1 + LgV (x1, x2)

(
x2

1 − x2 + 2x2
1x2 + u +

27

256ε3
x4

1LgV (x1, x2)
3

)
+ a |d| 43 ,
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with ε any real number in (0, 1) and

a =

(
3

4[4(1 − ε)]
1
4

+ ε

)
. (139)

It follows that, by picking the control as :

u = φ(x1, x2) = −
(

x2
1 − x2 + 2x2

1x2 +
27

256ε3
x4

1LgV (x1, x2)
3

)
− εLgV (x1, x2)

3 , (140)

we get :

˙︷ ︷
V (x1, x2) ≤ −ε

(
x4

1 + LgV (x1, x2)
4
)

+ a |d| 43 , (141)

≤ −2 ε V (x1, x2)
2 + a |d| 43 . (142)

Then, since we have :

|x1| + |x2| ≤ 2V (x1, x2) + 2
√

2V (x1, x2) , (143)

Theorem 75 gives that the nonlinear L∞ gain γ of the closed loop system satisfies :

γ(s) ≤
√

2a s
2
3 + 2 (2a)

1
4 s

1
3 . (144)

Note that this gain cannot be made arbitrarily small since a is lower bounded by 3
4
√

2
•

What is again apparent with the condition (128), is that what can be achieved with a
Lyapunov function is completely dictated by the restriction to the set {x : LgV (x) = 0}.
This has been made precise in [75]. In particular, if LpV (x) is zero when LgV (x) is zero, then
there is no limitation in the disturbance attenuation. Precisely, we have :

Theorem 145 ([59])
Let V be a CLF for the system (82) which satisfies also the SCP. If there exists a continuous
function ρ : R

n → [0, +∞) such that :

|LpV (x)| ≤ |LgV (x)| ρ(x) , (146)

then, for any class K∞ functions γu and γx, there exist a continuous function φ and class KL
functions βu and βx such that, for each d in L∞

loc([0,∞), Rp) and each x in R
n, all the solutions

X(x, t; d) of the closed loop system :

ẋ = f(x) + g(x)φ(x) + p(x) d (147)

are defined on [0,∞) and satisfy, for all t ≥ 0,

|X(x, t; d)| ≤ max
{

βx(|x|, t) , γx

(∥∥∥ d
∣∣
[0,t]

∥∥∥
∞

)}
, (148)

and, when ρ(s) ≤ s,

|φ(X(x, t; d))| ≤ max
{
βu(|x|, t) , (Id+ γu)

(∥∥∥ d
∣∣
[0,t]

∥∥∥
∞

)}
. (149)
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Remark 150 .

1. Again the proof of this Theorem is constructive (see Example 154).

2. The nonlinear L∞ gain γx being arbitrary, (148) shows that the action of d on the state
can be arbitrarily attenuated. And, when ρ is not larger than the identity function, this
can be done with a control whose norm is arbitrarily close to the L∞ norm of d.

3. The condition (146) is one of these conditions called matching condition. Indeed, if d
were known, we could completely counteract (match) its contribution to the positive
terms in the derivative of V by taking the control :

φ(x) = −|d| ρ(x)
LgV (x)T

|LgV (x)| . (151)

4. As noticed in [66], when the CLF V and an associated global asymptotic stabilizer φ are
such that the function :

W (x) = − (LfV (x) + LgV (x)φ(x)) (152)

is proper5, then the simple controller :

φd(x) = φ(x) − ρ(x)2 LgV (x)T (153)

makes the system ISS but with no control on the nonlinear L∞ gain γx •

Example 154 : Disturbance attenuation to cope with partial state feedback
Consider the system : 



Ẋ1 = −X3
1 + X3

4 ,

Ẋ2 = −X2 + X3 + X1 X4 ,

Ẋ3 = −X2 ,

Ẋ4 = u + X3 + X1 X4 .

(155)

We look for a continuous global asymptotic stabilizer which depends only on X4.
Our approach to solve this problem follows from the two observations :

1. The (X1, X2, X3) subsystem with X4 as input is nothing but the system (28) which we
have shown to be ISS in Example 27.

2. In the X4 subsystem, the “disturbance” (X3, X1) is matched, (i.e. cancelable by u if it
were known). From Theorem 145, we know that we can design a stabilizer φ, depending
only on X4, attenuating arbitrarily the action of this disturbance on this coordinate.

Consequently, we should be able to match a small gain condition like (54) or (81). More
specifically, we know, from Theorem 78, that our problem will be solved if, for the system (see
the X4 subsystem) :

ẋ = u + d2 + d1 x , (156)

5which can always be achieved (see [66].
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we can find a CLF V and a continuous function φ such that the following inequality holds for
the derivative :

˙︷ ︷
V (x) ≤ −λV (x) + γ1(|d1|) + γ2(|d2|) , (157)

where γ1 and γ2 are class K functions and λ is a strictly positive real number such that (see
(33) and (45)) :

γ1(2|x|) + γ2(8x
2) ≤ (1 − ε)λV (x) ∀x ∈ R (158)

for some strictly positive real number ε. Theorem 145 says that it is possible to find such
functions V and φ. So let us design them.

We start by observing that it is sufficient to have :

γ1(s) = a s4 , γ2(s) = b s2 , V (x) ≥ c x4 (159)

for some real numbers a, b, c. So let us take the CLF :

V (x) = 1
4
x4 . (160)

With Young’s inequality (605), we get :

˙︷ ︷
V (x) = x3 u + x3 d2 + x4 d1 , (161)

≤ x3 u +

(
x6 +

d2
2

4

)
+

(
3(x4)

4
3

4
+

d4
1

4

)
, (162)

≤ x3

(
u + x3 +

3x
7
3

4

)
+

d2
2

4
+

d4
1

4
. (163)

So by picking :

u = φ(x) = −λ

4
x −

(
x3 +

3x
7
3

4

)
, (164)

we get the inequality (157) as :

˙︷ ︷
V (x) ≤ −λV (x) +

d2
2

4
+

d4
1

4
. (165)

This says :

γ1(s) =
s4

4
, γ2(s) =

s2

4
. (166)

So now we can write the constraint (158) explicitly as :

4x4 +
81

4
x4 ≤ (1 − ε)

λ

4
x4 ∀x . (167)

This shows that our objective is met by taking :

λ > 97 (168)

and therefore, for instance, the control :

u = φ(x) = −25x −
(

x3 +
3x

7
3

4

)
. (169)

To summarize the key points of this example are :
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• The very specific choice of the function V in (160). We used (159) to arrive to this choice
a priori. More generally, the idea is to leave V undefined and to proceed formally up to
the end, collecting all the constraints this function has to satisfy. The expression of V
is then chosen at the end.

• Handling the disturbance terms by inequalities •

To summarize this paragraph, we have established that, to solve the asymptotic stabiliza-
tion problem or the disturbance attenuation problem, it is sufficient to look for C1 Lyapunov
functions satisfying :

{x 
= 0 , |LgV (x)| = 0} =⇒ LfV (x) < 0 (170)

and maybe another extra condition close to the origin. The next paragraph is devoted to
explicit construction of such functions for systems which can be written in an appropriate
recurrent triangular form, called the feedback form.

3.2 Systems in feedback form and backstepping

3.2.1 CLF via reduction or extension

Consider a system whose dynamics can be written in the following triangular form :



ẋ = f(x, y) ,

ẏ = h(x, y) + u ,
(171)

with x in R
n and y and u in R. We want to know when, knowing a CLF for the full order

system (171), we can get one for the reduced order system :

ẋ = f(x, u) (172)

and conversely.

3.2.1.1 Reduction
Assume that we know a CLF Vy for the full order system (171); i.e.,

{
(x, y) 
= 0 ,

∂Vy

∂y
(x, y) = 0

}
=⇒ ∂Vy

∂x
(x, y) f(x, y) < 0 . (173)

We look for a CLf for the reduced order system (173). The condition ∂Vy

∂y
(x, y) = 0 is a

necessary condition that y must satisfy to be a stationary point of the function Vy(x, ·), with
x fixed. But, since Vy is C1 Lyapunov function, for each given x, it has a global minimum and
therefore at least one stationary point. Let φx(x) denote one such point. We have :

∂Vy

∂y
(x, φx(x)) = 0 . (174)

Since the origin is a global minimizer of V , we can impose the condition :

φx(0) = 0 . (175)
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Then we define the function :

Vx(x) = Vy(x, φx(x)) . (176)

We have :

Lemma 177
Let Vy , φx and Vx be defined as above. If Vy is C2 and φx is Hölder continuous of order
strictly larger than 1

2
, then Vx is a C1 CLF for the system (172) and φx is a continuous global

asymptotic stabilizer.

Remark 178
In general, φx may not be even continuous. In [9], there is a system in the form (171)
which is globally asymptotically stabilizable by continuous feedback whereas its reduced order
subsystem (172) is not •

With Lemma 177, we have a sufficient condition, for a system in the triangular form (171),
allowing us to express a CLF for the reduced order system (172) from one known for the full
order system. This fact is important since it shows that stabilization problems maybe studied
via systems with reduced dimensions.

3.2.1.2 Extension
Let us now study the converse question :
If we know a CLF for the reduced order system (172) can we build one for the full order system
(171)? To answer this question, we reverse the above arguments :

C1 : For the system (172), let Vx be a CLF and φx : R
n → R be a continuous global asymptotic

stabilizer satisfying :
∂Vx

∂x
(x) f(x, φ(x)) < 0 ∀x 
= 0 . (179)

We observe that, for any function 	 which is C1 positive definite and proper, and with
positive derivative, 	(Vx) is also a CLF for (172).

C2 : From these data, we want to express a function which will be
∂Vy

∂y
and whose zeros are

given by :
y = φx(x) . (180)

Our motivation is that, in this case, (173) will follow directly from (179). So we introduce
the C1 function ψ : R

n × R → R such that the function :

Ψ(x, y) =

∫ y

φx(x)

ψ(x, s)ds (181)

is C1 and we have :

ψ(x, y) = 0 ⇐⇒ y = φx(x) , (182)

ψ(x, y) [y − φx(x)] > 0 ∀ (x, y) ∈ R
n × R : y 
= φx(x) , (183)

lim
|y|→∞

Ψ(x, y) = +∞ ∀x . (184)
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Theorem 185 ([57])
Under the conditions C1 and C2 above, the function :

Vy(x, y) = 	(Vx(x)) +

∫ y

φx(x)

ψ(x, s)ds (186)

is a C1 CLF for the system (171). Moreover if we have :

lim inf
|x|+|y|→0

|ψ(x, y)|
|y − φx(x)| > 0 , (187)

then SCP holds.

Example 188 : Construction of a CLF
Let us come back to the system (92) of Example 91 and see how the CLF (93) can be con-
structed.

The system is : 


ẋ = x y ,

ẏ = −y + u .
(189)

It can be seen as the system :
ẋ = x ux (190)

which is extended by adding the differentiator :


ẏ = −y + u ,

ux = y .
(191)

Namely to go from the reduced order system (190) to the full order system (189), we need to
differentiate its control.

The reduced order system (190) being one dimensional, we can simply take :

Vx(x) = 1
2
x2 (192)

as a CLF. We have :
˙︷ ︷

V (x) = x2 ux . (193)

It follows for instance that :
ux = φx(x) = −x2 (194)

is a C1 global asymptotic stabilizer.
Now coming back to the full order system (189), we apply Theorem 185. By picking :

	(v) = v , (195)

ψ(x, y) = y − φx(x) = y + x2 , (196)

the formula (186) yields :

Vy(x, y) = 	(Vx(x)) +

∫ y

φx(x)

ψ(x, s)ds , (197)

= 1
2
x2 + 1

2

(
y + x2

)2
. (198)
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This is exactly the expression (93). Also since we have :

|ψ(x, y)|
|y − φx(x)| = 1 , (199)

SCP holds •

Remark 200

1. From the CLF Vy, a global asymptotic stabilizer is obtained by applying one of the
formulae φS or φF or the LgV controller φL of Theorem 98. But we may also choose a
cancellation design or a domination design.

2. The existence of a function ψ satisfying C2 is guaranteed as soon as φx is Hölder con-
tinuous (see [9]). Usually φx is C1. Then the simplest choice6 for ψ is :

ψ(x, y) = y − φx(x) . (201)

Taking the identity for the function 	, (186) gives the more common formula (see [76]) :

Vy(x, y) = Vx(x) + 1
2
(y − φx(x))2 . (202)

3. The CLF (202) is arrived at in [32] by another way called nowadays the backstepping
technique7. It is extensively developed in [37, 35] by combining it with other techniques
leading to a rich repertoire of procedures. It goes with the introduction of a new coor-
dinate (see [32]) called the error variable :

y = y − φx(x) . (203)

With this coordinate, the system (171) rewrites :


ẋ = f(x, y + φx(x)) ,

ẏ = h(x, y) + u ,
(204)

with now :

h(x, y) = h(x, y + φx(x)) − ∂φx

∂x
(x)f(x, y + φx(x)) . (205)

A property of the x subsystem of (204), exhibited and exploited in [32], is that we have :

˙︷ ︷
V (x) =

∂Vx

∂x
(x) f(x, y + φx(x)) = −Wx(x) + ωT y , (206)

with Wx positive definite and :

ω =
∂Vx

∂x
(x)

∫ 1

0

∂f

∂y
(x, sy + φx(x)))ds . (207)

So the x subsystem is strictly passive with y as input and ω as output. The design of
a global asymptotic stabilizer for (204) can be seen as making, via u, the y subsystem
strictly passive with −ω as input and y as output, e.g. with a cancellation design :

u = −y − h(x, y) − ω . (208)

6From a mathematical point of view, may not be the practical one.
7In the following, we do not use the technique of error variable but nevertheless we use the name of

backstepping for the formulae (186) or (202).
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4. After getting from Vy a global asymptotic stabilizer φy, we are with the system (171) in
exactly the same situation as we were with the system (172). This means that we are
ready to deal with the further extended system :



ẋ = f(x, y) ,

ẏ = h(x, y) + z ,

ż = k(x, y, z) + u .

(209)

So the procedure we have presented here finds its full power. It allows us to deal by
recursion (see Example 342) with the Lyapunov design of global asymptotic stabilizers
for systems in the form :



ẋ1 = f1(x1, x2) ,

ẋ2 = f2(x1, x2) + g1(x1, x2)x3 ,
...

ẋn = fn(x1, . . . , xn) + gn(x1, . . . , xn)u ,

(210)

with all the gi’s of constant sign. This form is called feedback form. It is obtained by
adding recursively a differentiator of the coordinate, which can be used for control of
the previously defined system, and which is fed back by the previously introduced state
components. Actually even more general form can be handled, linearity in xi+1 of the
ẋi equation can be relaxed as shown in [9, 77, 43]. See also Example 243.

5. Although, in the formula (186) for the CLF, we have already a design flexibility with
the functions 	 and ψ (which we illustrate below via examples), an even more general
formula can be given. Specifically, we know, from Theorem 12, that there exists always a
C1 positive definite function δ : R

n → R such that any continuous function, with values
in [φx − δ, φx + δ], is also a global asymptotic stabilizer for (172). It follows that, instead
of (182), we can take :

ψ(x, y) = 0 ⇐⇒ y ∈ [φx(x)− δ(x), φx(x) + δ(x)] . (211)

For instance, in the case where φx is C1, this leads to the following C1 CLF satisfying
SCP :

Vy(x, y) = 	(Vx(x)) + 1
2

max{|y − φx(x)| − δ(x) , 0}2 . (212)

This CLF is “flat” in the y-direction around φx(x); i.e.,its derivative is 0. This property
has been exhibited and exploited in [15]. It is useful for dealing with problems where
the gradient of the control plays a role like in presence of measurement noise or control
rate limitations or with delay in the control (see [16, 18]).

6. We have mentioned above that the backstepping technique can be interpreted within
the passivity framework. Another technique, referable to the small gain framework, has
been proposed in [67] and exploited for instance in [2] :
For the system (171), let Vx be a CLF and φx be an associated C1 global asymptotic
stabilizer such that the positive definite function :

W (x) = −∂Vx

∂x
(x)f(x, φx(x)) (213)
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is proper. As shown in [67] (see also Remark 150), from these data, we can get a C1

strictly positive function ϕ : R
n → R such that, by letting (compare with (203)) :

y =
y − φx(x)

ϕ(x)
, (214)

the system (171) rewrites :




ẋ = f(x, ϕ(x)y + φx(x)) ,

ẏ = h(x, y) + 1
ϕ(x)

u ,
(215)

with some function h, and where the x subsystem is ISS with input y. Then, from
Theorem 49, global asymptotic stability for (204) is obtained by making the y subsystem
independent of x and with global asymptotic stability, e.g. with :

u = −ϕ(x) [sign(y) k(y) + h(x, y)] , (216)

where k is some continuous positive definite function •

3.2.2 Illustration of backstepping via examples

In this section, we illustrate some of the potentialities of the backstepping technique.

Example 217 : Dealing with singularities (see [42])
Consider the system : 


θ̇ = θ + ω ,

ω̇ = ω + (1 − ω)u .
(218)

It can be shown that the set {(θ, ω) : θ ≤ −1 or ω ≥ 1} is invariant whatever u is. So the
origin cannot be globally asymptotically stabilized. Let us design a control law making the
complement of the above set a basin of attraction of the origin.

This complement is diffeomorphic to R
2 as exhibited by the following set of (singular)

coordinates : 


x = log(1 + θ) ,

y = − log(1 − ω) .
(219)

It maps the set {(θ, ω) : θ > −1 and ω < 1} onto R
2. With these new coordinates the system

(218) rewrites : 


ẋ =
exp(x + y)− 1

exp(x) + y
,

ẏ = [exp(y)− 1] + u .

(220)

This system is made of the system :

ẋ =
exp(x + ux) − 1

exp(x + ux)
(221)
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which is extended by adding the differentiator :



ẏ = [exp(y)− 1] + u ,

ux = y .
(222)

This decomposition motivates us for designing a control law in two steps.

Step 1 : We consider the system (221). We can check that :

ux = −2x (223)

is a global asymptotic stabilizer associated to the CLF :

Vx(x) = 1
2
x2 . (224)

Step 2 : We consider the system (220). The formula (202) yields :

Vy(x, y) = Vx(x) + 1
2
(y + 2x)2 = 1

2
x2 + 1

2
(y + 2x)2 (225)

as a CLF. Precisely, we get :

V̇y = x
exp(x + y)− 1

exp(x + y)
+ (y + 2x)

(
[exp(y)− 1] + u + 2

exp(x + y)− 1

exp(x + y)

)
, (226)

= x (1 − exp(x)) (227)

+ (y + 2x)

(
x exp(−(x + y))

exp(y + 2x) − 1

y + 2x
[exp(y)− 1] + u + 2

exp(x + y)− 1

exp(x + y)

)
.

Then a cancellation design gives the global asymptotic stabilizer :

u = −
(

x exp(−(x + y))
exp(y + 2x) − 1

y + 2x
+ [exp(y)− 1] + 2

exp(x + y)− 1

exp(x + y)

)
− (y + 2x) .

(228)
To summarize, the key points of this example are :

• The singular change of coordinates mapping the desired basin of attraction onto the
full Euclidean space. We shall see in Examples 299 and (418) another technique with a
singular Lyapunov function.

• The design in two steps of the stabilizer. This follows the structure in feedback form of
the system.

• The use of the formula (202) to construct a CLF when the differentiator is added •

Example 229 : Dealing with input constraints (see [18])
Consider the linear system : 


ẋ = y ,

ẏ = u .
(230)

We look for a C1 global asymptotic stabilizer φy satisfying :
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• a dead zone effect with :

∂φy

∂x
(0, 0) =

∂φy

∂y
(0, 0) = 0 , (231)

• the magnitude limit :
|φy(x, y)| ≤ 5 . (232)

To solve this stabilization problem under input constraints, we proceed recursively by
dealing first, and under the same constraints, with the reduced order system :

ẋ = ux . (233)

Then we consider the full order system.

Step 1 : We consider the system (233). To meet the dead zone constraint, it is sufficient to
choose φx(x) of order strictly larger than 1 around zero. To meet the magnitude constraint,
it is sufficient to choose φx(x) bounded. This motivates for the function :

φx(x) = −1
2

x3

(1 + |x|3) . (234)

For Vx, we take simply :
Vx(x) = 1

2
x2 . (235)

Step 2 : We consider the full order system and apply the formula (186) with :

	(v) = 8
9

v
3
2

1 + 2v
, (236)

ψ(x, y) = (y − φx(x)) + (y|y| − φx(x)|φx(x)|) . (237)

These non trivial expressions follow from a careful analysis of what is involved in (239) below.
This gives the CLF satisfying SCP :

Vy(x, y) = 	(Vx(x)) +

∫ y

φx(x)

(s − φx(x)) + (s|s| − φx(x)|φx(x)|) ds (238)

Its derivative is :

˙︷ ︷
Vy(x, y) = 	′(Vx(x))x φx(x) (239)

+ [y − φx(x)]

[
	′(Vx(x))x +

(
1 +

∂Vy
∂y

(x,y)

y−φx(x)

)
u − (1 + 2|φx(x)|) φ′

x(x) y

]
,

where we have :
∂Vy

∂y
(x, y)

y − φx(x)
= |φx(x)| + |y| if φx(x) y > 0 ,

=
φx(x)2 + y2

|φx(x)| + |y| if φx(x) y ≤ 0 .

(240)
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A cancellation design leads to the global asymptotic stabilizer :

φy(x, y) =
(1 + 2|φx(x)|) φ′

x(x) y − 	′(Vx(x))x

1 +

∂Vy

∂y
(x, y)

y − φx(x)

− sat(y − φx(x))3 (241)

where sat is the standard saturation function :

sat(s) = max{−1 , min{1, s}} . (242)

It can be checked, with the choice made, in step 1, for φx and, in (236) and (237), for 	 and
ψ, that φy meets the given specifications.

To summarize the key point of this example is the very specific expressions (236) and (237)
we have chosen for the functions for 	 and ψ in the formula (186). Also, we have solved the
problem by imposing at each steps that the constraints be satisfied. This may not be the only
nor the best way to proceed. For instance, here, it is sufficient to let |φx(x)| to grow as

√
|x|

(and 	(v) as v
1
2 ) when |x| is large. This is related to a control rate limitation, i.e. |φx(x)| is

not bounded not but
˙︷ ︷

φx(x) is •

Example 243 : When φx is not C1 (see [9, 77, 43])
Consider the system : 


ẋ = x − y3 ,

ẏ = u .
(244)

The first order approximation of this system is not stabilizable. Therefore it has no C1

asymptotic stabilizer. To design a C0 global asymptotic stabilizer we proceed in two steps.

Step 1 : Consider the system :
ẋ = x − u3

x . (245)

The following function :
Vx(x) = 1

2
x2 (246)

is a CLF to which we can associate the non C1 global asymptotic stabilizer :

φx(x) = (2x)1/3 . (247)

Step 2 : We consider now the full order system (244). A hint for the choice of a function
ψ appropriate to be used in the formula (186) is that φx(x) is a solution of the polynomial
equation :

φ3
x − 2x = 0 . (248)

So ψ will be C1 if we choose it as :

ψ(x, y) = y3 − 2x . (249)

But, in this case, the condition (187) is not satisfied. Nevertheless, for this particular case,
we can still get SCP with an appropriate choice of the function 	 (see [9]). With homogeneity
arguments, such a choice is (see [57]) :

	(v) = 9 (2v)2/3 . (250)
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This yields the function :

Vy(x, y) = 1
4
y4 − 2x y + 3(1+322/3)

4
(2x)4/3 (251)

as a CLF for the system (244). With this function, a domination design leads to the following
continuous global asymptotic stabilizer :

φy(x, y) =
(
7 y − 18x1/3

)1/3
. (252)

To summarize the key point in this example is the expressions (250) and (249) of the
function 	 and ψ used in the formula (186) •

For a system with several controls, it is more appropriate to deal with only one at a time.

Example 253 : Multi-input systems (see [63])
Consider the 2-input system :




ẋ1 = x2 ,

ẋ2 = u1 ,

ẋ3 = u2 ,

ẋ4 = x3 (1 − u1) .

(254)

To design a global asymptotic stabilizer, we proceed in three steps8.

Step 1 : We consider the linear system :



ẋ1 = x2 ,

ẋ2 = u1 .
(255)

A CLF is :
V1(x1, x2) = 1

2

(
x2

1 + (x1 + x2)
2
)

. (256)

It corresponds the global asymptotic stabilizer :

u1 = φ1(x1, x2) = −2 (x1 + x2) . (257)

Step 2 : We consider the system :



ẋ1 = x2 ,

ẋ2 = −2 (x1 + x2) ,

ẋ4 = v [1 + 2 (x1 + x2)]

(258)

with control v. In view of its structure and after step 1, we can propose the Lyapunov function :

V2(x1, x2, x4) = V1(x1, x2) + 1
2
x2

4 , (259)

= 1
2

(
x2

1 + (x1 + x2)
2 + x2

4

)
. (260)

8Actually a more direct way is possible by replacing x4 by y4 = x4 + x2 x3.
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It is a CLF since the derivative :

˙︷ ︷
V2(x1, x2, x4) = −x2

1 − (x1 + x2)
2 + x4 [1 + 2 (x1 + x2)] v (261)

is made negative definite by taking :

v = φ2(x1, x2, x4) = −x4 [1 + 2 (x1 + x2)] . (262)

Step 3 : We consider the full order system (254). It is obtained from (258) by adding the
differentiator : 


ẋ3 = u2 ,

v = x3 .
(263)

The formula (186), with :

	(v) = v , (264)

ψ(x1, x2, x4, s) = s − φ2(x1, x2, x4) , (265)

yields the CLF :

V3(x1, x2, x4, x3) = V2(x1, x2, x4) + 1
2
(x3 + x4 [1 + 2 (x1 + x2)])

2 , (266)

= 1
2

(
x2

1 + (x1 + x2)
2 + x2

4 + (x3 + x4 [1 + 2 (x1 + x2)])
2) . (267)

Then a cancellation design for instance leads to the following global asymptotic stabilizer :

u2 = φ3(x1, x2, x4, x3) , (268)

= −
(
x4 + x3 [1 + 2 (x1 + x2)]

2 + 2x4[x2 − 2 (x1 + x2)]
)
− (x3 + x4[1 + 2 (x1 + x2)]) .(269)

To summarize the key point of this example is the decomposition of the design in three
steps :

1. In step 1, we look at the (x1, x2) subsystem and design u1.

2. In step 2, we look at the (x1, x2, x4) subsystem with x3 as control. This is made possible
by the expression of u1 in terms of (x1, x2).

3. In step 3, we reach the full order system by adding a differentiator •

Example 270 : Arbitrary pole assignment (see [13])
Consider a single-input controllable linear system whose dynamics are written as :




Ẋ1 = X2 + a11 X1 ,
...

Ẋ i = X i+1 +
∑i

j=1 aijX j ,
...

Ẋn = u +
∑n

j=1 anjX j ,

(271)
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or in compact form :
Ẋ = A X + B u . (272)

Let a linear asymptotic stabilizer be given in the form :

u = −K X . (273)

Let also P and Q be given positive definite matrices related by the following Lyapunov equa-
tion :

(A− BK)TP + P (A− BK) = Q . (274)

We want to show that the same controller can be obtained by applying the backstepping
technique and even more that the constructed CLF and its derivative are quadratic forms
given by P and Q respectively.

To do this, we rewrite (271) with appropriate coordinates. We consider the Choleski
decomposition of Q with a matrix L which is lower triangular with 1’s the main diagonal :

Q = LTdiag(qi)L . (275)

We denote :
B := LB = B , A := LAL−1 . (276)

This matrix A can be decomposed as :

A =




� 1 0 . . . . . . 0
� � 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
� . . . . . . � 1 0
� . . . . . . . . . � 1
� . . . . . . . . . . . . �




=

(
A b
aT c

)
, (277)

with the matrix A of dimension (n− 1)× (n− 1) and with the same structure as A. Then we
introduce the other notations :

(
x
y

)
= L X , P = L−TP L−1 ,

(
αT γ

)
= KT = KT L−1 (278)

and, as for A, we decompose P and diag(qi) in blocks as :

P =

(
P + πppT πp

πpT π

)
, diag(qi) = diag(Q, qn) (279)

With these notations, we observe that, since P is positive definite, the same holds for P . Also
(274) gives the following three equalities :

P (A − bpT ) + (A − bpT )TP = −Q− qnpp
T , (280)

1

π
P b + a + A

T
p = α +

qn

2π
p , (281)

pT b + c = γ − qn

2π
. (282)
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Finally the system (271) rewrites :


ẋ = A x + b y ,

ẏ = aT x + c y + u .
(283)

By picking :
Vx(x) = 1

2
xT P x , φx(x) = −pTx , (284)

we get a CLF and an associate global asymptotic stabilizer for the x subsystem of (283). In
particular, with (280), we have :

˙︷ ︷
Vx(x) = −1

2
xTQ x − qn

2
(pT x)2 . (285)

Now, for the full order system (283), the formula (186) yields the CLF :

Vy(x, y) = Vx(x) + π
2
(y − φx(x))2 , (286)

= 1
2
xTP x + π

2
(y + pT x)2 , (287)

= 1
2
XTP X . (288)

Its derivative is :

˙︷ ︷
Vy(x, y) = xTP (Ax + by) + π (y + pT x) (aTx + cy + u + pT [Ax + by]) , (289)

= −1
2
xT (Q + qnpp

T )x + π (y + pT x)

(
xT Pb

π
+ aTx + cy + u + pT [Ax + by]

)
. (290)

So the feedback transformation :

u = −
(

xTPb

π
+ aTx + cy + pT [Ax + by]

)
+ v (291)

yields :
˙︷ ︷

Vy(x, y) = −1
2
xTQ x − qn

2
(pT x)2 + π (y + pT x) v . (292)

It follows that, by picking :
v = − qn

2π
(y − pT x) , (293)

we get :

˙︷ ︷
Vy(x, y) = −1

2
xTQ x − qn

2
y2 , (294)

= −1
2
XTQ X . (295)

Finally, from (291) and (293), and by using (281), (282) and (278), we see that the controller
is :

u = −
(

xT

[
1

π
P b + a + A

T
p

]
+
[
pT b + c

]
y

)
− qn

2π
(y − pT x) , (296)

= −xTα − γ y , (297)

= −K X . (298)

So the Lyapunov design has allowed us to reach the given controller with the given CLF and
derivative.

The key points to get the result are :
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1. The choice of coordinates which make Q diagonal while preserving the lower triangular
structure of A.

2. The decomposition of P as (279) and the three relations (280)-(282) which follow.

3. The choice of Vx and φx in (284).

Actually we have done only the last step of the backstepping technique, but the recursive
form of A allows us to conclude that we would have obtained the same result by applying
the same steps recursively one state component after the other. Namely, the same technique
applies to the x subsystem of (283) with y as control and with (284) and (285) as control
objective.

The above fact must be put together with the following remark :
For a general system in feedback form, the terms of order strictly larger than 1 at the origin do
not contribute to the first order approximation of the final controller we obtain by recursively
applying the backstepping technique with say cancellation designs.

It follows that the backstepping technique allows us to design global asymptotic stabilizers
with imposed local behavior. This property has been exploited for instance in [13] (and
generalized in [55]) to design a global asymptotic stabilizer with local H∞ properties •

We conclude this section by presenting an example demonstrating the potentialities of
Lyapunov design. It is directly inspired by a solution to the problem of global stabilization of
bifurcations in a model of jet engine surge and stall proposed in [36]. It illustrates how, when
facing real world problems, we have to combine several techniques.

Example 299 : Combining techniques (see [36])
Consider the system : 



ẋ1 = −(x1 + 1)(x1 + x2
2) ,

ẋ2 = x3 − x2f(x2) + x1 ,

ẋ3 = u ,

(300)

where f is an unknown C1 function with known lower bound F :

F ≤ inf
s

f(s) . (301)

We are looking for a controller, linear in the coordinates (x1, x2, x3), and making the origin
asymptotically stable with basin of attraction :

Ω = {(x1, x2, x3) | x1 > −1} . (302)

The system (300) is made of the system :


ẋ1 = −(x1 + 1)(x1 + x2
2) ,

ẋ2 = u1 − x2f(x2) + x1 ,
(303)

to which is added the differentiator : 


ẋ3 = u ,

u1 = x3 .
(304)
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So we design the controller in two steps.

Step 1 : We consider the system (303). Since we want to restrict our attention to the set Ω,
we choose for the x1 subsystem a Lyapunov function, positive definite, C2 but defined on this
open set only :

V1(x1) =

∫ x1

0

s

s + 1
ds = x1 − log(x1 + 1) . (305)

Its interest is in the implication :

V1(x1) ≤ c =⇒ −1 < x1 , (306)

for all non negative real number c. We obtain the derivative :

˙︷ ︷
V1(x1) = −x2

1 − x1 x2
2 , (307)

≤ −x2
1 + x2

2 ∀x1 > −1 . (308)

Then let V be a C2 Lyapunov function. In order to keep some flexibility for handling the
second step and to meet possibly the constraint of linearity of the control, at this stage, we
do not specify what the function V is. We let :

V2(x1, x2) = V1(x1) + V (x2) . (309)

For all x1 > −1, we get the following bounds for the derivative :

˙︷ ︷
V2(x1, x2) = −V ′

1(x1) (x1 + 1) (x1 + x2
2) + V ′(x2) [u1 − x2f(x2) + x1] , (310)

≤ −x2
1 + x2

2 − V ′(x2)x2 f(x2) + V ′(x2) [u1 + x1] , (311)

≤ −1
2
x2

1 + V ′(x2)

[
−x2f(x2) +

x2
2

V ′(x2)
+ u1 + V ′(x2)

]
. (312)

So we see that, if we impose the following constraint9 on V :

(k − 1) + f(x2) ≥ x2

V ′(x2)
+

V ′(x2)

x2
, (313)

for some real number k, and we choose the control :

u1 = φ2(x1, x2) = −k x2 , (314)

the derivative satisfies, for all x1 > −1,

˙︷ ︷
V2(x1, x2) ≤ −1

2
x2

1 − V ′(x2)x2 . (315)

9Since V is a Lyapunov function, we have :

V ′(x2)x2 > 0 ∀x2 
= 0.

It follows that the constraint (313) is met for instance by :

V (x2) = 1
2 x2

2 , k ≥ 3 − F .
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This proves that φ2 is an asymptotic stabilizer on the set {(x1, x2) | x1 > −1}.

Step 2 : We consider the full order system (300) and apply the formula (186) with :

	(v) = v , (316)

ψ((x1, x2), x3) = a (x3 + kx2) , (317)

where a is a strictly positive real number to be specified later on. This yields the CLF :

V3(x1, x2, x3) = V1(x1) + V (x2) + a
2
(x3 + kx2)

2 . (318)

For all x1 > −1, its derivative satisfies :

˙︷ ︷
V3(x1, x2, x3) = −V ′

1(x1) (x1 + 1) (x1 + x2
2) + V ′(x2) [u1 − x2f(x2) + x1]

+ a (x3 + kx2) [u + k (x3 − x2f(x2) + x1)] , (319)

≤ −1
2
x2

1 − V ′(x2)x2

+ a (x3 + kx2)

[
V ′(x2)

a
+ u + k (x3 − x2f(x2) + x1)

]
, (320)

≤ −1
4
x2

1 − V ′(x2)x2

+ a (x3 + kx2)

[
V ′(x2)

a
+ u + k (x3 − x2f(x2) + ak(x3 + kx2))

]
,(321)

where we have used (315) to write (320) and completed the squares to write (321). A cancel-
lation design gives the following asymptotic stabilizer on the set Ω :

u = φ3(x1, x2, x3) = −
[
V ′(x2)

a
+ k (x3 − x2f(x2) + ak(x3 + kx2))

]
− (x3 + kx2) . (322)

It provides, for all x1 > −1,

˙︷ ︷
V3(x1, x2, x3) ≤ −1

4
x2

1 − V ′(x2)x2 − a (x3 + kx2)
2 . (323)

This establishes asymptotic stability of the origin with Ω as domain of attraction.
Now to meet the linearity constraint on u, defined in (322), we should have :

V ′(x2)

a
− k x2 f(x2) = b x2 , (324)

with some real number b. Specifically, in this case the controller is simply :

φ3(x1, x2, x3) = −[k + (b + ak2)] x2 − [1 + k(1 + a)] x3 , (325)

with the three parameters a, b and k. From our construction, it is appropriate if we can find a
C2 Lyapunov function V satisfying (313) and (324). But the constraint (324) imposes readily
that V be :

V (x2) = a

∫ x2

0

[bs + ksf(s)] ds . (326)

Fortunately this function is positive definite and proper on Ω if b satisfies :

b > −k F . (327)
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Then with (326), the constraint (313) reads :

(k − 1) + f(x2) ≥ 1

a(b + kf(x2))
+ a(b + kf(x2)) . (328)

So to conclude, the problem is solved if (327) and (328) hold. This is the case for instance if
we choose the controller parameters as :

k ≥ 2 + c , a =
1

k
, b = c k (329)

where :
c ≥ 1 + max{0,−F} . (330)

To conclude, if we want to emphasize only one point in this example, it is the idea of not
choosing V a priori but only at the end, once all the constraints this functions must satisfy
are known •

3.3 Backstepping with disturbances

When disturbances are acting on systems with feeback form, the other tool to be used with
the backstepping technique is the inequalities as those found for instance in [22]. As an
application, we can prove that the ISS property can be propagated through differentiators, by
using the simplest CLF formula (202) and the following inequality. See also [28, 27] and [35,
Lemma 2.20].

Lemma 331
Let F : R

n × R
p → R and G : R

n → R be continuous functions. Assume we have :

F (x, 0) = 0 ∀x ∈ R
n . (332)

Then there exist two continuous functions δx : R
n → R≥0 and δd : R

p → R≥0 satisfying :

δd(0) = 0 , (333)

|G(x)F (x, d)| ≤ G(x)2 δx(|x|) + δd(|d|) ∀(x, d) ∈ R
x × R

p . (334)

Precisely, consider the following disturbed version of (171) :




ẋ = f(x, y, dx) ,

ẏ = h(x, y, dy) + g(x, y, dy)u ,
(335)

where the functions f , h and g are continuous and we have :

gu(x, y, dy) ≥ η(x, y) ∀ (x, y, dy) ∈ R
n × R × R

py , (336)

where η : R
n × R → R>0 is continuous. We have :
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Theorem 337
If there exists a C1 Lyapunov function Vx, a class K∞ function ax, a class K function γx and
a C1 function φx such that we have :

∂Vx

∂x
(x) f(x, φx(x), dx) ≤ −ax(Vx(x)) + γx(|dx|) ∀(x, dx) ∈ R

n × R
px , (338)

then there exists a C1 Lyapunov function Vy, a class K∞ function ay, a class K function γy

and a C0 function φy such that we have :

∂Vy

∂x
(x, y) f(x, y, dx) +

∂Vy

∂y
(x, y) [h(x, y, dy) + g(x, y, dy)φy(x, y)] (339)

≤ −ay(Vy(x, y)) + γy(|dx| + |dy|) ,

for all (x, y, dx, dy) in R
n × R

m × R
px × R

py.

Remark 340
This Theorem says that, if the x subsystem can be made ISS via a C1 stabilizer, then the
extended system can be made ISS via a C0 stabilizer. Then, if this derived stabilizer can
actually be taken C1, we can propagate the property and deal with disturbed feedback systems
of the type : 



ẋ1 = f1(x1, x2, d1) ,

ẋ2 = f2(x1, x2, d2) + g2(x1, x2, d2)x3 ,
...

ẋn = f2(x1, . . . , xn, dn) + gn(x1, . . . , xn, dn)u .

(341)

Example 342 : Taking care of uncertainties via disturbance attenuation
Consider the system : 



ẋ1 = x2 + x2
1 f(x1, x2, x3, u, t) ,

ẋ2 = x3 ,

ẋ3 = u ,

(343)

where f is an unknown continuous function taking values in [−1, 1]. We want to design a
global asymptotic stabilizer.

Since f depends on x3 and u, (not to write that it is unknown,) we cannot apply directly
the backstepping technique. So instead, for the design, we consider the following system :




ẋ1 = x2 + x2
1 d ,

ẋ2 = x3 ,

ẋ3 = u ,

(344)

where d is any function in L∞
loc([0,∞), [−1, 1]). Its first interest lies in the fact that any solution

of (343) is a solution of (344). So if we find a solution for the global asymptotic stabilization
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problem for the system (344), this same solution will be appropriate for the system (343).
The second interest of the system (344) is that it has a disturbed feedback form with two
differentiators added. So we go for a design in three steps.

Step 1 : We consider the system :

ẋ1 = u1 + x2
1 d . (345)

An appropriate CLF is simply :
V1(x1) = 1

2
x2

1 . (346)

It corresponds the global asymptotic stabilizer :

φ1(x1) = −x1 − x3
1 . (347)

Specifically, by completing the squares, we get :

˙︷ ︷
V1(x1) = −x2

1 − x4
1 + x3

1 d ∀(x1, d) ∈ R
2 , (348)

≤ −1
2
x2

1 − 1
2
x4

1 ∀(x1, d) ∈ R × [−1, 1] . (349)

Step 2 : We consider the system :




ẋ1 = x2 + x2
1 d ,

ẋ2 = u2 .
(350)

The formula (202) yields :

V2(x1, x2) = 1
2
x2

1 + 1
2
(x2 + x1 + x3

1)
2 (351)

as a CLF. Using (349), we check that its derivative satisfies :

˙︷ ︷
V2(x1, x2) ≤ −1

2
x2

1 − 1
2
x4

1 + [x2 + x1 + x3
1]
[
x1 + u2 + (1 + 3x2

1)(x2 + x2
1d)
]

, (352)

for all (x1, x2, d) in R
2 × [−1, 1]. Then, by completing the squares, we get :

(x2 + x1 + x3
1) (1 + 3x2

1)x2
1 d ≤ 1

4
x4

1 + (x2 + x1 + x3
1)

2(1 + 3x2
1)

2 , (353)

for all (x1, x2, d) in R
2 × [−1, 1]. We conclude that :

˙︷ ︷
V2(x1, x2) ≤ (354)

−1
2
x2

1 − 1
4
x4

1 + [x2 + x1 + x3
1]
[
x1 + u2 + [1 + 3x2

1][x2 + (x2 + x1 + x3
1)(1 + 3x2

1)]
]

.

A cancellation design leads to the following stabilizer :

φ2(x1, x2) = −
(
x1 + [1 + 3x2

1][x2 + (x2 + x1 + x3
1)(1 + 3x2

1)]
)
− [x2 + x1 + x3

1] , (355)

= −
(
3x1 + 3x2 + 2x3

1 + 9x2
1x2 + 6x3

1 + 15x5
1 + 9x7

1 + 18x4
1x2

)
. (356)
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It gives :

˙︷ ︷
V2(x1, x2) ≤ −1

2
x2

1 − 1
4
x4

1 − [x2 + x1 + x3
1]

2 ∀(x1, x2, d) ∈ R
2 × [−1, 1] . (357)

Step 3 : We consider the full order system (343). The formula (202) gives :

V3(x1, x2, x3) = 1
2
x2

1 + 1
2
(x2 + x1 + x3

1)
2 (358)

+ 1
2

(
x3 +

[
3x1 + 3x2 + 2x3

1 + 9x2
1x2 + 6x3

1 + 15x5
1 + 9x7

1 + 18x4
1x2

])2
.

Its derivative satisfies, for all (x1, x2, x3, d) in R
3 × [−1, 1],

˙︷ ︷
V3(x1, x2, x3) ≤ −1

2
x2

1 − 1
4
x4

1 − [x2 + x1 + x3
1]

2

+ (x3 + [3x1 + 3x2 + 2x3
1 + 9x2

1x2 + 6x3
1 + 15x5

1 + 9x7
1 + 18x4

1x2]) ×

(359)

×
(
[x2 + x1 + x3

1] + u

+
(
3 + 6x2

1 + 18x1x2 + 18x2
1 + 75x4

1 + 63x6
1 + 72x3

1x2

) (
x2 + x2

1d
)

+
(
3 + 9x2

1 + 18x4
1

)
x3

)
.

So, going on exactly as in the previous steps, we get the stabilizer :

φ3(x1, x2, x3) = (360)

−
(
x2 + x1 + x3

1

)
−
(
3 + 6x2

1 + 18x1x2 + 18x2
1 + 75x4

1 + 63x6
1 + 72x3

1x2

)
x2

−
(
3 + 9x2

1 + 18x4
1

)
x3 −

(
x3 +

[
3x1 + 3x2 + 2x3

1 + 9x2
1x2 + 6x3

1 + 15x5
1 + 9x7

1 + 18x4
1x2

])
−
(
3 + 6x2

1 + 18x1x2 + 18x2
1 + 75x4

1 + 63x6
1 + 72x3

1x2

)2
.

It gives the derivative :

˙︷ ︷
V3(x1, x2, x3) ≤ −1

2
x2

1 − [x2 + x1 + x3
1]

2 (361)

− (x3 + [3x1 + 3x2 + 2x3
1 + 9x2

1x2 + 6x3
1 + 15x5

1 + 9x7
1 + 18x4

1x2])
2

,

for all (x1, x2, x3, d) in R
3 × [−1, 1].

To summarize the key point in this example is the combination of :

• the recursive use of the formula (202) to handle each step where a differentiator is added,

• the completion of squares to manipulate the terms with disturbances •

We have seen in Theorem 145 that, when a matching condition is satisfied, we can arbitrar-
ily attenuate the action of the disturbance on the state. This property, although weakened,
extends to systems in feedback form. Namely, what can be arbitrarily attenuated, is the action
of the disturbance on the first state of this form; i.e., x1 in (210) :
Consider the following disturbed system :




ẋ = f(x) + g(x) (y + dx) ,

ẏ = h(x, y) + u + dy ,
(362)
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where the functions f and g are Ck+1 and the function h is Ck. We have (see also [28, 37, 27,
35]) :

Theorem 363 ([58])
Assume the existence of a Ck+2 Lyapunov function Vx, a strictly positive real number λ, and
a Ck+1 function φx satisfying :

˙︷ ︷
Vx(x) = LfVx(x) + LgVx(x)φx(x) ≤ −λVx(x) ∀x ∈ R

n . (364)

Let α be a class K∞ function satisfying :

α(|x|) ≤ Vx(x) . (365)

Let also γd be any non negative function such that we can find a strictly positive real number
s0 and a non negative real number µ to satisfy10 :

γd ◦ α−1(s2) ≤ µs ∀s ∈ [0, s0] , (366)

Under these conditions, there exist a Ck+1 Lyapunov function Vy satisfying :

(γd(|x|))2 ≤ (1 − ε)λVy(x, y) ∀(x, y) , (367)

for some ε > 0, and a Ck function φy : R
n → R such that we have :

˙︷ ︷
Vy(x, y) ≤ −λVy(x, y) + |(dx, dy)|2 ∀(x, y, dx, dy) . (368)

Remark 369

1. The inequalities (367) and (368) are exactly in the form needed to apply the small gain
Theorem 78. In particular the fact that, for any given function γd, we can match the
inequality (367) says that the above Theorem embeds actually a nonlinear L∞ gain
assignment result. Note however that the argument of γd in (367) is x and not (x, y).
This says that the nonlinear L∞ from (dx, dy) to x only can be assigned.

2. As Theorem 337, Theorem 363 can be used recursively to deal with systems in the form :



ẋ1 = f1(x1) + g1(x1) (x2 + d1) ,

ẋ2 = f2(x1, x2) + g2(x1, x2) (x3 + d2) ,
...

ẋn = fn(x1, . . . , xn) + gn(xn, . . . , xn) (u + dn) ,

(370)

and to design a controller which makes the closed loop system ISS and attenuates arbi-
trarily the action of (d1, . . . , dn) on x1 •

10The condition (366) is needed to guarantee the existence of a function Vy which is C1 around the origin.
A hint is that (365) and (366) give, for |x| small enough, the inequality

(γd(|x|))2 ≤ (γd ◦ α−1(Vx(x)))2 ≤ µ2 Vx(x)

to be compared with (367).
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Example 371 : Gain assignment and partial state feedback
Consider the system : 



Ẋ1 = −X3
1 + X3

4 ,

Ẋ2 = −X2 + X3 + X1 X4 ,

Ẋ3 = −X2 ,

Ẋ4 = X5 + X3 + X1 X4 ,

Ẋ5 = u + X2 .

(372)

We look for a continuous global asymptotic stabilizer which depends only on (X4, X5).
To solve this problem, we observe that this system (372) is nothing but the system (155)

to which is added a disturbed differentiator. So we continue along the lines of Example 154.
From the inequalities (33) and (45) obtained for the solutions of the system (28); i.e., the

(X1, X2, X3) subsystem with X4 as input, and from Theorem 78, we know that the problem can
be solved by finding, for the system :




ẋ = y + d2 + d1 y ,

ẏ = u + d3 ,
(373)

a CLF Vy and a continuous function φy such that, with the control :

u = φy(x, y) , (374)

the following inequality holds for the derivative :

˙︷ ︷
Vy(x, y) ≤ −λVy(x, y) + γ1(|d1|) + γ2

(√
d2

2 + d2
3

)
, (375)

where γ1 and γ2 are class K functions and λ is a strictly positive real number satisfying :

γ1(2|x|) + γ2(8x
2) ≤ (1 − ε)λVy(x, y) ∀(x, y) ∈ R

2 (376)

for some strictly positive real number ε.
The system (373) is made of the system (see (156)) :

ẋ = ux + d2 + d1 x , (377)

to which is added the disturbed differentiator :


ẏ = u + d3 ,

ux = y .
(378)

From Example 154, we know that, for the reduced order system (377), the CLF :

Vx(x) = 1
4
x4 (379)

and the control :

ux = φx(x) = −λ

4
x −

(
x3 +

3x
7
3

4

)
, (380)
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yield :
˙︷ ︷

Vx(x) ≤ −λVx(x) +
d2

2

4
+

d4
1

4
. (381)

For the full order system (373), the formula (202) gives the CLF :

Vy(x, y) = Vx(x) + 1
2
(y − φx(x))2 . (382)

By using (381), we get :

˙︷ ︷
Vy(x, y) ≤ −λVx(x) +

d2
2

4
+

d4
1

4
(383)

+ (y − φx(x)) [V ′
x(x) + u + d3 − φ′

x(x) (y + d2 + d1x)] ,

≤ −λVx(x) +
d2

2

4
+

d4
1

4
+ (y − φx(x))

[
x3 + u− φ′

x(x)y
]

(384)

+

(
(y − φx(x))2

2
+

d2
3

2

)
+

(
(y − φx(x))2φ′

x(x)2 +
d2

2

4

)

+

(
3(y − φx(x))

4
3 φ′

x(x)
4
3 x

4
3

4
+

d4
1

4

)
,

≤ −λVx(x) +
d2

2

4
+

d4
1

4
+

d2
3

2
+

d2
2

4
+

d4
1

4
(385)

+ (y − φx(x))

[
x3 + u − φ′

x(x)y +
y − φx(x)

2
+ (y − φx(x))φ′

x(x)2

+
3(y − φx(x))

1
3 φ′

x(x)
4
3 x

4
3

4

]
,

where we have completed the squares and used Young’s inequality to get (384). From there a
cancellation design leads to the control :

u = φy(x, y) , (386)

= −λ

2
(y − φx(x)) (387)

−
[
x3 − φ′

x(x)y +
y − φx(x)

2
+ (y − φx(x))φ′

x(x)2 +
3(y − φx(x))

1
3 φ′

x(x)
4
3 x

4
3

4

]
.

It gives :
˙︷ ︷

Vy(x, y) ≤ −λVy(x, y) +
d2

3 + d2
2

2
+

d4
1

2
. (388)

This shows that we have obtained (375) with the functions :

γ1(s) =
s4

2
, γ23(s) =

s2

2
. (389)

It follows that the constraint (376) rewrites :

8x4 + 32x4 ≤ (1 − ε) λ
4
x4 ∀x . (390)
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Hence global asymptotic stability holds if we choose :

λ > 160 . (391)

To summarize, the key point of this example is once again the combination of using the
formula (202) to handle the addition of a differentiator and the inequalities to handle the
terms with disturbances •
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4 C1 dissipative systems and application to systems in

feedforward form

In practice, the models with justified nonlinear dynamics we are able to write can often be
obtained via a variational formulation like within the Euler-Lagrange formalism. For such
systems a natural candidate Lyapunov function is say the total energy. Indeed this quantity
is either preserved or dissipated and gives usually a norm information on the state. By
combining such systems in series or parallel, we get quite involved structures. The technique
we are presenting now is dedicated to some such structures.

4.1 C1 dissipative systems

Definition 392
The system :

ẋ = f(x) + g(x, u)u (393)

is said C1 dissipative if there exists a C1 Lyapunov function V , called the storage function,
satisfying :

LfV (x) ≤ 0 ∀x ∈ R
n . (394)

Remark 395
From Theorem 16, for a C1 dissipative system, with the control at the origin, the origin is a
globally stable solution. Unfortunately, the converse is not true (see [3, Example V.4.11]). It
follows that, even if we know that the origin is globally stable, when u is at the origin, we still
need to exhibit a C1 Lyapunov function to establish C1 dissipativity •

Example 396 : The cart pendulum system
Consider the celebrated cart-pendulum system. Let :
– (M, X) be mass and position of the cart which is moving horizontally,
– (m, l, θ) be mass, length and angular deviation from the upward position for the pendulum

which is pivoting around a point fixed on the cart,
– finally F be a horizontal force acting on the cart and considered here as control.
The associated kinetic and potential energies are :

Ek(Ẋ , θ̇) = 1
2
(M + m)Ẋ2 + 1

2
m l2 θ̇2 + m l cos(θ) Ẋ θ̇ , (397)

Ep(θ) = m l g (cos(θ) + 1) . (398)

It follows from the Euler-Lagrange equation that the dynamics are :




(M + m)Ẍ + ml cos(θ)θ̈ = mlθ̇2 sin(θ) + F ,

Ẍ cos(θ) + lθ̈ = g sin(θ) .
(399)

We restrict here our attention to the three coordinates (θ, Ẋ , θ̇) leaving in the manifold S
1×R

2.
We consider the function :

V(θ, Ẋ, θ̇) = Ek(Ẋ , θ̇) + Ep(θ) ; (400)
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i.e., the total energy. It is C1 and proper on S
1×R

2. It has two stationary points, a global min-
imum at (π, 0, 0) and a saddle point at (0, 0, 0). So it is a C1 Lyapunov function for the point
(π, 0, 0). Also, either by invoking the Euler-Lagrange formalism or by direct computation, we
get :

˙︷ ︷
V(θ, Ẋ , θ̇) = F Ẋ . (401)

This shows that the cart-pendulum system, restricted to the coordinates (θ, Ẋ , θ̇), is C1 dissi-
pative and actually passive with Ẋ as output.

To summarize the key point of this example is, for this mechanical system, the use of the
total energy as storage function for establishing the C1 dissipativity property •

From its definition, a C1 dissipative system is a passive system for the particular output
function :

h(x, u) =
∂V

∂x
(x) g(x, u) . (402)

If the system is also zero-state detectable, it follows from Theorem 20 that global asymptotic
stability of the origin is provided by the control obtained as solution of :

u = −h(x, u) = −∂V

∂x
(x) g(x, u) , (403)

when it makes sense. This result can be generalized as follows :

Theorem 404 ([8, Corollary 1.6])
Assume the system (393) is C1 dissipative and zero-state detectable with output function(

W (x) ∂V
∂x

(x)g(x, 0)
)
. Then, for any real number u in (0, +∞], there exists a continu-

ous global asymptotic stabilizer strictly bounded in norm by u.

Remark 405
The controller mentioned in this Theorem is any continuous function φ satisfying :

|φ(x)| < u ∀x ∈ R
n , (406)∣∣∣∣∂V

∂x
(x)g(x, 0)

∣∣∣∣ 
= 0 =⇒ ∂V

∂x
(x)g(x, φ(x))φ(x) < 0 . (407)

For instance, when g does not depend on u, we can take :

φ(x) = −min

{
u

|LgV (x)| , 1

}
LgV (x)T . (408)

When g depends on u, it is more difficult to give an expression, but instead we can propose
the dynamic controller (see [48]) :




Ẋ = −
[
1 − |X |2

u2

] [
∂V
∂x

(x) g(x, X)
]� − X ,

u = X .
(409)

It is designed by applying the backstepping technique with the CLF :

VX (x, X) = V (x) − u2

2
log

(
1 − |X |2

u2

)
. (410)
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Example 411 : Dealing with input constraints (other solution)
Consider the system : 



ẋ1 = u ,

ẋ2 = x3
3 ,

ẋ3 = −x2 + u .

(412)

We look for a continuous global asymptotic stabilizer φ satisfying :

|φ(x1, x2, x3)| ≤ 1 . (413)

The system (412) is C1 dissipative. Indeed the C1 Lyapunov function :

V (x1, x2, x3) = 1
2
x2

1 + 1
2
x2

2 + 1
4
x4

3 (414)

gives :
˙︷ ︷

V (x1, x2, x3) = (x1 + x3
3)u . (415)

This derivative is made non positive by taking :

u = φ(x1, x2, x3) = −sat(x1 + x3
3) , (416)

with the function sat defined in (242). This control law guarantees the global asymptotic
stability of the origin since this point is the only solution of the following two sets of equations :



ẋ1 = 0

ẋ2 = x3
3

ẋ3 = −x2

, x1 + x3
3 = 0 • (417)

Example 418 : Orbit transfer with weak but continuous thrust
The Gauss equations describe the dynamics of a point mass satellite subject to a thrust. In
appropriate coordinates and for the case of a two dimensional thrust, these equations are (see
[7]) : 



ṗ = 2 pS ,

ε̇ = −j �(p, ε) ε + [ε + (2 + Re(ε))] S ,

η̇ = −j [�(p, ε) − Im(η)W ] η + 1
2
(1 + |η|2)W ,

(419)

where :
– the state variables (p, ε, η) in R × C

2, called the orbital parameters, are, with j2 = −1,



p = a (1 − e2) ,

ε = e [cos(ω + Ω) + j sin(ω + Ω)] [cos(L) − j sin(L)] ,

η = tan(i/2) [cos(Ω) + j sin(Ω)] [cos(L) − j sin(L)] ,

L = ω + Ω + v ,

(420)
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where a is the semi-major axis, e is the eccentricity, i is the inclination to the equator, Ω is
the right ascension of the ascending node, ω is the angle between the ascending node and
the perigee, v is the true anomaly. Note that, from their definitions, p and ε satisfy :

|ε| < 1 , p > 0 . (421)

– S is the component of the thrust which is colinear with the kinetic momentum and W is
the component orthogonal to S and to the earth-satellite axis.

– Re and Im denote the real and imaginary part and �(p, ε) is a C1 function.
We look for a continuous control law for (S, W ) satisfying :

S2 + W 2 ≤ γ2
max (422)

for a given strictly positive real number γmax, and such that the orbit whose parameters are
(p̄, 0, 0) is made an asymptotically stable attractor.

To get a solution, we note that, by definition, without any thrust, the orbit and therefore
each orbital parameter is unchanged. So an appropriate storage function is given by the sum
of functions of one parameter only. With in mind the constraints (421), we let :

V (p, ε, η) = 1
2

[
log

(
p

p̄

)]2

− 1
2

log
(
1 − |ε|2

)
+ |η|2 . (423)

This yields :

˙︷ ︷
V (p, ε, η) =

(
2 log

(
p

p̄

)
+

|ε|2 + Re(ε)(2 + Re(ε))

1 − |ε|2

)
S + Re(η) (1 + |η|2)W . (424)

This establishes the C1 dissipativity property. Also
˙︷ ︷

V (p, ε, η) is made non negative by picking

the vector

(
S
W

)
as a Lipschitz continuous function of the state, colinear to the vector :

−


 2 log

(
p
p̄

)
+ |ε|2+Re(ε)(2+Re(ε))

1−|ε|2

Re(η) (1 + |η|2)




and with any non zero norm, satisfying (422), as long as this latter vector is non zero. With
such a control, asymptotic stability of the desired orbital parameters can be established with
the help of Theorem 16, considering the full order system (419). Actually, by studying the
linearization of the closed-loop system, we can check that local exponential stability holds
also •

4.2 C1 dissipative systems via reduction or extension

Consider a system whose dynamics can be written in the following triangular form :


ẏ = h(x) + hu(x, y, u)u ,

ẋ = f(x) + fu(x, u)u ,
(425)

with x in R
n and y in R

q and where f and h are C1 and zero at the origin. We want to study
when the C1 dissipativity of the full order system (425) implies the C1 dissipativity of the
reduced order x subsystem, and conversely.
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4.2.1 Reduction

Assume the system (425) is C1 dissipative; i.e., we have a C1 Lyapunov function Vy satisfying,
when u is at the origin,

˙︷ ︷
Vy(x, y) =

∂Vy

∂x
(x, y) f(x) +

∂Vy

∂y
(x, y)h(x) ≤ 0 . (426)

We are looking for a C1 Lyapunov function Vx satisfying :

∂Vx

∂x
(x) f(x) ≤ 0 . (427)

Clearly if there exists a function M satisfying :

∂Vy

∂y
(x,M(x)) = 0 , (428)

it is sufficient to take :
Vx(x) = Vy(x,M(x)) . (429)

But, since Vy is C1 Lyapunov function, for each given x, it has a global minimum and therefore
at least one stationary point reached at say y = M(x). So this function M satisfying (428)
does exist. We can also impose :

M(0) = 0 . (430)

Lemma 431
If Vy is C2 and M is Hölder continuous of order strictly larger than 1

2
then the x subsystem

of (425) is C1 dissipative with storage function :

Vx(x) = Vy(x,M(x)) . (432)

Moreover, if the function M is C1 and, for each point x in R
n \ {0}, each unit vector v in R

q,
and each positive real number k, we can find a point y in R

q satisfying11 :

k

∣∣∣∣∂Vy

∂x
(x, y)

∣∣∣∣ <
∂Vy

∂y
(x, y) v , (433)

where we have let :

y = y − M(x) , Vy(x, y) = Vy(x, y + M(x)) , (434)

then we have :
˙︷ ︷

M(x) =
∂M
∂x

(x) f(x) = h(x) (435)

and Vx(x) + 1
2
|y −M(x)|2 is another storage function for the full order system (425).

11 The condition (433) says that the growth of ∂Vy

∂y
with respect to y dominates the one of ∂Vy

∂x in all the
directions.
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Remark 436
The equation (435) implies that for each solution X(x, t; 0) of the reduced order x subsystem
with u at the origin, we have :

M(X(x, T ; 0)) − M(x) =

∫ T

0

h(X(x, t; 0))dt ∀T ≥ 0 . (437)

So, if the origin is a globally asymptotically stable solution of the reduced order x subsystem
with u at the origin, we get, with (430),

M(x) = − lim
T→+∞

∫ T

0

h(X(x, t; 0))dt • (438)

4.2.2 Extension

Let us study now how to establish C1 dissipativity by extension. The idea to tackle this
problem is to find conditions under which Lemma 431 applies.

First, we assume that, when u is at the origin, the origin is a globally asymptotically stable
solution of the reduced order x subsystem of the system (425). With (590), this implies there
exist two class K∞ functions α1 and α2 such that, for any solution X(x, t; 0) of the x subsystem
with u at the origin, we have :

α1(|X(x, t; 0)|) ≤ α2(|x|) exp(−t) ∀t ≥ 0 . (439)

Second, to guarantee the existence of the limit in (438), we assume that the function |h|
is sufficiently “flat” around the origin so that we have12 :

lim sup
|x|→0

|h(x)|
α1(|x|)

< +∞ . (440)

Indeed, with (439), this inequality implies the existence of a class K∞ function α3 such that
we have : ∫ ∞

0

|h(X(x, t; 0))|dt ≤ α3(|x|) ∀x ∈ R
n . (441)

Example 442 :
Consider the system :

ẋ = −x3 . (443)

Its solutions are :
X(x, t) =

x√
1 + 2tx2

. (444)

When the function h is :
h(x) = x2 , (445)

we get : ∫ T

0

h(X(x, t))dt = 1
2

log(1 + 2Tx2) . (446)

12 In the case where the origin is locally exponentially stable, we can always get α1(s) = s for s small, so
that (440) holds when h is C1 and zero at the origin.
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As T goes to infinity, this integral goes to +∞ for all non zero x. On the other hand, when
we have the “flatter” function :

h(x) = x4 , (447)

we get : ∫ T

0

h(X(x, t))dt =
x2

2

(
1 − 1

1 + 2Tx2

)
. (448)

This integral converges to x2

2
. We conclude that, for the given system (443), the function

h(x) = x2 is not “flat” enough whereas the function h(x) = x4 is “flat” enough. It is interesting
to relate this fact with the following ones :

• The origin of the system : 


ẏ = x2 + u ,

ẋ = −x3 + u ,
(449)

is not asymptotically stabilizable by a continuous controller.

• The origin of the system : 


ẏ = x4 + u ,

ẋ = −x3 + u ,
(450)

is asymptotically stabilizable by the continuous controller :

u = −x − (1 + x)
(
y + 1

2
x2
)

(451)

associated with the Lyapunov function :

Vy(x, y) = 1
2
x2 + 1

2

(
y + 1

2
x2
)2 • (452)

When (441) holds, from [11, Théorème (3.149)] for instance, we know that the following
function M is well defined and continuous on R

n :

M(x) = −
∫ ∞

0

h(X(x, t; 0))dt . (453)

And, as it can be checked “by hand”, we have :

˙︷ ︷
M(x) = h(x) ∀x ∈ R

n . (454)

With this function, the system (425) gives, when u is at the origin,




˙︷ ︷
y −M(x) = 0 ,

ẋ = f(x) .
(455)

It follows that the origin is a globally stable solution of (425) when u is at the origin. If M
is not only continuous but also C1, then the system (425) is C1 dissipative. Specifically, with

51



the help of Theorem 22, our assumption of global asymptotic stability implies the existence
of a C1 Lyapunov function Vx such that the function :

Wx(x) = −LfVx(x) (456)

is positive definite. Then by letting :

Vy(x, y) = Vx(x) + 1
2
|y −M(x)|2 , (457)

we get, for the system (425), when u is at the origin,

˙︷ ︷
Vy(x, y) = −Wx(x) . (458)

This shows that Vy is a storage function.
To summarize the possibility of going from global asymptotic stability to C1 dissipativity

while extending the reduced order x subsystem into the full order system (425) relies on the
following two properties :

1. The function |h| is “flat” enough so that (440) holds. This guarantees the existence and
the continuity of a function M satisfying (454).

2. The function M is actually C1. This guarantees that the system (425) is C1 dissipative.

4.2.3 Application

With the storage function (457), we are ready to apply Theorem 404 and possibly get a global
asymptotic stabilizer if the zero-state detectability assumption holds for the system (425). So,
with the two properties above, this detectability condition and the stabilizer we can get, we
are with the closed loop full order system (425) in exactly the same situation as we were with
the open loop reduced order x subsystem. This means that we are ready to deal with the
further extended system :




ż = k(x, y) + ku(x, y, z, u)u ,

ẏ = h(x) + hu(x, y, u)u ,

ẋ = f(x) + fu(x, u)u ,

(459)

which is obtained by adding the integrator :

ż = k(x, y) + ku(x, y, z, u)u . (460)

Here the new state z integrates functions of all the previously introduced state components.
So we maybe able by recursion to do a Lyapunov design of global asymptotic stabilizers for
systems in the form :




ẋn = fn(x1, . . . , xn−1) + gn(x1, . . . , xn, u)u ,
...

ẋ2 = f2(x1) + g1(x1, x2, u)u ,

ẋ1 = f1(x1) + g1(x1, u)u .

(461)
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This form is called feedforward form. It is obtained by adding recursively integrators.
In the following paragraphs, we study this technique in more details. But before closing

this section, an important remark has to be made.

Remark 462

1. As for the backstepping technique, the Lyapunov function Vy defined in (457) has re-
ceived an interpretation in terms of a new of coordinate. It corresponds to the forwarding
technique. It has been introduced and developed in [48]. The change of coordinate is :

y = y − M(x) . (463)

Its existence relies on the existence of the vector valued function M. It yields to the
Lyapunov function :

Vy(x, y) = Vy(x, y) = Vx(x) + 1
2
|y|2 . (464)

2. The Lyapunov function Vy can also be written as :

Vy(x, y) = Vx(x) + 1
2
|y|2 + S(x, y) (465)

with :
S(x, y) = −yTM(x) + 1

2
|M(x)|2 . (466)

Namely Vy is made of the sum of three terms :

– the Lyapunov function for the reduced order x subsystem,

– the Lyapunov function for the extending y subsystem, which would be appropriate if
x were at the origin,

– a cross term S.

This point of view with a cross term has been introduced and developed in [26]. It applies
to a broader class of systems than the forwarding technique (see [64]), the existence of a
C1 scalar cross term S holding under weaker conditions than a C1 vector function M.
In the following, we deal only with the change of coordinates, leaving to the reader to
consult [64] to get more information about the cross term technique •

4.3 The forwarding technique with an exact change of coordinates

4.3.1 The technique

The forwarding technique with an exact change of coordinates we have introduced in the
previous section applies in fact to a larger class of systems than (425) (and therefore, by
recursion, larger than (461)). It is :




ẏ = hy(y) + hx(x, y)x + hu(x, y, u)u ,

ẋ = f(x) + fu(x, y, u)u ,
(467)

where all the functions are C1 and with still the assumption of global asymptotic stability of
the origin of the x subsystem when u is at the origin. More precisely :
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H1 : There exists a C1 Lyapunov function Vx such that the function :

Wx(x) = −LfVx(x) (468)

is positive definite.

The difference between (425) and (467) is in the fact that the function h can actually depend
on y and is then decomposed into the sum hy+hxx. However this dependence on y is restricted
by the following assumption :

H2 : There exists a C1 Lyapunov function Vy such that the function :

Wy(y) = −LhyVy(y) (469)

is non positive.

This implies that, when u and x are at the origin, the origin is a globally stable solution of
the y subsystem.

For the system (467), we assume the knowledge of a function Ψ which is C1 and satisfies
the properties :

P1 : We have :
Ψ(0, y) = y . (470)

P2 : For each non negative real number c, the set {y : ∃x ∈ R
n : |x| ≤ c , |Ψ(x, y)| ≤ c} is

bounded.

P3 : Ψ is a solution of the partial differential equation :

∂Ψ

∂x
(x, y) f(x) +

∂Ψ

∂y
(x, y) (hy(y) + hx(x, y)x) = hy(Ψ(x, y)) . (471)

The fact of needing to find a solution to (471) implies that finding an expression for Ψ may
not be an easy task. But assuming we have it satisfying the properties P1, P2 and P3, we
introduce a new “coordinate”13 :

y = Ψ(x, y) . (472)

Then, for the (x, y) “coordinates”, the dynamics (467) give :




ẏ = hy(y) +
(

∂Ψ
∂x

(x, y)fu(x, y, u) + ∂Ψ
∂y

(x, y)hu(x, y, u)
)

u ,

ẋ = f(x) + fu(x, y, u)u .
(473)

We have (see [48]) :

13y is abusively called a coordinate since we do not impose a bijection between (x, y) and (x, y). In fact the
analysis goes by picking a solution in the (x, y) coordinates, study its properties with (x, y) and infer properties
in the (x, y) coordinates.

54



Theorem 474
Under the assumptions H1 and H2, if there exists a function Ψ satisfying the properties P1,
P2 and P3, the system (467) is C1 dissipative with storage function :

Vy(x, y) = Vx(x) + Vy(Ψ(x, y)) . (475)

Moreover, for any real number u in (0, +∞], there exists a continuous global asymptotic sta-
bilizer strictly bounded in norm by u if the system (467) is zero-state detectable with output
function :




∂Vx

∂x
(x)fu(x, y, 0) + ∂Vy

∂y
(Ψ(x, y))

(
∂Ψ
∂x

(x, y)fu(x, y, 0) + ∂Ψ
∂y

(x, y)hu(x, y, 0)
)

Wx(x)
Wy(Ψ(x, y))




T

or, in the case where Wx is positive definite, if the y subsystem is zero-state detectable with
input (x, u) and output function :

(
∂Vy

∂y
(y)∂Ψ

∂x
(0, y)fu(0, y, 0) + ∂Vy

∂y
(y)hu(0, y, 0) Wy(y)

)
.

Remark 476

1. For the storage function (475), it is sufficient for Vx to be a C1 Lyapunov function such
that Wx given by (468) is non negative (and not positive definite as imposed by H1).

2. An expression of the stabilizer can be obtained as explained in Remark 405. It does
require an expression for the function Ψ •

Example 477 :
Consider the system : 



ẏ = x1 + x2
2 ,

ẋ1 = x2 ,

ẋ2 = −x1 − x2 + u .

(478)

Assumption H1 holds with the functions :

Vx(x1, x2) = x2
2 + x2 x1 + x2

1 , (479)

Wx(x1, x2) = Vx(x1, x2) . (480)

Also, the origin is an exponentially stable solution of the (x1, x2) subsystem when u is zero.
Assumption H2 holds with the functions :

Vy(y) = 1
2
y2 , Wy(y) = 0 . (481)

Since the solutions (X1(x1, x2; t), X2(x1, x2; t)) of the (x1, x2) subsystem are exponentially
converging to zero when u is zero, the function :

M(x1, x2) = −
∫ ∞

0

[
X1(x1, x2; s) + X2(x1, x2; s)

2
]
ds , (482)
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is well defined, C1 (see [11, Théorème 3.150]) and, as can be checked “by hand” satisfies :

˙︷ ︷
M(x1, x2) = x1 + x2

2 , (483)

M(0, 0) = 0 . (484)

Finally, the function Ψ defined as :

Ψ(x1, x2, y) = y − M(x1, x2) (485)

satisfies P1, P2 and P3.
To get an expression for M, and therefore Ψ, we note that it is a solution of :

∂M
∂x1

(x1, x2)x2 − ∂M
∂x2

(x1, x2) (x1 + x2) =
(
x1 + x2

2

)
. (486)

By taking a solution in the form of a polynomial function of order 2 in (x1, x2) and by equating
the coefficients, we get :

M(x1, x2) = −
(
x1 + x2 + 1

2
[x2

1 + x2
2]
)

. (487)

With this expression at hand, we introduce the new coordinate :

y = Ψ(x, y) = y +
(
x1 + x2 + 1

2
[x2

1 + x2
2]
)

. (488)

The system (478) rewrites :



ẏ = (1 + x2)u ,

ẋ1 = x2 ,

ẋ2 = −x1 − x2 + u .

(489)

Then, with (479), we propose the Lyapunov function :

Vy(x1, x2, y) =
(
x2

2 + x2x1 + x2
1

)
+ 1

2
y

2 . (490)

It gives :
˙︷ ︷

Vy(x1, x2, y) = (2[1 + x2]y + 2[2x2 + x1])u −
(
x2

2 + x2x1 + x2
1

)
. (491)

Since the function :

Wy(x1, x2, y) =
(
x2

2 + x2x1 + x2
1

)
+ (2[1 + x2]y + 2[2x2 + x1])

2 (492)

is positive definite, we conclude that :

φ(x1, x2, y) = − (2[1 + x2]y + 2[2x2 + x1]) (493)

is a global asymptotic stabilizer which, thanks to (487), we can write explicitly in :

φ(x1, x2, y) = −
(
2[1 + x2]

[
y +

(
x1 + x2 + 1

2
[x2

1 + x2
2]
)]

+ 2[2x2 + x1]
)

. (494)

To summarize the key point in this example is to make sure that the conditions of existence
of the change of “coordinate” are satisfied and then find it via the solution of the partial
differential equation (486) •
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4.3.2 About the change of “coordinates”

We have seen that the forwarding technique with an exact change of coordinates relies mainly
on the existence and the knowledge of an expression of the C1 function Ψ satisfying the three
properties P1, P2 and P3. To get a better idea of what this function Ψ is, we set u at the
origin and we observe that the mapping between the solutions (X(x, y, t), Y (x, y, t)) of the
system (467) and those Y(y, t) of the system (473) yields, for all t in the respective domain
of existence,

Ψ(X(x, y, t), Y (x, y, t)) = Y(Ψ(x, y); t) . (495)

Since hy is C1, the solutions Y(y, t) are unique and we have :

Y(Y(y, t);−t) = y . (496)

So (495) rewrites :
Ψ(x, y) = Y(Ψ(X(x, y, t), Y (x, y, t));−t) . . (497)

If the corresponding solutions exist on [0, +∞) and (−∞, 0] respectively, this implies :

Ψ(x, y) = lim
t→+∞

Y(Ψ(X(x, y, t), Y (x, y, t));−t) . (498)

Now, we remark that we have, from H1 and (470) in P1,

lim
t→+∞

X(x, y, t) = 0 , Ψ(0, y) = y . (499)

So if “everything works fine” when the limit “enters” the function Y in (497), the function Ψ
is given by :

Ψ(x, y) = lim
t→+∞

Y(Y (x, y, t);−t) . (500)

To be fully rigorous, let us restrict our attention to the case where the function hy is linear;
i.e.,

hy(y) = H y . (501)

In this case, we get :

Y(y, t) = exp(Ht) y , (502)

Y (x, y, t) = exp(Ht) y +

∫ t

0

exp(H(t − s))hx(X(x, y, s), Y (x, y, s))X(x, y, s) ds . (503)

So (500) rewrites :

Ψ(x, y) = y +

∫ ∞

0

exp(−Hs)hx(X(x, y, s), Y (x, y, s))X(x, y, s) ds . (504)

With a proof mimicking the arguments of [64, Sections 5.2.1 and 5.2.2], we have the following
existence result :

Lemma 505
Assume H1 and H2 hold with hy(y) = Hy. If we have :

1. max
{
Re
(
eigen value

(
∂f
∂x

(0)
))}

< min {0 , Re (eigen value (H))} , (506)
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2. the function (of x) supy
|hx(x,y)|

1+|y| is locally bounded,

then the function Ψ given by (504) is well defined, C1, satisfies the properties P1, P2 and P3
and is a solution of (471) which, in the present case, is :

∂Ψ

∂x
(x, y) f(x) +

∂Ψ

∂y
(x, y) [Hy + hx(x, y)x] = H Ψ(x, y) . (507)

Remark 508
Since the condition (506) implies the local exponential stability of the origin of the x subsystem
of (467), the “flatness” constraint discussed in section 4.2 is always satisfied •

Knowing with Lemma 505 that the function Ψ exists, as already observed in Example 477,
we can get an expression for it :

• either by solving the partial differential equation (471) ,

• or, for each (x, y), by computing the solutions (X(x, y, t), Y (x, y, t)) of the system (467)
with u at the origin, those Y(y, t) of the system (473) and then by evaluating the limit
(500) (or the integral (504)) (method of characteristics).

For any real world application, this program seems to be out of range. Nevertheless, it may
still be possible to get an expression for Ψ. The idea is that, by definition, we should have,
when hy(y) = 0 :

˙︷ ︷
Ψ(x, y)− y = hx(x, y)x . (509)

This says that we look for a function of (x, y) whose derivative is hx(x, y)x. To make such a
search fruitful, it maybe opportune to get prepared while dealing before with the x subsystem.

Example 510 : The cart pendulum system (continued) (see [71])
Let us come back to the cart-pendulum of Example 396. Our ultimate goal is to make the
upward position of the pendulum and the zero position of the cart asymptotically stable with
a basin of attraction as large as possible. As a step toward this goal, we study here the
possibility of asymptotically stabilizing the homoclinic orbit14 of the pendulum and the zero
position of the cart. The motivation is that, if such an objective is met, all the solutions
arrive in finite time in the neighborhood of the point to be made asymptotically stable. In
this situation, we can switch the controller to a linear controller locally stabilizing this point.

To meet our objective and simplify the computations, we modify the cart-pendulum system
into another one by changing the control into :

F = m sin(θ)
(
g cos(θ) − lθ̇2

)
+

g

l

(
M + m sin(θ)2

)
u , (511)

14The one which makes just one turn in infinite time.
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with u as new control. Also, in order to simplify the equations, we change the coordinates
and time as follows : 



x = 1
l
X ,

v = 1√
gl

Ẋ ,

θ = θ ,

ω =
√

l
g
θ̇ ,

τ =
√

g
l
t .

(512)

Then still denoting by “
.

” the derivation with respect to the new time τ , the new system is :



ẋ = v ,

v̇ = u ,

θ̇ = ω ,

ω̇ = sin(θ) − u cos(θ) .

(513)

We view this system as made of a first subsystem with state variables (v, θ, ω) which is extended
by adding the integrator giving the position. So we proceed in two steps :

Step 1 : We consider the (v, θ, ω) subsystem. We look for a controller making asymptotically
stable the following set with an as large as possible domain of attraction :

S =
{
(v, θ, ω) : E(ω, θ) = 1

2
ω2 + cos(θ) = 1 , v = 0

}
. (514)

E is actually the total mechanical energy of the pendulum alone. When E = 1, the pendulum
is on its homoclinic orbit. To meet the stabilization objective of this step, it is sufficient to
find a C1 positive definite and proper function V in the variable (E − 1, v) and to make its
derivative non positive on an as large as possible domain. Since we have :

Ė = − cos(θ)ω u , v̇ = u , (515)

a good candidate for V is :

V (E − e, v) = VE(E − 1) + kv

2
v2 , (516)

where kv is a strictly positive real number and VE is a C2 function defined at least on [−2, +∞)
where it is proper and satisfies15 :

VE(s) = 0 ⇒ s = 0 , (517)

V ′
E(s) = 0 ⇒ s = 0 , (518)

lim
s→+∞

VE(s) = +∞ . (519)

At this stage we do not specify what VE is. As in Example 299, we want to keep some flexibility
for handling the second step. We get :

V̇ = [−V ′
E(E − 1)ω cos(θ) + kv v]u . (520)

15The last property and the fact that θ lives in S
1 imply that if, E is bounded, so is ω.

59



Hence an appropriate controller is :

φ(v, θ, ω) = m(v, θ, ω) (V ′
E(E − 1)ω cos(θ) − kv v) (521)

where m is any strictly positive, Lipschitz continuous function.

Step 2 : We consider now the full order system (512). To meet our stabilization objective it
remains to asymptotically stabilize x at zero. We observe that the system (512) is obtained
from the (v, θ, ω) subsystem by adding the integrator :

ẋ = v . (522)

So we apply the forwarding technique with an exact change of coordinates. It leads us to look
for a C1 function M(v, θ, ω) such that, when u is given by (521), we have :

˙︷ ︷
M(v, θ, ω) = v . (523)

To find an expression for this function, we try to express v as the derivative of a function of
(v, θ, ω). We remark that, with (521), the v̇ equation in (513) rewrites as :

u = v̇ = m(v, θ, ω) (V ′
E(E − 1)ω cos(θ) − kv v) , (524)

or :

kv v =
v̇

m(v, θ, ω)
+ V ′

E(E − 1)ω cos(θ) . (525)

For the last term, with the help of (515), we get :

V ′
E(E − 1)ω cos(θ) =

˙︷ ︷
V ′

E(E − 1) sin(θ) + V ′′
E (E − 1) sin(θ)ω cos(θ)u , (526)

=
˙︷ ︷

V ′
E(E − 1) sin(θ) + V ′′

E (E − 1) sin(θ)ω cos(θ) v̇ . (527)

This yields :

kv v =
˙︷ ︷

V ′
E(E − 1) sin(θ) − 1 −m(v, θ, ω)V ′′

E (E − 1) sin(θ)ω cos(θ)

m(v, θ, ω)
v̇ . (528)

Also, for any C1 function q, we have :

˙︷ ︷
q(v) = q′(v) v̇ . (529)

Collecting all the above relations, we get :

kv v = −
˙︷ ︷

q(v) +
˙︷ ︷

V ′
E(E − 1) sin(θ) − 1 − m(v, θ, ω) [V ′′

E (E − 1) sin(θ)ω cos(θ) + q′(v)]

m(v, θ, ω)
v̇

(530)
This shows that, if we choose the function m satisfying :

1 −m(v, θ, ω) [V ′′
E (E − 1) sin(θ)ω cos(θ) + q′(v)]

m(v, θ, ω)
= 1 , (531)

60



or in other words :

m(v, θ, ω) =
1

1 + q′(v) + V ′′
E (E − 1) sin(θ) cos(θ)ω

, (532)

then we have simply :

kv v = −
˙︷ ︷

q(v) +
˙︷ ︷

V ′
E(E − 1) sin(θ) − v̇ . (533)

By comparing to (523), we see that we have obtained the expression we were looking for :

M(v, θ, ω) =
−q(v) + V ′

E(E − 1) sin(θ) − v

kv

. (534)

Before going on, we have to make sure that the function m given by (532) is appropriate; i.e.,
for all (v, θ, ω), we have :

1 + q′(v) + V ′′
E (E − 1) sin(θ) cos(θ)ω > 0 . (535)

But, since the definition of E in (514) gives :

|ω| ≤
√

2(E + 1) , (536)

we conclude that it is sufficient to impose that q′(v) is non negative for all v and :

V ′′
E (s)

√
2(s + 2) ≤ η < 1 ∀s ∈ [−2, +∞) . (537)

Let us note also that if the functions16 |V ′
E(s)|

√
2(s + 2) and |v|

q′(v)
are bounded then so is the

control φ in (521).
Let us now come back to our design. We follow the forwarding technique with an exact

change of coordinates and let :

y = x − q(v)− V ′
E(E − 1) sin(θ) − v

kv
, (538)

u = uy +
V ′

E(E − 1)ω cos(θ) − kvv

1 + q′(v) + V ′′
E (E − 1) sin(θ) cos(θ)ω

. (539)

This gives :

ẏ =
1 + q′(v) + V ′′

E (E − 1) sin(θ) cos(θ)ω

kv

uy . (540)

Then, with (516), we take :

V (x, v, θ, ω) = VE(E − 1) +
kv

2
v2 + Vy(y) (541)

where Vy is any C1 Lyapunov function. The stationary points of V are all on the homoclinic
orbit we want to asymptotically stabilize. We get :

V̇ = [−V ′
Eω cos(θ) + kvv]

[
uy +

V ′
Eω cos(θ) − kvv

1 + q′ + V ′′
E sin(θ) cos(θ)ω

]
(542)

16We can take for instance : q(v) = v|v| and VE(s) = (1 + s2)
1
4 .
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+
1 + q′ + V ′′

E sin(θ) cos(θ)ω

kv
V ′

y uy .

This yields to the possible choice :

uy = − [−V ′
E(E − 1)ω cos(θ) + kvv] − 1 + q′(v) + V ′′

E (E − 1) sin(θ) cos(θ)ω

kv
V ′

y (y) . (543)

Actually we can choose uy, VE , q and Vy in such a way that :

• The final controller is bounded by any a priori given bound,

• We have, using (535),

V̇ = 0 ⇒ [V ′
E(E − 1)ω cos(θ) − kvv] = V ′

y (y) = 0 . (544)

Vy being a Lyapunov function, with (543), we have also :

V̇ = 0 ⇒ [V ′
E(E − 1)ω cos(θ) − kvv] = y = u = 0 . (545)

Then, by successive derivations, we can check that any solution of the closed loop system
which satisfies :

[V ′
E(E − 1)ω cos(θ) − kvv] = y = u = 0 (546)

satisfies also either :
E = 1 , x = v = 0 , (547)

or :
θ ∈ {0, π} , ω = x = v = 0 . (548)

From Theorem 16, we conclude that all the solutions of the closed loop system converge
either to the desired set

{
(x, v, θ, ω) : E(ω, θ) = 1

2
ω2 + cos(θ) = 1 , x = v = 0

}
or one

of the two the equilibrium points (θ ∈ {0, π}, ω = x = v = 0). By looking at the
linearization of the dynamics at these points, it can be seen that they have a stable
manifold and an unstable manifold. From [38], we conclude that the set of points in
R

2 × S
1 × R and not belonging to the domain of attraction of the desired set is of

measure zero. And the solutions issued from such points all converge to the equilibrium
points (θ = kπ, x = v = ω = 0) •

4.4 The forwarding technique with an approximate change of co-
ordinates

We have mentioned that, from a practical point of view, the main difficulty in applying the
forwarding technique with an exact change of coordinates is to find an expression for the
function Ψ. So, one may ask if we could use an approximation. We address this question now
(see [48]).

Let Ψa be an approximation of Ψ to which we impose to be C1, and to satisfy P1 and P2.
It allows us to introduce the new “coordinate” :

y = Ψa(x, y) . (549)
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The system (467) rewrites as :



ẏ = hy(y) + hx(x, y)x + hu(x, y, u)u ,

ẋ = f(x) + fu(x, y, u)u ,
(550)

where in particular the function hx is given by :

hx(x, y)x =
∂Ψa

∂x
(x, y) f(x) +

∂Ψa

∂y
(x, y) (hy(y) + hx(x, y)x) − hy(Ψa(x, y)) . (551)

As opposed to (471), Ψa being only an approximation, the term hx x is not zero. Concerning
f and hy, we keep the assumptions H1 and H2 considered for the case where we have the exact
Ψ. Concerning hxx, we assume17 :

P3’ : There exists a continuous function 	 which is proper and with a continuous strictly
positive derivative 	′ defined on (0, +∞) such that 	′(Vx(x))∂Vx

∂x
(x) has a continuous

extension at the origin and we have :
∣∣∣∣∂Vy

∂y
(Ψa(x, y)) hx(x, y)x

∣∣∣∣ ≤ 	′(Vx(x))Wx(x) (1 + Vy(Ψa(x, y))) ∀(x, y) . (552)

In the case where the origin is locally exponentially stable for the x subsystem of (550)
with u at the origin, the above inequality reduces to :

∣∣∣∣∂Vy

∂y
(Ψa(x, y)) hx(x, y)

∣∣∣∣ ≤ |x| γ(|x|) (1 + Vy(Ψa(x, y))) ∀(x, y) (553)

with γ some non decreasing, non negative continuous function.

Remark 554

1. While P3 was leading to the fact that, with the exact change of “coordinate”, hxx was
zero, P3’ imposes only a magnitude limitation on this term for x small and Ψa(x, y)
large. Wx in the right hand side of (552) quantifies how much hxx should be “flat” for
x close to the origin with respect to the strength of attractiveness of the origin of the x
subsystem. In particular, in a generic situation, (552) or (553) implies (with P1) :

hx(0, y) = 0 . (555)

This is mainly saying that the transformed hxx should be “flatter” around the origin
than the original hxx.

2. With P1, (551) and (555) give :

0 =
∂Ψa

∂x
(0, y)

∂f

∂x
(0) +

∂2Ψa

∂x∂y
(0, y) 
 hy(y) + hx(0, y) − ∂hy

∂y
(y)

∂Ψa

∂x
(0, y) . (556)

So instead of the partial differential equation (471) in the (x, y) variables, we have now
a partial differential equation in the y variable only (see Example 560) •

17 The meaning and implications of the inequalities (552) or (553) are given in [48].
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We have :

Theorem 557 ([48])
Under the assumptions H1 and H2, if there exists a function Ψa satisfying the properties P1,
P2 and P3’, the system (467) is C1 dissipative with storage function :

Vy(x, Ψa(x, y)) = 2 	(Vx(x)) + log(1 + Vy(Ψa(x, y))) . (558)

Moreover, for any real number u in (0, +∞], there exists a continuous global asymptotic stabi-
lizer strictly bounded in norm by u when the y subsystem of (467) is zero-state detectable with
input (x, u) and output function :

(
∂Vy

∂x
(y)∂Ψa

∂x
(0, y)fu(0, y, 0) + ∂Vy

∂y
(y)hu(0, y, 0) Wy(y)

)

Remark 559

1. As opposed to (475), in (558), Vx must be the function given by assumption H1 with
corresponding Wx positive definite (see Remark 476.1).

2. In (558), if not given, the function 	 is to be designed such that (552) holds •

Example 560 : Example 477 continued
Let us come back to the system (478) and work with an approximate change of coordinate.
For this, we restrict our attention to an approximating function Ψa of the form :

Ψa(x1, x2, y) = y − Ma(x1, x2) (561)

where Ma is to be designed so that :

Ma(0, 0) = 0 . (562)

In this case, we get, from (551) and (478),

hx (x1, x2, y −Ma(x1, x2)) = −∂Ma

∂x1

(x1, x2)x2 +
∂Ma

∂x2

(x1, x2) (x1 +x2) + (x1 +x2
2) (563)

and
Vy(y) = 1

2
y2 . (564)

Then, the condition (552) of P3’ is equivalent to :

|y −Ma(x1, x2)|
∣∣∣−∂Ma

∂x1
(x1, x2)x2 + ∂Ma

∂x2
(x1, x2) (x1 + x2) + (x1 + x2

2)
∣∣∣ (565)

≤ (x2
1 + x2

2) γ(
√

x2
1 + x2

2)
(
1 + 1

2
|y −Ma(x1, x2)|2

)

for all (x1, x2, y). This is implied in particular by :

∣∣∣∣−∂Ma

∂x1
(x1, x2)x2 +

∂Ma

∂x2
(x1, x2) (x1 + x2) + (x1 + x2

2)

∣∣∣∣ ≤ (x2
1 + x2

2) γ(
√

x2
1 + x2

2) ,

(566)
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for all (x1, x2). In its turn this condition says that the left hand side should be of order two
at the origin and therefore implies :

− ∂Ma

∂x1

(0, 0)x2 +
∂Ma

∂x2

(0, 0) (x1 + x2) + x1 = 0 . (567)

We get directly :
∂Ma

∂x1

(0, 0) =
∂Ma

∂x2

(0, 0) = −1 . (568)

Having obtained a constraint only on the derivatives of Ma at the origin. Let us try if a
function Ma simply linear would be appropriate. We pick :

Ma(x1, x2) = −x1 − x2 . (569)

We get that (566) and therefore (565) hold, with γ(s) = 1.
With the function Ma we have found, the change of coordinate is :

y = y + x1 + x2 , (570)

So the system (478) rewrites :




ẏ = x2
2 + u ,

ẏ1 = x2 ,

ẏ2 = −x1 − x2 + u .

(571)

As expected, the term of second order x2
2 as not been removed from the ẏ equation (compare

with (489)).
Following (558) in Theorem 557, we let18 :

Vy(x1, x2, y) = 2 	(x2
2 + x2x1 + x2

1) + log
(
1 + 1

2
y2
)

, (572)

with a function 	 to be designed. This yields :

˙︷ ︷
Vy(x1, x2, y) = 2 	′(x2

2 + x2x1 + x2
1)
[
−(x2

2 + x2x1 + x2
1) + (2x2 + x1)u

]
+

y

1 + 1
2
y

2 (x2
2 + u) .

(573)
Since we have19 :

y

1 + 1
2
y

2 x2
2 ≤

√
2 (x2

2 + x2x1 + x2
1) ∀(y, x1, x2) , (574)

we choose the function 	 as :
	(s) = 1+

√
2

2
s . (575)

18Actually, for this particular case, a better choice is :

Vy(x1, x2, y) = �(x2
2 + x2x1 + x2

1) +
[√

1 + y2 − 1
]

.

19It is to get such an inequality with the right hand side not depending on y that the log is introduced in
(572).
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Indeed, this yields :

˙︷ ︷
Vy(x1, x2, y) = −(x2

2 + x2x1 + x2
1) +

[(
1 +

√
2
)

(2x2 + x1) +
y(

1 + 1
2
y2
)
]

u . (576)

A candidate for a stabilizer is therefore :

φa(x1, x2, y) = −
[(

1 +
√

2
)

(2x2 + x1) +
y(

1 + 1
2
y2
)
]

. (577)

It gives :

˙︷ ︷
Vy(x1, x2, y) = −(x2

2 + x2x1 + x2
1) −

[(
1 +

√
2
)

(2x2 + x1) +
y(

1 + 1
2
y

2
)
]2

. (578)

This implies global asymptotic stability of the origin.
To summarize, the key points of this example are :

1. By comparing (486) and (566), we see that we are asking to the approximation Ma

of M to solve the partial differential equation (486) only up to the first order around
the origin. Namely, we have transformed the problem of solving the partial differential
equation (486) into the one of solving the linear system (567).

2. It is important to compare the new stabilizer φa in (577), obtained with the approximate
change of coordinate, with φ in (494) obtained with the exact change of coordinate. In
particular, we see that, for (x1, x2) fixed, φa is a bounded function of y, although we
were not looking for this property. On the contrary, φ is not a bounded function of y.
Not being able to remove the terms of higher order in (x1, x2), the strategy for the new
stabilizer is to privilege the (x1, x2) components of the reduced order x subsystem at
times where they are large without paying attention to what the y component of the
integrator is doing at those times. Unfortunately, this latter fact leads typically to poor
performance with too big excursions or too slow time response •

Let us recapitulate on the forwarding technique with an approximate change of coordi-
nates :

• The main benefit is that, instead of solving exactly a partial differential equation in
(x, y) like (507), it is sufficient to approximate its solution up to the first order in x, for
x at the origin. As a consequence, typically, we are left with solving a partial differential
equation in y only.

• The losses are :

1. Instead of a function Vx with a non negative function Wx, we need now an expression
of a function Vx with a positive definite Wx. This may generate difficulties when
the forwarding technique with an approximate change of coordinates is applied
recursively. However, the problem can be overcome some how as shown in [48,
Proposition III.3]
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2. We have to design the function 	 by manipulating inequalities.

3. The class of stabilizers that we can reach is poorer. In particular they are typically
bounded in the state component of the integrator and give poor performance.

Remark 579
A final remark on the forwarding technique with an exact or an approximate change of co-
ordinate is that the design gives for the closed loop system a Lyapunov function depending
on the function Ψ or Ψa which is difficult to handle. This prevents us from dealing with the
disturbance attenuation problem as easily as in the backstepping technique since the deriva-
tive of these functions play an important role. Nevertheless by using small gain arguments as
those presented in [72], several results on this problem have been obtained. See [73, 1, 46] for
instance •
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[1] M. Arcak,A. Teel, P. Kokotović, Robust nonlinear control of feedforward systems with
unmodelled dynamics. Automatica 37 (2001) 265-272

[2] M. Arcak, M. Seron, J. Braslavsky, P. Kokotović, Robustification of backstepping against
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Glossary and Notations

a′ : For a C1 function a : R → R, we denote by a′ its derivative.

˙︷ ︷
a(x) : For any solution X(x, t; d) of :

ẋ = f(x, d) , X(x, 0; d) = x , (580)

defined on [0, T ) (see Definition 2) and for any C1 function a : R
n → R, we have :

∂

∂t
a(X(x, t; d)) =

∂a

∂x
(X(x, t; d)) f(X(x, t; d), d(t)) for almost all t ∈ [0, T ) .

(581)
In other respect, we can define a function b : R

n × R
p → R as :

b(x, d) =
∂a

∂x
(x) f(x, d) . (582)

In view of the similarity of (581) and (582), we adopt the notation :

˙︷ ︷
a(x) =

∂a

∂x
(x) f(x, d) . (583)

But we insist on the fact that
˙︷ ︷

a(x) is a function of (x, d) only and the time t is not even
concerned.

a
∣∣
S

: For a function a : R
n → R

m and a subset S of R
n, we denote by a

∣∣
S

the restriction of

a to S; i.e., the function a
∣∣
S

: S → R
m.

Adding a differentiator : Given a system :

ẋ = f(x, v, dx) , (584)

with state x, control v and disturbance dx, we say that we add a differentiator when we
consider the augmented system :


ẋ = f(x, v, dx) ,

v̇ = h(x, v, u, dy) ,
(585)

with state (x, v), control u and disturbance (dx, dy). This says that the control v for the
system (584) is a state component of the system (585). In other words for the latter the
control u acts on the derivative of the control of the former.

Adding an integrator : For the system :

ẋ = f(x, u, dx) (586)

with state x, control u and disturbance dx, we say that we add an integrator when we
consider the augmented system :


ẏ = h(y, x, u, dy) ,

ẋ = f(x, u, dx) ,
(587)

with state (x, y), control u and disturbance (dx, dy). This says that the new state com-
ponent y integrates a function of y and all the other variables already present (x, u, dy).
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Backstepping : See adding a differentiator and Remark 200.3.

Cancellation design : When the derivative of a Lyapunov function V satisfies :

V̇ ≤ T− + LgV × (u + T ) (588)

where T− is a non positive term and T is an arbitrary term, a cancellation design consists
in choosing the control as :

u = −T − Q(x)LgV (x)T (589)

where Q is a positive definite matrix.

(Class) Ck : A functions is said (of class) Ck if it has continuous partial derivatives up to
and including order k. So a continuous function is (of class) C0.

Class K and K∞ functions : A function α : [0,∞) → [0,∞) is said of class K if it is
continuous, strictly increasing and α(0) = 0. It is of class K∞ if it is of class K and is
unbounded.

Class KL function : A function β : [0,∞) × [0,∞) → [0,∞) is said of class KL if, for
each t ≥ 0, β(·, t) is of class K, and, for each r > 0, β(r, ·) is strictly decreasing and
limt→∞ β(r, t) = 0. From [68, Proposition 7], β is a class KL function if and only if there
exist two class K∞ functions α1 and α2 satisfying :

α1(β(r, t)) ≤ α2(r) exp(−t) ∀(r, t) . (590)

CLF : CLF stands for control Lyapunov function (see Definition 87).

Control Lyapunov function : Control Lyapunov functions are introduced in Definition 87.

Completing squares : See Young’s inequality.

Disturbance attenuation : The problem of disturbance attenuation for the system :

ẋ = f(x, u, d) (591)

with state x, control u and disturbance d consists in finding a controller u = φ(x) such
that all the solutions of the closed loop system depend as less as possible on d. See
Remark 46.2.

Domination design : When the derivative of a Lyapunov function V satisfies (588), a dom-
ination design consists in choosing the control as :

u = Q(x)LgV (x)T (592)

where Q is a sufficiently large positive definite matrix.
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Feedback form : A system is said to be in feedback form if we can find coordinates such
that their dynamics are :




ẋ1 = f1(x1, x2) ,

ẋ2 = f2(x1, x2, x3) ,
...

ẋn = fn(x1, . . . , xn, u) .

(593)

Such a form is obtained by successively adding differentiators.

Feedforward form : A system is said to be in feedforward form if we can find coordinates
such that their dynamics are :




ẋn = fn(x1, . . . , xn, u) ,
...

ẋ2 = f2(x1, x2, u) ,

ẋ1 = f1(x1, u) .

(594)

Such a form is obtained by successively adding integrators.

Forwarding : See adding an integrator and Remark 462.1.

Gradient controller : See LgV -controller.

Hölder continuous : A function f : R
n → R

m is Hölder continuous of order α at x if there
exist positive real numbers k and δ such that we have :

|f(x + h) − f(x)| ≤ k |h|α ∀|h| ≤ δ . (595)

ISS : ISS stands for input to state stable (See Definition 24).

LfV : The notation LfV is used for the Lie derivative of V in the direction of the vector field
f . Specifically if X(x, t) is a solution of :

ẋ = f(x) , (596)

then we have :

LfV (x) = lim
t→0+

V (X(x, t)) − V (x)

t
. (597)

If V is a C1 function, then we have :

LfV (x) =
∂V

∂x
(x) f(x) . (598)

When f is actually a matrix field, LfV is a row vector.
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LgV controller : A controller is said an LgV controller if it acts in a direction opposed to
the one given by the Lie derivative of a Lyapunov function V in the direction of the
control (matrix) vector field g. A general expression is :

u = −Q(x)LgV (x)T , (599)

where Q is a positive definite matrix.

L∞
loc([0,∞), Rp) : L∞

loc([0,∞), Rp) denotes the set of measurable functions d : [0,∞) → R
p

such that, for each compact subset K of [0,∞), there exists a real number c satisfying

|d(t)| ≤ c for almost all t ∈ K . (600)

Lyapunov function : A function V : R
n → [0,∞) is said a Cr Lyapunov function if it is r

times continuously differentiable, positive definite and proper.

Matching condition : See remark 150.3.

Origin : All along these notes, for the system (1), we assume the existence of a point in R
n, a

point in R
p and a point in R

m, each of them called the origin and denoted 0 such that :

f(0, 0, 0) = 0 . (601)

Passive : A system : 


ẋ = f(x, u)

y = h(x, u)
(602)

is said (respectively strictly) passive if there exists a C1 Lyapunov function V , called the
storage function, and a non negative (respectively. positive definite) function W such
that, for all x and u we have :

∂V

∂x
(x) f(x, u) ≤ −W (x) + yTu . (603)

Negative definite : A function V : R
n → [0,∞) is said negative definite if −V is positive

definite.

Positive definite : A function V : R
n → [0,∞) is said positive definite if :

V (x) = 0 =⇒ x = 0 ,

Proper function : Let Ω be a subset of R
n, a function V : Ω → R is said proper on Ω if, for

any real numbers ci and cs, the set :

{x : ≤ ci ≤ V (x) ≤ cs}

is a (maybe empty) compact subset of Ω. See [62]. When Ω is the whole set R
n, this is

equivalent to say that we have :

lim
|x|→+∞

|V (x)| = +∞ . (604)
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R : R is the set of real numbers, R≥0 is the set of non negative real numbers, R>0 is the set
of strictly positive real numbers.

SCP : SCP stands for small control property (see Definition 89).

Young’s inequality : For all p > 1 and all (a, b)in R
2, we have :

a b ≤ 1
p
ap + p−1

p
b

p
p−1 . (605)

In the case where p = 2, this inequality is known as “completed the squares”.
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