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Abstract. An overview of the various parametric approaches which can be adopted
to solve the problem of adaptive stabilization of nonlinear systems is presented. The
Lyapunov design and two estimation designs –equation error filtering and regressor
filtering– are revisited. This allows us to unify and generalize most of the available
results on the topic and to propose a classification depending on the required extra
assumptions – matching conditions or growth conditions.

1 Problem Statement and Assumptions

1.1 Problem Statement

We consider a dynamic system which admits a finite state-space representation and
whose dynamics are described by an equation which involves uncertain constant pa-
rameters. We are concerned with the design of a dynamic state-feedback controller
which ensures, in spite of that uncertainty, that solutions of the closed-loop system are
bounded and their x-components converge to a desired set point.

Example: (1)
Consider the following one-dimensional system:

.
x = p∗ x2 + u , (2)

where p∗ is a constant parameter. Would the value of p∗ be known, we could use
the following linearizing control law to globally stabilize the origin of the closed-loop
system:

u = −p∗ x2 − x . (3)

When only an approximate value p̂ of p∗ is known and is used in the control law (3),
we obtain the following closed-loop system:

.
x = −x + (p∗ − p̂) x2 . (4)

This system (4) has two equilibrium points:

1. x = 0, which is exponentially stable,

2. x =
1

p∗ − p̂
, which is exponentially unstable.
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Hence, as long as p̂ is not exactly equal to p∗, the global asymptotic stability of x = 0
is lost. We notice also that the simple linear control

u = −x (5)

gives exactly the same qualitative behavior.
Assume now that we apply the following dynamic controller:

.
p̂ = x3

u = −p̂ x2 − x .
(6)

This is the linearizing controller where instead of the true value p∗ of the parameter,
we use an on-line updated estimate p̂. The corresponding closed-loop system we get is:

.
p̂ = x3

.
x = −x + (p∗ − p̂) x2 .

(7)

To study the stability, we consider the function:

W (x, p̂) =
1

2

(
x2 + (p̂− p∗)

2
)
. (8)

Its time derivative along the solutions of (7) is:

.
W = −x2 . (9)

It follows that any solution of the closed-loop system (7) is bounded and:

lim
t→∞

x(t) = 0 . (10)

Therefore, the convergence of x to 0 is restored. ⊓⊔

In this example, the parameter p∗ enters linearly in the dynamic equation (2). This
assumption is fundamental throughout the paper. It is formalized as follows:

Assumption Λ-LP (Λ-Linear Parameterization) (11)
We can find a set of measured coordinates x in IRn such that, given an integer k and
a C1 function Λ : IRn × IR+ → Mkn(IR) , there exist an integer l, two C1 functions:

a : IRn × IRm → IRn , A : IRn × IRm → Mnl(IR) ,

and an unknown parameter vector p∗ in IRl such that:

1. the functions Λ(x, t)a(x, u) and Λ(x, t)A(x, u) are known, i.e., can be evaluated,
2. the dynamics of the system to be controlled are described by:

.
x = a(x, u) + A(x, u) p∗ , (12)

where u is the input vector in IRm.

To deal with the case where a and A are affine in u, it is useful to introduce the
following notation:

a(x, u) = a0(x) +

m∑

i=1

ui ai(x)

def
= a0(x) + u⊙ b(x) ,

A(x, u) = A0(x) +

m∑

i=1

ui Ai(x)

def
= A0(x) + u⊙B(x) .

(13)
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Example: Introduction to System (17) (14)
Clearly, in the case of the system (2), if we choose:

Λ(x, t) = 1 , (15)

assumption Λ-LP is satisfied with the known functions:

a(x, u) = u , A(x, u) = x2 . (16)

Let us now consider the following two-dimensional system:

.
x1 = x2

1

(
x2
2 + c1 + c2 u

)
.
x2 = −c2 x

2
2 (x2 + c3 x1) ,

(17)

where c1, c2 and c3 are three unknown real numbers. Depending on our choice for the
function Λ, we get different parameterizations.

– A first possible choice is, with k = 2:

Λ(x1, x2, t) =

(
1 0
0 1

)
. (18)

Then Λ-LP is met with l = 3, the parameter vector:

p∗ = (c1 , c2 , c2c3)
T , (19)

and the known functions:

a(x1, x2) =

(
x2
1 x

2
2

0

)
, A(x1, x2, u) =

(
x2
1 x2

1 u 0
0 −x3

2 x2
2x1

)
. (20)

– Another possibility is, with k = 1,

Λ(x1, x2, t) = (x1 0) . (21)

Assumption Λ-LP holds with l = 2, the parameter vector:

p∗ = (c1 c2)
T , (22)

and the functions:

a(x1, x2) =

(
x2
1 x

2
2

0

)
, A(x1, x2, u) =

(
x2
1 x2

1 u
0 −x2

2 (x2 + c3 x1)

)
. (23)

Here the function A is unknown since it involves the unknown constant c3. But both
Λa and ΛA are known. In particular, the choice (21) for the function Λ implies that
we pay attention to the dynamics of x1 only and
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disregard the dynamics of x2. ⊓⊔

This example illustrates that in order to find a state-space representation and a param-
eterization and to choose a function Λ satisfying assumption Λ-LP, it may be useful not
to work with the a priori given, say physical, coefficients. First, the knowledge of these
coefficients may not be relevant to the Stabilization problem. As emphasized by Sastry
and Kokotovic [28], this is in particular the case if, by looking at these coefficients as
disturbances, they can be rejected. For the system (17) in Example (14), we will see in
Example (49) that the coefficient c3 is irrelevant to the stabilization. Second, it may
also be useful to change the a priori given coordinates and define the parameters as
functions of the coefficients. For instance, in Example (14), we may choose p3 = c2c3.
This trick is classically used in robotics (see [14]). It has also been used by Sastry
and Isidori [29] for input-output linearization of systems with relative degree larger
than one and by Kanellakopoulos, Kokotovic and Middleton [10] for adaptive dynamic
output feeeback.

Example: Introduction to System (25) (24)
Consider a system whose dynamics is described by the following second-order differen-
tial equation:

..
y = u + L(y) p∗ , (25)

where y is a measured output, u is the input and L is a known smooth function.
A straightforward state-space representation with (y ,

.
y) as the state vector is not

appropriate for satisfying assumption Λ-LP, since
.
y is not measured. Instead, let us

introduce the following filtered quantities:

..
yf +

.
yf + yf = y yf(0) =

.
yf(0) = 0

..
uf +

.
uf + uf = u uf(0) =

.
uf(0) = 0

..
Lf +

.
Lf + Lf = L Lf(0) =

.
Lf(0) = 0 .

(26)

Then, (25) can be rewritten with the following non-minimal state-space representation,
with . denoting differentiation with respect to time:

.
x =




0 1 0 0 0 0

0 0 1 0 p∗ 0

0 0 0 1 0 0

0 0 −1 −1 0 0

0 0 0 0 0 1

0 0 0 0 −1 −1




x +




0

δ(t)

0

u

0

L(y)




(27)

y =
.
yf + yf + uf + Lf p

∗ + δ(t)

.
y =

.
yf + uf +

.
uf +

(
Lf +

.
Lf

)
p∗ +

.
δ(t) + δ(t) ,

(28)

where x is the following state vector:

x =
(
yf

.
yf uf

.
uf Lf

.
Lf

)T
, (29)
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and δ(t) is the solution of:

..
δ +

.
δ + δ = 0 , with δ(0) = y(0) ,

.
δ(0) =

.
y(0)− y(0) . (30)

Since x can be obtained from the knowledge of y and u only, assumption Λ-LP is
satisfied up to the presence of the exponentially decaying time function δ by choosing:

Λ(x, t) = (0 1 0 0 0 0) . (31)

The presence of δ implies that our forthcoming results will not apply in a straightfor-
ward manner. In each case we will have to study the effects of this term. ⊓⊔

According to assumption Λ-LP, the only knowledge we have about the system to
be controlled is that it is a member of a linearly parameterized family of systems whose
dynamics satisfy the following equation, denoted by (Sp) in the sequel:

.
x = a(x, u) + A(x, u) p . (Sp)

In this case, we formalize the Adaptive Stabilization problem as follows:

Adaptive Stabilization Problem: Find an integer ν and two functions

µ1 : IRn × IRν → IRν , µ2 : IRn × IRν → IRm ,

such that there exists an open subset D of IRn × IRν with the following property:
The solutions (x(t), χ(t)) of the system composed of the system (Sp∗) to be controlled
and the following dynamic state-feedback controller:

.
χ = µ1(x, χ)

u = µ2(x, χ) ,
(32)

with (x(0), χ(0)) in D,

(AS1) are well-defined, unique and bounded on [0,+∞),

(AS2) have the property

lim
t→∞

x(t) = E , (33)

where E is a desired set point for x, which may depend on p∗.

A typical illustration of this problem has been given in Example (1). It turns out
that, in all the solutions to this problem which are proposed in this paper, part of the
state χ of the controller can be considered as an estimate p̂ of the unknown parameter
vector p∗. This motivates the adjective “adaptive”.

Several solutions to the Adaptive Stabilization problem have been proposed in the
literature under particular assumptions. Extending the work of Pomet [19], we present
here a framework allowing us to unify and generalize most of these solutions.
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1.2 Connection with the Error Feedback Regulator Problem

When, in equation (Sp), the function A does not depend on u, i.e., A(x, u) = Ao(x),
and a is affine in u (see (13)), the Adaptive Stabilization problem described above has
similarities with the Error Feedback Regulator problem as stated by Isidori for systems
of the form [6, Sect. 7.2]:

.
x = a0(x) + u⊙ b(x) + Ao(x) p

.
p = s(p)

y = h(x) + q(p) ,

(34)

where p in IRl is an unmeasured disturbance while y in IRk is a measured output signal.

Error Feedback Regulator Problem: Find an integer ν and two functions

µ1 : IRk × IRν → IRν , µ2 : IRν → IRm ,

such that:

(EFR1) the equilibrium point of

.
x = a0(x) + µ2(χ)⊙ b(x) + A0(x) p

∗

.
χ = µ1(h(x), χ)

(35)

is asymptotically stable in the first approximation,
(EFR2) there exists an open subset D of IRn×IRν such that the solutions of the system

(34) controlled by the following dynamic output feedback:

.
χ = µ1(y, χ)

u = µ2(χ) ,
(36)

with initial condition in this set D, have the property

lim
t→∞

y(t) = E , (37)

where E is a desired set point for y, independent of p.

It would appear that the family of systems (Sp) dealt with in our Adaptive Sta-
bilization problem is a subclass of the systems (34) of the Error Feedback Regulator
problem. This family is obtained by imposing a constant disturbance, i.e.,

.
p = s(p) = 0 , (38)

and a measured state, i.e.,

h(x) = x and q(p) = 0 . (39)

Isidori gives a solution to the Error Feedback Regulator problem in [6, Theorem
7.2.10]. It applies to systems (Sp) under the following assumptions, using the notation
(13):

(A1) There exists a C2 function u0(p) defined on an open neighborhood of p∗ such
that:

a0(E) + u0(p)⊙ b(E) + A0(E) p = 0 , (40)
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(A2) The n× l matrix A0(E) has rank l,

(A3) The pair
(
∂a0

∂x
(E) + u0(p

∗)⊙ ∂b

∂x
(E) + ∂A0

∂x
(E)p∗ , b(E)

)
is stabilizable.

Assumption (A1) is quite natural if E is not allowed to depend on p. It states only the
existence of a control, smoothly depending on p, making E a set point of (Sp) for all p
close enough to p∗. Assumption (A2) is much more restrictive since it imposes that the
number l of parameters do not exceed the dimension n of the state and that the matrix
A0(x) cannot degenerate at x = E . Finally, assumption (A3) excludes systems whose
linearization has uncontrollable modes associated with pure imaginary eigenvalues and,
in particular, systems which are not feedback linearizable.

Example: System (17) Continued (41)
Assumptions (A2) and (A3) are not satisfied by the following system (i.e., system (17)
with c2 = 1 to make A independent of u):

.
x1 = x2

1

(
x2
2 p1 + u

)

.
x2 = − x2

2 (x2 + p2 x1) .
(42)

Indeed, A(E), ∂a

∂x
(E , u) and ∂A

∂x
(E) are all zero. ⊓⊔

In fact, assumptions (A2) and (A3) follow from the strong requirement EFR1 of
asymptotic stability. In this paper, it is precisely in order to be able to deal with
systems which may not satisfy assumptions (A2) or (A3), such as system (42), that,
instead of requirement EFR1, we ask, in the Adaptive Stabilization problem, for the
less stringent Lagrange stability requirement AS1.

1.3 Assumptions

Our counterparts of assumptions (A1), (A2) and (A3) are the following assumptions
on the particular system (Sp∗):

Let Π be an open subset of IRl and Ω be an open neighborhood of E in IRn. There exist
two known functions:

V : Ω ×Π → IR+ of class C2 , un : Ω ×Π → IRm of class C1 ,

such that:

Assumption BO (Boundedness Observability) (43)
There exist an open neighborhood Ω0 of E in Ω and a strictly positive constant α0 such
that for all real numbers α, 0 < α < α0, all compact subsets K of Π and all vectors
x0 ∈ Ω0, we can find a compact subset Γ of Ω such that, for any C1 time functions
p̂ : IR+ → Π and u : IR+ → IRm and any solution x(t) of:

.
x = a(x, u(t)) + A(x, u(t)) p∗ , x(0) = x0 ∈ Ω0 (44)

defined on [0, T ), we have the following implication:

V (x(t), p̂(t)) ≤ α and p̂(t) ∈ K ∀ t ∈ [0, T ) =⇒ x(t) ∈ Γ ∀ t ∈ [0, T ) . (45)



354 Praly, Bastin, Pomet, and Jiang

Assumption PRS (Pointwise Reduced-Order Stabilizability) (46)
For all (x, p) in Ω ×Π, we have:

∂V

∂x
(x, p) [a(x, un(x, p)) + A(x, un(x, p)) p] ≤ 0 , (47)

where the inequality is strict iff V (x, p) 6= 0.

In the sequel, the case where

Ω = Ω0 = IRn and α0 = +∞ (48)

is called the global case.

Example: System (17) Continued (49)
Consider the two-dimensional system (17) in Example (14) which, according to the
second parameterization we mentioned, is rewritten as:

.
x1 = x2

1

(
x2
2 + p1 + p2 u

)

.
x2 = −p2 x

2
2 (x2 + c3 x1) ,

(50)

where p2 is known to be strictly positive. We choose:

V (x1, x2, p1, p2) =
1

2
x2
1 , un(x1, x2, p1, p2) = −x2

2 + p1 + x1

p2
(51)

Ω0 = Ω = IR2 , Π = IR× (IR+ − {0}) , α0 = +∞ . (52)

Notice that the constant c3 is not involved. This justifies a posteriori the choice of the
parameterization.

Assumption PRS is satisfied. Indeed, we get:

∂V

∂x
(x, p) [a(x, un(x, p)) + A(x, un(x, p)) p] = −x4

1 . (53)

Assumption BO holds also if, for any C1 time function x1(t), we have:

|x1(t)| ≤ α ∀ t ∈ [0, T ) =⇒ |x2(t)| ≤ γ ∀ t ∈ [0, T ) , (54)

where x2(t) is a solution of:

.
x2 = −p∗2 x

2
2 (x2 + c3 x1(t)) , (55)

and γ is a positive function of α and x2(0). To prove this implication, we notice that
p2

∗ > 0 implies:

|x2(t)| > |c3| |x1(t)| =⇒
.

x2
2(t) < 0 . (56)

Hence, with (54), we can choose:

γ = max {|x2(0)| , |c3|α} . (57)

⊓⊔

This example illustrates two points of our assumptions:

1. The parameter vector p must in some cases be constrained to lie in Π , an open set
strictly contained in IRl. Indeed, here, for p2 = 0, un is not defined.
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2. The function V looks like a Lyapunov function in x, but actually it may not be
radially unbounded in x. For instance, in Example (49), x2 may go to infinity
without V going to infinity. The radial unboundedness of a Lyapunov function
V (x(t), t) guarantees that the magnitude of V (x(t), t) at time t gives a bound on
the norm of the full state vector x(t) for the same time t. In contrast, as illustrated
by Example (49), the magnitude of V (x(t), p), given by assumption BO, at time t
gives a bound on the norm of only a part of the state vector x(t) at the same time
t, namely x1(t). What assumption BO actually guarantees is the “observability”
of the boundedness of the full state vector x from the “output” function V (x, p),
i.e., that if the trajectory {V (x(t), p)}t∈ [0,T ) of the “output” is bounded, then so is
the trajectory {x(t)}t∈ [0,T ) of the full state. Then, assumption PRS guarantees the
existence of a control law which forces the part of the state vector mentioned above
to converge to the corresponding part of the equilibrium point E . Later on, we will
add more constraints on the function V , e.g. assumption MC. In order to allow for
more possibilities to find such a function V meeting all these requirements, it is
useful at this stage to have assumption BO instead of the more standard but more
restrictive radial unboundedness.

To guarantee convergence to E of the whole state vector x and not only of its
reduced-order part, we will need also:

Assumption CO (Convergence Observability) (58)

For any bounded C1 time functions p̂ : IR+ → Π and u : IR+ → IRm with
.
p̂ also

bounded and for any solution x(t) of (44) defined on [0,+∞), we have the following
implication:

lim
t→∞

V (x(t), p̂(t)) exists and is zero,

x(t) is bounded on [0,+∞)

and x(t) ∈ Ω ∀ t ∈ [0,+∞)





=⇒ lim
t→∞

x(t) exists and is equal to E .

Example: System (17) Continued (59)
Assumption CO is satisfied for the system (17) rewritten as (50) with the choice (51).
This is a consequence of the uniform asymptotic stability of the zero solution of (see
Lakshmikantham and Leela [11, Theorem 3.8.3]):

.
x2 = −p2 x

3
2 . (60)

Indeed, since x1 is a component of a solution of an ordinary differential equation, the
convergence of x2

1(t) to 0, implies the boundedness:

|x1(t)| ≤ α ∀ t . (61)

Then, since assumption BO is satisfied,

|x2(t)| ≤ γ = max {|x2(0)| , |c3|α} ∀ t . (62)

Now, the convergence of x2
1(t) to 0 implies also that for all ε > 0 there exists a time

T such that:

|x1(t)| ≤ ε ∀ t ≥ T . (63)



356 Praly, Bastin, Pomet, and Jiang

And, with (55), we have:

.
x2
2(t) ≤ −p2

(
x4
2(t)− |c3| ε |x2(t)|3

)
∀ t ≥ T . (64)

It follows that:

|x2(t)| ≥ ε (1 + |c3|) →
.

x2
2(t) ≤ −ε4 . (65)

Therefore, with (62), defining τ (ε) by:

τ =
1

ε4

(
γ2 − ε2 (1 + |c3|)2

)
, (66)

we have established:

∀ ε > 0 ∃T, ∃ τ : ∀ t ≥ T + τ , |x2(t)| ≤ ε (1 + |c3|) . (67)

This is CO. ⊓⊔

This Example illustrates a typical fact about assumption CO: it is usually difficult to
prove that it holds. Above we used a Total Stability argument, here is another example
invoking Barbălat’s Lemma [26, p.211]:

Example: (68)
Consider the following system:

.
x1 = x2 + p∗

.
x2 = u .

(69)

We wish to stabilize the equilibrium point x1 = 0, x2 = −p∗. Assumptions BO and
PRS are satisfied when we choose:

V (x1, x2, p) = x2
1 + (x2 + p+ x1)

2 , un(x1, x2, p) = −2 (x2 + p+ x1) . (70)

To check that CO is also met, we follow the same steps as the ones proposed by
Kanellakopoulos, Kokotovic and Marino for the proof of [9, Theorem 1]. Clearly, if
V (x1(t), x2(t), p̂(t)) tends to 0, the same holds for x1(t) and x2(t) + x1(t) + p̂(t). To

obtain our conclusion, it is sufficient to prove that
.

x1(t) tends to 0. Indeed, in such a
case, the first equation in (69) implies in this case that x2(t) + p∗ tends to 0. Since we
have:

lim
t→+∞

x1(t) = 0 = x1(0) + lim
t→+∞

∫ t

0

.
x1(s) ds , (71)

from Barbălat’s Lemma,
.

x1(t) tends to 0 if this time function is uniformly continuous.
This is indeed the case since its time derivative is:

..
x1(t) =

.
x2(t) = u(t) , (72)

where, by assumption, the time function u(t) is bounded. ⊓⊔

Assumptions BO, PRS and CO are weaker than (A1), (A2) and (A3). Indeed, it fol-
lows from linear systems theory [7] and Total Stability theorems [11] that assumptions
(A1) and (A3) imply the existence of:

– Ω, an open neighborhood of E ,
– Π , an open neighborhood of p∗,



Adaptive Stabilization of Nonlinear Systems 357

– P , an n× n positive definite matrix,
– C, an n×m matrix, and
– k, a strictly positive constant,

such that, by letting:

V (x, p) = V (x) = (x− E)T P (x− E) , un(x, p) = −C (x− E) + u0(p) , (73)

we have:

∂V

∂x
(x) [a0(x) + un(x, p)⊙ b(x) + A0(x) p] ≤ k V (x) , ∀ (x, p) ∈ Ω ×Π . (74)

This implies that assumption PRS is satisfied. Also, the function V is positive definite
and radially unbounded. Hence, assumptions BO and CO hold with Ω0 = Ω and α0

the largest positive real number α such that:

V (x) < α =⇒ x ∈ Ω . (75)

Finally, note that (A2) is not needed.

If the value of the parameter vector p∗ were known, assumptions BO, PRS and CO
would be sufficient to guarantee the stabilizability of E . This is made precise as follows:

Proposition (76)
Let assumptions BO and PRS hold, p∗ be in Π and the control un(x, p

∗) be applied to the
system (Sp∗). Under these conditions, all the solutions x(t) with initial condition x(0)
in Ω0 and satisfying V (x(0), p∗) < α0 are well-defined on [0,+∞), unique, bounded
and:

lim
t→∞

V (x(t), p∗) = 0 . (77)

If, moreover, assumption CO holds, then x(t) converges to E .

Proof. The system we consider is:

.
x = a(x, un(x, p

∗)) + A(x, un(x, p
∗))p∗ . (78)

With p∗ fixed in Π , this is an autonomous system with its right-hand side continuously
differentiable in the open subset Ω of IRn. Hence, for any initial condition x(0) in Ω0 ⊂
Ω, there exists a unique solution x(t) of (78) in Ω. It is a continuously differentiable
time function (and so is un) defined on a right maximal interval [0, T ), with T a strictly
positive (possibly infinite) real number. Let us prove by contradiction that T = +∞ if
V (x(0), p∗) < α0. Assume the contrary. From the theorem on continuation of solutions
[5, Theorem I.2.1], x(t) tends to the boundary of Ω as t tends to T . But since:

x(t) ∈ Ω , ∀ t ∈ [0, T ) and p∗ ∈ Π , (79)

we may use (47) in assumption PRS and conclude:

.
V (x(t), p∗) ≤ 0 ∀ t ∈ [0, T ) . (80)

This yields:
V (x(t), p∗) ≤ V (x(0), p∗) < α0 ∀ t ∈ [0, T ) . (81)

Then, from assumption BO, we know there exists a compact subset Γ of Ω, depending
on p∗, x(0) and V (x(0), p∗), such that:

x(t) ∈ Γ , ∀ t ∈ [0, T ) . (82)
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Since the set Γ is compact, it is strictly contained in the open set Ω. This establishes
the contradiction and the fact that the time functions x(t) and u(t) = un(x(t), p

∗) are
bounded on [0,+∞).

Now, from (47), we have:

.
V (x(t), p∗) < 0 ∀ t : V (x(t), p∗) 6= 0

= 0 ∀ t : V (x(t), p∗) = 0 .

(83)

Since the function V is nonnegative, this implies (77).

Finally, convergence to E of x(t) is a straightforward consequence of assumption
CO. 2

In the following we will show that even when the value of p∗ is unknown, in which
case we cannot implement un(x, p

∗), the Adaptive Stabilization problem can be solved
if extra assumptions are added. In Section 2, a solution will be obtained from the
Lyapunov design with the assumption that a so-called matching condition is satisfied.
In Section 3, other solutions will be obtained from an estimation approach. They will
require a stronger version of assumption PRS and that either a matching condition or
some growth conditions on the nonlinearities be satisfied.

2 Lyapunov Design

In a famous paper, Parks [18] suggested a very efficient way of getting a controller for
the linearly parameterized family of systems (Sp). The idea is to use the control:

u = un(x, p̂) (84)

with the time function p̂ selected so that a positive definite radially unbounded function
of x and p̂ be decaying. Even though here the function V is not radially unbounded,
let us pursue this idea and compute the time derivative of

W (x, p̂) = V (x, p̂) +
1

2
‖p̂− p∗‖2 (85)

along the solutions of (Sp∗)-(84). Using (47) in assumption PRS, we get:

.
W =

∂V

∂x
(x, p̂) [a(x, un(x, p̂)) + A(x, un(x, p̂)) p

∗]

+

(
∂V

∂p
(x, p̂) + [p̂− p∗]

T

)
.
p̂

=
∂V

∂x
(x, p̂) [a(x, un(x, p̂)) + A(x, un(x, p̂)) p̂]

+

[
−∂V

∂x
(x, p̂)A(x, un(x, p̂)) +

.
p̂
T
]
[p̂− p∗] +

∂V

∂p
(x, p̂)

.
p̂

≤
[
−∂V

∂x
(x, p̂)A(x, un(x, p̂)) +

.
p̂
T
]
[p̂− p∗] +

∂V

∂p
(x, p̂)

.
p̂ . (86)
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2.1 Case: V Independent of p, i.e., V (x, p) = V (x)

It follows that in the particular case where the function V does not depend on p, by
choosing:

.
p̂ =

[
∂V

∂x
(x)A(x, un(x, p̂))

]T
, p̂(0) ∈ Π , (87)

we are guaranteed that W remains bounded and in particular:

V (x(t)) ≤ V (x(0)) +
1

2
‖p̂(0)− p∗‖2 . (88)

However, this boundedness property is not sufficient, since to use assumptions BO and
PRS, we must check that for all t:

1. the following inequality is satisfied:

V (x(t)) < α0 , (89)

2. the following membership property is satisfied:

p̂(t) ∈ Π . (90)

It is straightforward to see that, if x(t) and p̂(t) are continuous functions of t and
the following function W :

W (x(t), p̂(t)) =
α1 V (x(t))

α1 − V (x(t))
+

1

2
‖p̂(t)− p∗‖2 (91)

is positive and bounded for all t, then, necessarily, V (x(t)) is strictly smaller than α1

for all t. Consequently, (89) is satisfied for all t if we can ensure that the modified
function W (x(t), p̂(t)) (91) is positive and bounded for all t and the constant α1 is
chosen smaller than or equal to α0.

In order to meet the membership property (90), we shall constrain p̂ to remain in a

closed convex subset of Π by projection of
.
p̂. For this, we need the following property

of the set Π :

Assumption ICS (Imbedded Convex Sets) (92)
There exists a known convex C2 function P from IRl to IR such that:

1. for each real number λ in [0 , 1], the set:

Πλ = {p | P(p) ≤ λ} (93)

is contained in Π,
2. there exists a strictly positive constant d such that:

∥∥∥∥
∂P
∂p

(p)

∥∥∥∥ ≥ d ∀ p ∈ {p | 0 ≤ P(p)} , (94)

3. the parameter vector p∗ of the system to be actually controlled satisfies:

P(p∗) < 0 and D∗ def
= dist (p∗ , {p | P(p) = 0}) > 0 . (95)
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Example: System (17) Continued (96)
For the system (17) rewritten as (50) in Example (49), the set Π is defined by p2 > 0.
Then, by choosing:

P(p1, p2) = 2
(
1− p2

ε

)
, (97)

with ε > 0, this set Π satisfies assumption ICS if p∗2 > ε.
More generally, consider the case where the set Π is:

p = (p1, . . . , pl)
T ∈ Π ⇐⇒ |pi − ρi| < σi , ∀ i ∈ {1 , . . . , l} , (98)

with ρi and σi some given real numbers. To meet assumption ICS we may choose the
function P as:

P(p) =
2

ε

[
l∑

i=1

∣∣∣pi − ρi
σi

∣∣∣
q

− 1 + ε

]
, (99)

with 0 < ε < 1 and q ≥ 2 two real numbers. In this case, we get:

Πλ =

{
p

∣∣∣∣∣

l∑

i=1

∣∣∣pi − ρi
σi

∣∣∣
q

≤ 1− ε
(
1− λ

2

)}
, (100)

and the set Πλ, for λ = 1, approaches Π when ε decreases and q increases. ⊓⊔

Assumption ICS allows us to define the closed convex subset Π1 of Π as:

Π1 = {p | P(p) ≤ 1} , (101)

and the function Proj as:

Proj(M,p, y) =





y if P(p) ≤ 0 or ∂P
∂p

(p) y ≤ 0

y − P(p) ∂P

∂p
(p)y

∂P

∂p
(p)M ∂P

∂p
(p)T

M ∂P
∂p

(p)T if P(p) > 0 and ∂P
∂p

(p) y > 0 ,

(102)
where M is a symmetric positive definite l× l matrix. Namely, Proj(M, p, y) is equal to
y if p belongs to the set {P(p) ≤ 0}. In the set {0 ≤ P(p) ≤ 1}, it substracts a vector
M -normal to the boundary {P(p) = λ}, so that we get a smooth transformation from
the original vector field for λ = 0 to an inward or tangent vector field for λ = 1. We
have the following technical properties proved in Appendix A:

Lemma (103)
Let M be the open set of symmetric positive definite l× l matrices. If assumption ICS
holds, then:

1. The function Proj(M,p, y) : M×Π × IRl → IRl is locally Lipschitz-continuous.
2. Proj(M,p, y)TM−1Proj(M,p, y) ≤ yTM−1y ∀ p ∈ Π1

3. ∂P
∂p

(p)(p− p∗) ≥ D∗
∥∥ ∂P

∂p
(p)
∥∥ ∀ p : P(p) ≥ 0 with D∗ defined in (95),

4. (p− p∗)TM−1Proj(M,p, y) ≤ (p− p∗)TM−1y
5. Let (M,y) : IR+ → M× IRl be a C1 time function. On their domain of definition, the

solutions of:
.
p̂ = Proj (M(t) , p̂ , y(t)) p̂(0) ∈ Π1 (104)

satisfy p̂(t) ∈ Π1.
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We are now ready to propose the following dynamic controller to solve the Adaptive
Stabilization problem when the function V does not depend on p:

.
p̂ = Proj

(
I , p̂ ,

α1
2

(V (x)− α1)2

[
∂V

∂x
(x)A(x, un(x, p̂))

]T)

u = un(x , p̂) ,

(105)

where p̂(0) is selected in Π1 and the matrix M used in the function Proj is I , the
identity matrix. We have:

Proposition (106)
Let assumptions BO, PRS and ICS hold with a function V not depending on p. Assume
also that assumption Λ-LP is satisfied with:

Λ(x, t) =
∂V

∂x
(x) . (107)

If, in (105), α1 is chosen smaller than or equal to α0, then all the solutions (x(t), p̂(t))
of (Sp∗)-(105) with x(0) ∈ Ω0 and V (x(0)) < α1 are well-defined on [0,+∞), unique,
bounded and:

lim
t→∞

V (x(t)) = 0 . (108)

It follows that the Adaptive Stabilization problem is solved if assumption CO also holds.

Proof. The system we consider is:

.
x = a(x, un(x , p̂)) + A(x, un(x , p̂))p

∗

.
p̂ = Proj

(
I , p̂ ,

α1
2

(V (x)− α1)2

[
∂V

∂x
(x)A(x, un(x, p̂))

]T)
.

(109)

¿From our smoothness assumptions on the functions a, A, un and V and with Point 1
of Lemma (103), this system has a locally Lipschitz-continuous right-hand side in the
open set defined by:

(x, p̂) ∈ Ω ×Π and V (x) < α1 . (110)

It follows that, for any initial condition in this open set, there exists a unique solution
(x(t), p̂(t)), defined on a right maximal interval [0, T ), with T possibly infinite, and
satisfying (110) for all t in [0, T ). Applying point 5 of Lemma (103), we also know that
p̂(t) ∈ Π1 for all t in [0, T ). Then, let us compute the time derivative of W defined in
(91) along such a solution. With assumption PRS, we get as in (86):

.
W ≤

[
− α2

1

(V (x(t))− α1)2

(
∂ V

∂ x
(x(t))A(x, un(x(t), p̂(t))

)T
+

.
p̂
T

(t)

]
(p̂(t)− p∗) , (111)

with a strict inequality if V (x(t)) 6= 0. But, with the expression of
.
p̂ and Point 4 of

Lemma (103), we get readily:

.
W ≤ 0 if V (x(t)) = 0

< 0 if V (x(t)) 6= 0 .
(112)



362 Praly, Bastin, Pomet, and Jiang

It follows that for all t in [0, T ):

V (x(t)) < α1

α1 V (x(t))

α1 − V (x(t))
≤ α1 V (0)

α1 − V (0)
+

1

2
‖p̂(0)− p∗‖2 def

= β

‖p̂(t)− p∗‖2 ≤ 2β .

(113)

Hence, we get:

V (x(t)) ≤ α1 β

α1 + β

def
= α < α1 ≤ α0 , (114)

and we know that p̂(t) ∈ K, where K is the following compact subset of Π :

K =
{
p
∣∣ ‖p− p∗‖2 ≤ 2β

} ⋂
Π1 . (115)

Then, from assumption BO, we know the existence of a compact subset Γ of Ω such
that:

x(t) ∈ Γ ∀ t ∈ [0, T ) . (116)

Hence, the solution remains in a compact subset of the open set defined in (110). It
follows by contradiction that T = +∞ and, in particular, that the time functions

x(t), p̂(t), u(t) = un(x(t), p̂(t)) and
.
p̂(t) are bounded on [0,+∞). Then (108) is a

straightforward consequence of (112) and LaSalle’s Theorem [5, Theorem X.1.3]. The
conclusion follows readily from assumption CO. 2

Example: (117)
Consider the following system:

.
x = p∗ x3 + (1− x2)u (118)

with p∗ positive. We wish to stabilize the equilibrium point x = 0. Clearly, even if p∗

were known, this would not be possible globally, but only for x ∈ (−1 , 1). Then let
Ω = (−1 , 1) and choose:

V (x) = x2 and un(x, p) = −p x3 + x

1− x2
. (119)

Assumptions Λ-LP, BO, PRS and CO are satisfied with α0 = 1. According to Propo-
sition (106), the following dynamic controller guarantees the convergence of x(t) to 0
for all initial conditions p̂(0) and x(0), with |x(0)| < 1:

.
p̂ =

2x4

(1− x2)2

u = − p̂ x3 + x

1− x2
.

(120)

⊓⊔

Compared with Proposition (76), this Proposition (106) states that, for solving the
Adaptive Stabilization problem when p∗ is unknown, the existence of a function V
independent of p is a sufficient condition. This shows that we should look for a control
law un for which we can find such a function V to meet assumption BO and PRS (see
[19, Chapter 2]). This is where the fact that V need not be radially unbounded proves
to be useful, as we now illustrate:
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Example: System (17) Continued (121)
For the system (17) rewritten as (50) in Example (49), we have established that as-
sumptions Λ-LP, BO, PRS and ICS hold when Λ, V and un are chosen as:

Λ(x1, x2, t) = (x1 0) , V (x1, x2, p1, p2) =
1

2
x2
1 , (122)

and:

un(x1, x2, p1, p2) = −x2
2 + p1 + x1

p2
. (123)

By specializing the dynamic controller (105) to this system (50) and choosing α1 = +∞
and P as in (97), the following controller solves the Adaptive Stabilization problem:

.
p̂1 = x3

1

.
p̂2 = −x3

1(x
2
2 + p̂1 + x1)

p̂2
if p̂2 ≥ ε or

x3
1(x

2
2 + p̂1 + x1)

p̂2
≤ 0

=

(
1− 2

p̂2
ε

)
x3
1(x

2
2 + p̂1 + x1)

p̂2
if p̂2 < ε and

x3
1(x

2
2 + p̂1 + x1)

p̂2
< 0

u = −x2
2 + p̂1 + x1

p̂2
.

(124)

⊓⊔

Proposition (106) generalizes results established by Sastry and Isidori [29] for sys-
tems that are input-output linearizable via state feedback, and by Taylor et al. [31] for
state-feedback linearizable systems:

Corollary [Sastry and Isidori [29, Relative Degree One]] (125)
Let a and A in equation (Sp) be affine in u, let the system to be controlled have a single
input, i.e., m = 1 and, finally, let Π be an open subset of IRl which satisfies assumption
ICS. Assume the existence of two C2 functions h : IRn → IR and ϕ : IRn → IRn−1

such that:

1. h(E) = 0,
2. the functions ∂h

∂x
(x)a(x, u) and ∂h

∂x
(x)A(x, u) are known,

3. we have for all (x, p) in IRn ×Π (with notation (13)):

∂h

∂x
(x) (b(x) +B(x)p) 6= 0 , (126)

4. (h(x), ϕ(x)) is a diffeomorphism and defines new coordinates with which the system
(Sp∗) can be rewritten as:

.
h =

∂h

∂x
(x) [a(x, u) + A(x, u)p∗] (127)

.
ϕ = Z(ϕ, h) , (128)

where Z is a function which is further assumed to be globally Lipschitz.

Assume also that ϕ(E) is an exponentially stable equilibrium point in IRn−1 of:

.
ϕ = Z(ϕ, 0) . (129)

Under these conditions, we can find functions V , un and P such that the corresponding
dynamic controller (105) solves the Adaptive Stabilization problem.
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Assumption (126) means that each system (Sp), with p ∈ Π , is of relative degree one
with respect to the output function h (see Isidori [6]). And the exponential stability of
(129) implies that (Sp∗) is globally exponentially minimum phase.

Proof. Assumption Λ-LP is met with the choice:

Λ(x, t) =
∂h

∂x
(x) . (130)

Then, let:

Ω = Ω0 = IRn , α0 = +∞ , (131)

and choose the function V independent of p as simply:

V (x) = h(x)2 . (132)

According to [29, Proposition 2.1], assumption BO is satisfied. An argument similar to
the one used in Example (59) (replace K by ε in [29, 2.27]) proves that assumption
CO holds also.

Now from (126), there exists a C1 function un : IRn ×Π → IR such that:

∂h

∂x
(x) [a(x, un(x, p) + A(x, un(x, p))p] = −c h(x) , (133)

with c a strictly positive constant. With (127), this implies that assumption PRS holds.
In conclusion, the controller (105) may be employed, with the function P given by

assumption ICS and α1 = +∞. 2

Corollary [Taylor et al. [31]] (134)
Let, in equation (Sp), the functions a and A be known and affine in u, let Π be an open
subset of IRl which satisfies assumption ICS and, finally, let p0 be a known vector in
Π. Assume there exist an open neighborhood Ω of E in IRn and three known functions:

Φ : Ω → IRn of class C2 which is a diffeomorphism,
w1 : Ω → IRm of class C1 , and
w2 : Ω → GL(m, IR) of class C1 ,

such that:

1. by letting:

ϕ = Φ(x) and u = w1(x) +w2(x)ϑ , (135)

the time derivative of ϕ along the solutions of (Sp0) satisfies, for all ϑ in IRm:

.
ϕ = C ϕ + Dϑ , (136)

where D is an n×m matrix and C is an n× n matrix satisfying:

P C + CTP = −I , (137)

with P a symmetric positive definite matrix,
2. for all (x, p, u) in Ω ×Π × IRm, we have, with notation (13):

rank {b(x) +B(x)p} = m (138)

[A0(x) + u⊙B(x)] p :∈ span {b(x) +B(x)p0} . (139)
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Under these conditions, we can find functions V , un and P and a constant α1 such that
the corresponding dynamic controller (105) solves the Adaptive Stabilization problem.

Note that (136) simply implies that u = w1 +w2ϑ is a feedback linearizing control for
the system (Sp0) in the coordinates ϕ = Φ(x).

Proof. Under the above assumptions, it is proved in [31, Proposition S] that:

Φ−1(0) = E (140)

and there exists a known C1 function un : Ω × Π → IRm such that, for all (x, p) in
Ω ×Π , we have:

∂Φ

∂x
(x) (a(x, p) + A(x, p)un(x, p)) = C Φ(x) . (141)

It follows that assumption PRS is satisfied if we choose:

V (x) = Φ(x)TPΦ(x) . (142)

To check that assumption BO is satisfied, let us define α0 as the largest (possibly
infinite) real number such that the set:

{
ϕ

∣∣∣ϕTPϕ < α0

}

is contained in Φ(Ω). Since Φ(E) = 0, Φ is a diffeomorphism, and P is a positive definite
matrix, the so-defined α0 is strictly positive. Then the sets:

Γα = Φ−1
{
ϕ
∣∣∣ϕTPϕ ≤ α

}
(143)

are compact subsets of Ω for all α < α0. It follows that:

V (x) ≤ α =⇒ x ∈ Γα , (144)

which implies that BO is satisfied with Ω0 = Ω.
Assumption CO holds since:

V (x(t)) → 0 =⇒ Φ(x(t)) → 0 =⇒ x(t) = Φ−1(Φ(x(t))) → E . (145)

Since assumption Λ-LP is also satisfied with the function Λ equal to the n × n
identity matrix, the controller (105) may be employed, with the function P given by
assumption ICS and any α1 such that 0 < α1 ≤ α0 . 2

One of the features of the result established by Taylor et al. [31] is that it gives
a sufficient condition which guarantees the existence of a function V not depending
on p while satisfying assumptions BO, PRS and CO. This condition is assumption
(139), called the strict matching condition in [31, Assumption L]. It turns out that
(with notation (13)), when B ≡ 0 and b(E) has full rank m, this condition is also the
necessary and sufficient condition for the existence of a regular static state-feedback
law:

u = c(x) + d(x)w + e(x)p , (146)

which decouples the state vector x from p seen as a measured disturbance (see [6,
Proposition 5.5.1 and Proposition 7.3.1]). As pointed out by Pomet in [19, Sect. 1.2.3],
it follows that, by applying the control:

u = e(x) (p− p0) + w (147)

to any system (Sp) (with input u), p ∈ Π , we obtain the particular system (Sp0) (with
input w). In fact the same result holds if B 6≡ 0:
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Lemma [19, Théorème 2.2] (148)
Let, in equation (Sp), the functions a and A be known and affine in u, let Π be an
open subset of IRl, let Ω be an open neighborhood of E in IRn and, finally, let p0 be a
known vector in Π. Assume:

rank {b(x) +B(x)p} = m ∀ (x, p) ∈ Ω ×Π . (149)

Under these conditions, assumption (139), i.e.,

[A0(x) + u⊙B(x)] p :∈ span {b(x) +B(x)p0} ∀ (x, p, u) ∈ Ω×Π × IRm , (150)

is equivalent to the following proposition:
There exist two known C1 functions:

c : Ω ×Π → IRm , d : Ω ×Π → GL(m, IR) ,

such that, for all (x, p, w) in Ω ×Π × IRm:

a(x,w) + A(x,w) p0 = a (x , c(x, p) + d(x, p)w) + A (x , c(x, p) + d(x, p)w) p . (151)

A straightforward consequence is:

Corollary [19, Proposition 8.13] (152)
Let, in equation (Sp), the functions a and A be known and affine in u, let Π be an
open subset of IRl which satisfies assumption ICS and, finally, let p0 be a known vector
in Π. Assume there exists an open neighborhood Ω of E in IRn such that:

1. rank {b(x) +B(x)p} = m ∀ (x, p) ∈ Ω ×Π,
2. [A0(x) + u⊙B(x)] p ∈ span {b(x) +B(x)p0} ∀ (x, p, u) ∈ Ω ×Π × IRm,
3. there exist two known functions:

V : Ω → IR+ of class C2 , u0 : Ω → IRm of class C1 ,

such that the functions ∂V
∂x

(x)a(x, u) and ∂V
∂x

(x)A(x, u) are known, assumptions BO
and CO hold and we have, for all x in Ω:

∂V

∂x
(x) [a(x, u0(x)) +A(x, u0(x)) p0] ≤ 0 , (153)

where the inequality is strict iff V (x) 6= 0.

Under these conditions, we can find functions V , un and P and a constant α1 such that
the corresponding dynamic controller (105) solves the Adaptive Stabilization problem.

Proof. Assumption Λ-LP holds with:

Λ(x, t) =
∂V

∂x
(x) . (154)

Then, since assumptions BO, CO and ICS are satisfied, it is sufficient to define a
function un meeting assumption PRS. According to Lemma (148), let:

un(x, p) = c(x, p) + d(x, p)u0(x) . (155)

This is a C1 function, and inequality (47) in assumption PRS is satisfied since (151)
and (153) hold. 2

Assumption (139) is very restrictive. Fortunately, (139) is not necessary for the
existence of a function V independent of p, as illustrated below.
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Example: (156)
Consider the following system:

.
x1 = u

.
x2 = x1

.
x3 = x2 + p∗ (x3 + x2) (x1 + 2x2 + 2x3) .

(157)

We have:

a0(x) =

(
0
x1
x2

)
, A0(x) =

(
0
0

(x3 + x2) (x1 + 2x2 + 2x3)

)
,

b(x) =

(
1
0
0

)
and B(x) = 0 .

(158)

Hence, even though b is of full rank 1, assumption (139) does not hold. Nevertheless,
assumptions BO, PRS and CO are satisfied if we choose V independent of p as:

V (x1, x2, x3) =
x2
3

2
+

(x3 + x2)
2

2
+

(x1 + 2x2 + 2x3)
2

2
(159)

and un as:

un(x1, x2, x3, p) = −3x3 − 5x2 − 3x1 − p (x3 + x2) (6x3 + 5x2 + 2x1) . (160)

Indeed, V is positive definite and radially unbounded and a straightforward computa-
tion leads to the following expression for the time derivative of V along the solutions
of (157):

.
V = − x2

3 − (x3 + x2)
2 (161)

+ (x1 + 2x2 + 2x3) [u+ 2x1 + 3x2 + x3 + p (x3 + x2) (6x3 + 5x2 + 2x1)] .

⊓⊔

2.2 Case: V Dependent on p with a “Matching Condition”

When V depends on p, choosing
.
p̂ as in (87) is not sufficient to guarantee that

.
W is neg-

ative when W is given by (85). This follows from the disturbing term ∂V
∂p

(x, p̂)
.
p̂ present

in (86). To overcome this difficulty, a very fruitful idea proposed by Kanellakopoulos,
Kokotovic and Marino [8] (see also Middleton and Goodwin [15]) is to compensate this
measurable disturbing term by modifying the control to:

u = un(x, p̂) + v . (162)

Indeed, in this case, (86) becomes:

.
W ≤

[
−∂V

∂x
(x, p̂)A(x, un(x, p̂) + v) +

.
p̂
T
]
[p̂− p∗] +

∂V

∂p
(x, p̂)

.
p̂

+
∂V

∂x
(x, p̂) [a(x, un(x, p̂) + v)− a(x, un(x, p̂))

+ (A(x, un(x, p̂) + v)− A(x, un(x, p̂))) p̂] .

(163)
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Hence, taking:

.
p̂ =

[
∂V

∂x
(x, p̂)A(x, un(x, p̂) + v)

]T
, p̂(0) ∈ Π , (164)

and choosing v as a solution of:

0 =
∂V

∂p
(x, p̂)

.
p̂ +

∂V

∂x
(x, p̂) [a(x, un(x, p̂) + v)− a(x, un(x, p̂))

+ (A(x, un(x, p̂) + v)− A(x, un(x, p̂))) p̂] ,

(165)

we guarantee that
.
W is negative. However, a new difficulty may arise from the fact that

(164) and (165) is a system of implicit equations to be solved in
.
p̂ and v. A solution

smoothly depending on x and p̂ may not exist. Pomet [19] (see also [21]) has proposed
the following way to avoid this difficulty, when a and A are affine in u:
With the control u as in (162), i.e.,

u = un(x, p) + v , (166)

we may embed the family of systems (Sp) into the following larger family (Sp,q) (with
notation (13)):

.
x = a0 + (un + v)⊙ b+ (A0 + un ⊙B) p+ v ⊙B q , (p, q) ∈ Π ×Π . (Sp,q)

Then, we modify the function W to:

W (x, p̂) = V (x, p̂) +
1

2
‖p̂− p∗‖2 +

1

2
‖q̂ − p∗‖2 . (167)

As above, the time derivative of this function W is made negative if we choose:

.
p̂ =

[
∂V

∂x
(x, p̂) (A0(x) + un(x, p̂)⊙B(x))

]T
, p̂(0) ∈ Π

.
q̂ =

[
∂V

∂x
(x, p̂) v

(
x, p̂, q̂,

.
p̂
)
⊙B(x)

]T
, q̂(0) ∈ Π

u = un(x, p̂) + v
(
x, p̂, q̂,

.
p̂
)
.

(168)

This dynamic controller is well-defined with unique solutions if we assume:

Assumption MC (Matching Condition) (169)
The functions a and A are affine in u and there exists a known C1 function v(x, p, q, ∂)
from Ω ×Π ×Π × IRl to IRm satisfying:

∂V

∂p
(x, p) ∂ +

∂V

∂x
(x, p) v ⊙ [b(x) +B(x) q] = 0 . (170)

We remark that, if V is independent of p, this assumption is trivially satisfied (by
v = 0). Also, the way this assumption is stated is too restrictive for our purpose. In

order to make
.
W negative it is sufficient that (170) be satisfied for the particular case

∂ =
.
p̂ and not for all ∂ ∈ IRl. We have stated assumption MC is these terms to allow us

independent choices for the function V and for
.
p̂. Indeed, relaxing (170) by replacing

∂ by
.
p̂ implies that V , un and

.
p̂ must be designed all together so that BO, CO, PRS

and MC are satisfied at the same time.
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Example: (171)
Consider the system, with n = 2 and l = 1:

.
x1 = u
.
x2 = x2

2

(
x1 + p x2

2

)
.

(172)

Assumptions BO, PRS and CO are satisfied, with:

V (x1, x2, p) = x2
2 + (x1 + x2 + p x2

2)
2 (173)

un(x1, x2, p) = −x2 − x3
2 − (x1 + p x2

2)
(
1 + x2

2 (1 + 2 p x2)
)
. (174)

Assumption Λ-LP is also satisfied with:

Λ(x1, x2, t) =
∂V

∂x
(x1, x2, p̂(t)) . (175)

Finally, assumption MC holds since in this case equation (170) is:

2x2
2 (x1 + x2 + p x2

2) ∂ + 2 (x1 + x2 + p x2
2) v = 0 , (176)

which is satisfied by the choice

v = −x2
2 ∂ . (177)

⊓⊔

Finally, to guarantee that p̂(t) and q̂(t) remain in Π and that V (x(t), p̂(t)) remains
smaller than α0, we have to modify further the controller (168) as in the previous
section:

.
p̂ = Proj

(
I, p̂ ,

α1
2

(V (x, p̂)− α1)2

[
∂V

∂x
(x, p̂) (A0(x) + un(x, p̂)⊙B(x))

]T)

.
q̂ = Proj

(
I, q̂ ,

α1
2

(V (x, p̂)− α1)2

[
∂V

∂x
(x, p̂) v(x, p̂, q̂,

.
p̂)⊙B(x)

]T)

u = un(x, p̂) + v
(
x, p̂, q̂,

.
p̂
)
,

(178)

with p̂(0) and q̂(0) in Π1. We have:

Proposition (179)
Let assumptions BO, PRS, ICS and MC hold. Assume also that assumption Λ-LP is
satisfied with:

Λ(x, t) =
∂V

∂x
(x, p̂(t)) . (180)

If, in (178), α1 is chosen smaller than or equal to α0, then all the solutions (x(t), p̂(t), q̂(t))
of (Sp∗)-(178), with x(0) in Ω0 and V (x(0), p̂(0)) < α1, are well-defined on [0,+∞),
unique, bounded and:

lim
t→∞

V (x(t), p̂(t)) = 0 . (181)

It follows that the Adaptive Stabilization problem is solved if assumption CO holds also.
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Proof. The system we consider is:

.
x = a

(
x , un(x, p̂) + v(x, p̂, q̂,

.
p̂)
)
+ A

(
x , un(x, p̂) + v(x, p̂, q̂,

.
p̂)
)

p∗

.
p̂ = Proj

(
I, p̂ ,

α1
2

(V (x, p̂)− α1)2

[
∂V

∂x
(x, p̂) (A0(x) + un(x, p̂)⊙B(x))

]T)

.
q̂ = Proj

(
I, q̂ ,

α1
2

(V (x, p̂)− α1)2

[
∂V

∂x
(x, p̂) v(x, p̂, q̂,

.
p̂)⊙B(x)

]T)
,

(182)

with p̂(0) and q̂(0) in Π1. ¿From our smoothness assumptions on the functions a, A, un

and V and with Point 1 of Lemma (103), this system has a locally Lipschitz-continuous
right-hand side in the open set defined by:

(x, p̂, q̂) ∈ Ω ×Π ×Π and V (x, p̂) < α1 . (183)

It follows that, for any initial condition in this open set, there exists a unique solution
(x(t), p̂(t), q̂(t)), defined on a right maximal interval [0, T ), with T possibly infinite, and
satisfying (183) for all t in [0, T ). Applying Point 5 of Lemma (103), we also know that
p̂(t) ∈ Π1 and q̂(t) ∈ Π1 for all t in [0, T ). Then, let us compute the time derivative,
along such a solution, of the function W defined by:

W (x, p̂) =
α1V (x, p̂)

α1 − V (x, p̂)
+

1

2
‖p̂− p∗‖2 +

1

2
‖q̂ − p∗‖2 . (184)

With assumption PRS, Point 4 of Lemma (103) and equation (170) with ∂ =
.
p̂ satisfied

by v
(
x, p̂, q̂,

.
p̂
)
, we get:

.
W ≤ 0 if V (x(t), p̂(t)) = 0

< 0 if V (x(t), p̂(t)) 6= 0 .

(185)

¿From there, we conclude exactly as in the proof of Proposition (106). 2

Example: (186)
The assumptions of Proposition (179) are satisfied by the system (172) of Example
(171). For this system, the Adaptive Stabilization problem is solved by the following
dynamic controller (using (164), (173) and (177)):

.
p̂ = 2

[
x2 +

(
x1 + x2 + p̂x2

2

)
(1 + 2p̂x2)

]
x4
2

u = −x2 − x3
2 − (x1 + p x2

2)
(
1 + x2

2 (1 + 2 p x2)
)

− 2x2
2

[
x2 +

(
x1 + x2 + p̂x2

2

)
(1 + 2p̂x2)

]
x4
2 .

(187)

⊓⊔

Proposition (179) generalizes to the case where V is not radially unbounded a result
established by Kanellakopoulos, Kokotovic and Marino for state-feedback linearizable
systems [8]:
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Corollary [Kanellakopoulos, Kokotovic and Marino [8]] (188)
Let, in equation (Sp), the functions a and A be known and affine in u, let p0 be a known
vector in IRl. Assume there exist a bounded open subset Ω of IRn, an open neighborhood
0 of p0 in IRl and three known functions:

Ψ : Ω → IRn of class C2 which is a diffeomorphism,
w1 : Ω → IRm of class C1 , and
w2 : Ω → GL(m, IR) of class C1 ,

such that:

1. by letting:
ϕ = Ψ(x) and u = w1(x) + w2(x)ϑ , (189)

the time derivative of ϕ along the solutions of (Sp0) satisfies, for all ϑ in IRm:

.
ϕ = C ϕ + Dϑ , (190)

where D is an n×m matrix and C is an n× n matrix satisfying:

P C + CTP = −I , (191)

with P a symmetric positive definite matrix,
2. for all (x, p, u) in Ω × 0× IRm, we have, with notation (13):

rank {b(x) +B(x)p} = m (192)

u⊙B(x) p ∈ span {b(x) +B(x)p0}

A0(x) p :∈ span {b(x) +B(x)p0 , [a0 + A0p0 , span {b+Bp0}] (x)} ,

(193)

where [· , ·] denotes the Lie bracket.

Under these conditions and if p∗ is close enough to p0, we can find functions V , un

and P and a constant α1 such that the corresponding dynamic controller (178) solves
the Adaptive Stabilization problem.

Proof. ¿From the sections “State diffeomorphism” and “Ideal feedback control” in [8]
(see also [9]), there exist an open neighborhood Πd of p0 and three known functions:

Φ : Ω ×Πd → IRn of class C2, a diffeomorphism for each p,
un : Ω ×Πd → IRm of class C1 , and

v : Ω ×Πd ×Πd × IRl → IRm of class C1 ,

such that E belongs to Ω,

Φ(E , p∗) = 0 , Φ(x, p0) = Ψ(x) ∀x ∈ Ω , (194)

and, for all (x, p, q, ∂) in Ω ×Πd ×Πd × IRl, we have:

∂Φ

∂x
(x, p) [a(x, p) + A(x, p)un(x, p)] = C Φ(x, p) (195)

∂Φ

∂p
(x, p) ∂ +

∂Φ

∂x
(x, p) v ⊙ [b(x) +B(x) q] = 0 . (196)

Then, let us choose the function V as:

V (x, p) = Φ(x, p)TP Φ(x, p) . (197)
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In order to choose the set Π and the scalar α0, let us define a function F by:

F : Ω ×Πd → IRn ×Πd .
(x, p) (Φ(x, p) , p)

(198)

This function is a diffeomorphism satisfying F (Ψ−1(0), p0) = (0, p0). Since Ω × Πd is
an open neighborhood of (Ψ−1(0), p0) and p∗ is assumed to be close enough from p0,
there exist strictly positive real numbers α0 and π such that:

‖p∗ − p0‖2 <
π

1 + ε
, (199)

with 0 < ε < 1, and the set:
{
(ϕ, p)

∣∣∣ ‖p− p0‖2 < π and ϕTP ϕ < α0

}

is contained in F (Ω ×Πd) and contains E . Then, let us define the function P by:

P(p) =
2

ε

[
1 + ε

π
‖p− p0‖2 − 1

]
, (200)

and the set Π by:

Π = {p | P(p) < 1 + ε} . (201)

Assumption ICS is satisfied.
¿From (195) and (196), it is clear that assumptions PRS and MC are satisfied. To

check that assumption BO is satisfied, we remark that for all compact subsets K of Π
and all α < α0, the sets:

{
(x, p)

∣∣∣Φ(x, p)TP Φ(x, p) ≤ α and p ∈ K
}

are compact subsets of Ω ×Π and therefore their projections:

Γα,K =
{
x

∣∣∣ ∃ p ∈ K : Φ(x, p)TP Φ(x, p) ≤ α
}

(202)

are compact subsets of Ω. It follows that:

V (x, p) ≤ α and p ∈ K =⇒ x ∈ Γα,K , (203)

which implies that BO is satisfied with Ω0 = Ω.
The proof that assumption CO holds follows from the remark:

V (x(t), p̂(t)) → 0 =⇒ Φ(x(t, p̂(t))) → 0 = Φ(E , p∗) (204)

and the proof of [9, Theorem 1] (see also Example (68)).
Since assumption Λ-LP is also satisfied with the function Λ equal to the n × n

identity matrix, the controller (178) applies. 2

One of the nice results proved by Kanellakopoulos, Kokotovic and Marino is that
for feedback linearizable systems, assumption (193), called the extended matching con-
dition in [8, Assumption E] is necessary and sufficient for assumption MC to hold. In
fact, as for the case where V does not depend on p, this assumption (193) relies on the
fact that we can transform any system (Sp) into a particular one (Sp0) but this time
by using both feedback and diffeomorphism. Precisely, we have:
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Lemma [19, Théorème 2.9 and Lemme 8.14] (205)
Let the functions a and A in equation (Sp) be affine in u and let U be an open neigh-
borhood of E in IRn. Assume that, in U (with notation (13)):

1. The distribution span {b+Bp∗} is involutive with constant full rank m,
2. The distribution span {b+Bp∗ , [a0 +A0p

∗ , span {b+Bp∗}]} has constant rank.

Under these conditions, assumption (193), i.e.,

u⊙B(x) p :∈ span {b(x) +B(x)p0}

A0(x) p :∈ span {b(x) +B(x)p0 , [a0 + A0p0 , span {b+Bp0}] (x)} ,

(206)

is equivalent to the following proposition:
There exist an open neighborhood Ω of E , an open neighborhood Π of p∗ of IRl, a vector
p0 in Π and four smooth functions:

Φ : Ω ×Π → IRn of class C2, a diffeomorphism for each p,
c : Ω ×Π → IRm of class C1 ,
d : Ω ×Π → GL(m, IR) of class C1 , and

v : Ω ×Π ×Π × IRl → IRm of class C1 ,

such that, for all (x, p, q, ∂) in Ω ×Π ×Π × IRl, we have:

∂Φ

∂p
(x, p) ∂ +

∂Φ

∂x
(x, p) v ⊙ [b(x) +B(x) q] = 0 , (207)

and, for all (x, p,w) in Ω ×Π × IRm, we have:

a(Φ(x, p), w) + A(Φ(x, p), w) p0

=
∂Φ

∂x
(x, p) [a (x , c(x, p) + d(x, p)w) + A (x , c(x, p) + d(x, p)w) p] .

(208)

Comparing (207) and (170) in assumption MC, we understand the importance of this
result. It gives us a possible route for finding functions V and un satisfying all our
assumptions BO, PRS, CO and MC. Indeed, if

1. the conditions of Lemma (205) are satisfied, and
2. for the particular system (Sp0), with p0 given by Lemma (205), there exist V0 and

u0 satisfying assumptions BO, PRS and CO but this time with the family (Sp)
reduced to the single element (Sp0), i.e., p = p∗ = p0,

then, by choosing:

V (x, p) = V0(Φ(x, p))

un(x, p) = c(x, p) + d(x, p)u0 (Φ(x, p)) ,
(209)

assumptions BO, PRS, CO and MC are necessarily satisfied.
However, it is important to notice that finding a solution v in IRm to the n equations

(207) is more difficult than finding a solution v in IRm to the single equation (170). For
single-input two-dimensional affine in u systems with b(E) 6= 0 and B(x) ∈ span {b(x)},
the assumptions of Lemma (205) are “generically” satisfied. Indeed, we can expect that,
for almost all x close to E , we have:

span {b(x) , [a0 , b] (x)} = IR2 . (210)
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However, the set of such x’s may not be a neighborhood of E , implying that (207)
may not hold. Nevertheless, d’Andréa-Novel, Pomet and Praly [1] have shown that, for
this two-dimensional case, there are explicit expressions for the functions V , un and v
satisfying assumptions BO, PRS and MC.

Compared with Proposition (76), Proposition (179) states that, when p∗ is un-
known, the solution to the Adaptive Stabilization problem given by the Lyapunov
design requires the Matching Condition (MC). And nothing is known if this condition
does not hold.

Another but very particular possibility to handle the case where V depends on p
is to choose:

W =
α1V (x, p∗)

α1 − V (x, p∗)
+

1

2
‖p̂− p∗‖2 and u = un(x, p̂) . (211)

This gives:

.
W =

.
p̂
T

[p̂− p∗] +
α1

2

(α1 − V (x, p∗))2
∂V

∂x
(x, p∗) [a(x, un(x, p̂)) +A(x, un(x, p̂))p

∗] .

(212)
Then, using assumption PRS, we get:

.
W ≤

.
p̂
T

[p̂− p∗] +
α1

2

(α1 − V (x, p∗))2
∂V

∂x
(x, p∗)

× [a(x, un(x, p̂))− a(x, un(x, p
∗)) + (A(x, un(x, p̂))−A(x, un(x, p

∗))) p∗] .

(213)

There is no general expression of
.
p̂ not depending on p∗ and making the right-hand

side of this inequality negative. However, Slotine and Li [30] have shown that in the
particular case of rigid robot arms, it is possible to find functions V and un which
satisfy assumption BO, PRS and CO and are such that:

There exists a C1 function Z : Ω×Π → IRl such that, for the particular value p∗ but
for all (x, p) ∈ Ω ×Π, we have:

[p∗ − p]T Z(x, p) =
α1

2

(α1 − V (x, p∗))2
∂V

∂x
(x, p∗)

× [a(x, un(x, p))− a(x, un(x, p
∗)) + (A(x, un(x, p))− A(x, un(x, p

∗))) p∗] .

(214)

Indeed, with such a property, the Adaptive Stabilization problem is solved by choosing:

.
p̂ = Proj (I , p̂ , Z(x, p̂)) . (215)

3 Estimation Design

Another way to obtain dynamic controllers to solve the Adaptive Stabilization problem
is to hope that a separation principle holds, i.e., that we can get an estimate p̂ of p∗

by using a parameter estimator and simultaneously we apply the control un with the
unknown parameter vector p∗ replaced by its estimate p̂, i.e.,

u = un(x, p̂) . (216)
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For the estimation, we note that, thanks to assumption Λ-LP, equation (Sp) is
linear in p, i.e., it can be rewritten as:

z = Z p , (217)

with:

z =
.
x − a(x, u) and Z = A(x, u) . (218)

Also, the vector p∗ we want to estimate is constant, i.e., it is a solution of:

.
p = 0 . (219)

Estimating p∗ is then equivalent to observing, through the observation equation (217),
the state vector p which obeys the (trivial) dynamic equation (219). From linear ob-
server theory [7], we know that an observer can be written as:

.
p̂ = −K (Z p̂− z) , (220)

with K the observer gain. Unfortunately, such an observer cannot be implemented,
since it makes use of the unknown quantities

.
x, a(x, u) and A(x, u). This difficulty is

handled as follows:

About the unmeasured time derivative
.
x, it is quite clear that an integration should

help us. It turns out that two ways of implementing this integration are fruitful:

1. equation error filtering, and

2. regressor filtering.

These techniques will be presented hereafter.

To deal with the fact that only the functions Λa and ΛA are known, we select an

integer k and a C2 function h : Ω×Π → IRk such that the functions
∂h

∂x
(x, p)a(x, u)

and
∂h

∂x
(x, p)A(x, u) are known functions of (x, u, p), i.e., assumption Λ-LP is met with:

Λ(x, t) =
∂h

∂x
(x, p̂(t)) . (221)

This function h is called the observation function. For any C1 time functions p̂ : IR+ →
Π and u : IR+ → IRm, the time derivative of h(x(t), p̂(t)) with x(t) a solution of (Sp∗)
satisfies:

.
h =

∂h

∂x
(x, p̂) (a(x, u) + A(x, u) p∗) +

∂h

∂p
(x, p̂)

.
p̂ . (222)

This is again an equation linear in p∗ and equality (217) is again satisfied but with the
following definitions of z and Z:

z =
.
h − ∂h

∂x
(x, p̂) a(x, u) − ∂h

∂p
(x, p̂)

.
p̂

Z =
∂h

∂x
(x, p̂)A(x, u) .

(223)
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Example: System (17) Continued (224)
For the system (17) rewritten as (50) in Example (49), let us choose the observation
function h as:

h(x1, x2, p1, p2) =
1

2
x2
1 . (225)

We get:
.

h(x1(t), x2(t), p1(t), p2(t)) = x3
1(t)

(
x2
2(t) + p∗1 + p∗2 u(t)

)
. (226)

By letting:

z(t) =
.

h(x1(t), x2(t), p1(t), p2(t)) − x3
1(t)x

2
2(t)

Z(t) =
(
x3
1(t) x3

1(t)u(t)
)
,

(227)

we obtain equation (217), i.e.,

z(t) = Z(t)

(
p∗1

p∗2

)
. (228)

⊓⊔

3.1 Equation Error Filtering

The estimator is obtained from the observer (220) where the so called equation error
Zp̂− z is replaced by a filtered version. Namely, let e in IRk be defined as follows:

.
e + r(e, x, p̂) e = Z p̂ − z , (229)

or equivalently, using (223):

.
ĥ = −r(e, x, p̂) e +

∂h

∂x
(x, p̂)A(x, u) p̂ +

∂h

∂x
(x, p̂)a(x, u) +

∂h

∂p
(x, p̂)

.
p̂

e = ĥ − h(x, p̂) ,

(230)

with r a positive C1 function defined in IRk × Ω × Π . Definitely, e can be obtained

without knowing
.
h and the estimate p̂ is then given by:

.
p̂ = Proj (I , p̂ , −K e) , p̂(0) ∈ Π1 , (231)

where the matrix M used in the function Proj is the identity matrix and, typically:

K = ZT =
(
∂h

∂x
(x, p̂)A(x, u)

)T
. (232)

Unfortunately, as in the Lyapunov design case, if, instead of (216), we implement
the control:

u = un(x, p̂) + v , (233)

where v depends on
.
p̂, we have again an implicit definition of

.
p̂ when v is explicitly

involved in the right-hand side of (231). In such a case, if the functions a and A are
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affine in u, we derive the estimator from equation (Sp,q) instead of equation (Sp). Using
notation (13), this leads to the following observer:

.
ĥ = −r(e, x, p̂) e +

∂h

∂x
(x, p̂) [a0(x) + A0(x)p̂+ un(x, p̂)⊙ (b(x) +B(x)p̂)]

+
∂h

∂x
(x, p̂) v

(
x, p̂, q̂,

.
p̂
)
⊙ (b(x) +B(x)q̂) +

∂h

∂p
(x, p̂)

.
p̂

e = ĥ − h(x, p̂)

.
p̂ = Proj

(
I, p̂ ,−

[
∂h

∂x
(x, p̂) (A0(x) + un(x, p̂)⊙B(x))

]T
e

)
, p̂(0) ∈ Π1

.
q̂ = Proj

(
I, q̂ ,−

[
∂h

∂x
(x, p̂) v(x, p̂, q̂,

.
p̂)⊙B(x)

]T
e

)
, q̂(0) ∈ Π1 .

(234)

In the sequel, such a modified estimator will be implicitly assumed to be used
whenever the Matching Condition holds.

We have:

Lemma (235)
Assume ICS is satisfied. For any C1 time function u : IR+ → IRm, all the solutions
(x(t), p̂(t), ĥ(t)) of (Sp∗)-(230)-(231)-(232) defined on [0, T ) with x(t) remaining in Ω
satisfy for all t in [0, T ):

1. p̂(t) ∈ Π1

2. ‖p̂(t)− p∗‖2 + ‖e(t)‖2 + 2

∫ t

0

r ‖e‖2 ≤ ‖p̂(0)− p∗‖2 + ‖e(0)‖2 .

Similarly for the solutions of (Sp∗,p∗)-(234), we have, for all t in [0, T ):

3. p̂(t) ∈ Π1 and q̂(t) ∈ Π1

4.

∥∥∥∥∥∥∥

p̂(t)− p∗

q̂(t)− p∗

∥∥∥∥∥∥∥

2

+ ‖e(t)‖2 + 2

∫ t

0

r ‖e‖2 ≤

∥∥∥∥∥∥∥

p̂(0) − p∗

q̂(0)− p∗

∥∥∥∥∥∥∥

2

+ ‖e(0)‖2 .

Proof. Point 1 is a straightforward consequence of Point 5 of Lemma (103). For Point
2, let us denote η the input of the dynamic system (229), i.e.,

η = Z p̂ − z . (236)

This system with output e is passive, namely, it satisfies for all t in [0, T ):

∫ t

0

eTη =

∫ t

0

eT
( .
e+ re

)
(237)

=
1

2
‖e(t)‖2 − 1

2
‖e(0)‖2 +

∫ t

0

r ‖e‖2 ≥ −1

2
‖e(0)‖2 . (238)

On the other hand, the dynamic system (231) with input e and output y defined by:

y = Z (p∗ − p̂) (239)
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is also passive. Indeed, we have thanks to Point 4 of Lemma (103):

∫ t

0

yTe =

∫ t

0

(p̂− p∗)
T
(−ZT)e (240)

≥
∫ t

0

(p̂− p∗)
T
Proj

(
I , p̂ , −ZT e

)
(241)

≥
∫ t

0

(p̂− p∗)
T
.
p̂ (242)

≥ 1

2
‖p̂(t)− p∗‖2 − 1

2
‖p̂(0) − p∗‖2 (243)

≥ −1

2
‖p̂(0) − p∗‖2 . (244)

Noting that p∗ satisfies:

z = Z p∗ , (245)

the two passive systems are interconnected with:

y = −η . (246)

Then, Point 2 follows directly from standard passivity theorems (see Landau [12]) or
more directly by comparing (238) and (243). The proof of Points 3 and 4 is similar. 2

In fact, as emphasized by Landau [12] and expected from this proof, a similar
Lemma would be obtained if, instead of the filter (229), we would have used any
passive operator. In particular, as already noticed for adaptive control of linear systems
by Narendra and Valavani [17], Pomet [19] has shown that, by choosing the identity
matrix for the observation function h and a copy of the controlled system itself as the
filter (229), we can rederive the adaptation law (178) of the Lyapunov design. Indeed,
assume that BO, PRS and MC hold and define e as the output of, instead of (229),
the following system with input η and state χ, with notation (13):

.
χ = a0(χ) + A0(χ)p̂+ un(χ, p̂)⊙ (b(χ) +B(χ)p̂)

+ v
(
χ, p̂, q̂,

.
p̂
)
⊙ (b(χ) +B(χ)q̂) + η

e =
∂V

∂χ
(χ, p̂)T .

(247)

To see that this system is passive, we look at the time derivative of V (χ(t), p̂(t)). We
get:

.
V =

∂V

∂χ
[a0 + A0 p̂+ un ⊙ (b+B p̂)] +

∂V

∂χ
v ⊙ (b+Bq̂) +

∂V

∂p̂

.
p̂ +

∂V

∂χ
η . (248)

Hence, the definition of e, (47) in assumption PRS and (170) in assumption MC give
readily:

.
V ≤ eTη . (249)

Therefore, for any solution of (247) defined on [0, T ), we have:

∫ t

0

eTη ≥ V (χ(t), p̂(t)) − V (χ(0), p̂(0)) ∀ t ∈ [0, T ) . (250)
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In the proof of Lemma (235), we have seen that if equation (Sp,q) is satisfied with

p = p∗ and q = p∗, the following system with input e, state

(
p̂
q̂

)
and ouput y:

.
p̂ = Proj

(
I, p̂ ,− [(A0(χ) + un(χ, p̂)⊙B(χ))]

T
e
)

, p̂(0) ∈ Π1

.
q̂ = Proj

(
I, q̂ ,−

[
v(χ, p̂, q̂,

.
p̂)⊙B(χ)

]T
e

)
, q̂(0) ∈ Π1

y = (A0(χ) + un(χ, p̂)⊙B(χ)) (p̂− p∗) + v
(
χ, p̂, q̂,

.
p̂
)
⊙B(χ) (q̂ − p∗)

(251)

is passive, namely:

∫ t

0

eTy ≥ 1

2

∥∥∥∥
p̂(t)− p∗

q̂(t)− p∗

∥∥∥∥
2

− 1

2

∥∥∥∥
p̂(0)− p∗

q̂(0)− p∗

∥∥∥∥
2

∀ t ∈ [0, T ) . (252)

It follows that the observer defined by equations (247) and (251) is such that V (χ(t), p̂(t)),
p̂(t) and q̂(t) are bounded if η is chosen such that:

η = −y

= (A0(χ) + un(χ, p̂)⊙B(χ)) (p∗ − p̂)

+ v
(
χ, p̂, q̂,

.
p̂
)
⊙B(χ) (p∗ − q̂) . (253)

It remains to check that the observer (247)–(251) can be implemented while satisfying
this equality, i.e., with (247) rewritten as:

.
χ = a0(χ) + A0(χ)p

∗ + un(χ, p̂)⊙ (b(χ) +B(χ)p∗)

+ v
(
χ, p̂, q̂,

.
p̂
)
⊙ (b(χ) +B(χ)p∗) + η . (254)

The right-hand side of this equation is nothing but a copy of the system (Sp∗) with
the control:

u = un(x, p̂) + v
(
x, p̂, q̂,

.
p̂
)
. (255)

It follows that if, in (247), we choose the initial condition

χ(0) = x(0) , (256)

then, necessarily, for all t:

χ(t) = x(t) . (257)

This implies that, in fact, in the observer, the
.
χ equation does not need to be imple-

mented, but that we simply have to replace χ by x in the definition of e,
.
p̂ and

.
q̂. This

gives exactly the adaptation law in (178) provided by the Lyapunov design.
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3.2 Regressor Filtering

To overcome the difficulty of having
.
x or more precisely

.
h unmeasured, another way

to implement an integration follows from the following remark:
Let zf and Zf be the following filtered quantities:

.
zf + ρ(x, p̂, u) zf = z , zf(0) = 0

.
Zf + ρ(x, p̂, u)Zf = Z , Zf(0) = 0 ,

(258)

or equivalently, using (223):

.
ẑf = ρ(x, p̂, u) zf +

∂h

∂x
(x, p̂) a(x, u) +

∂h

∂p
(x, p̂)

.
p̂ , ẑf(0) = h(x(0), p̂(0))

zf = h(x, p̂) − ẑf

.
Zf = −ρ(x, p̂, u)Zf +

∂h

∂x
(x, p̂)A(x, u) , Zf(0) = 0 ,

(259)

where ρ is a C1 positive function. Clearly, the knowledge of
.
h is not needed and equation

(Sp∗) gives:

zf = Zf p
∗ . (260)

This equation is again linear in p∗. This yields the following linear observer for p∗:

e = Zf p̂ − zf

.
p̂ = Proj (M , p̂ , −K e) , p̂(0) ∈ Π1 ,

(261)

where, typically, the observer gain K and the matrix M , used in the function Proj, are
given by:

K = M ZT

f
r(x, p̂, u, e)

.
M ≥ −(2− ε1)M ZT

f
Zf M r(x, p̂, u, e) , ε2 M ≤ I , I ≤ ε3 M(0) ,

(262)

where 0 < ε1 < 2, 0 < ε3, 0 < ε2, r is a strictly positive C1 function and, if the observer
gain K is allowed to decay to zero with time:

.
M ≤ −ε4 M ZT

f Zf M r(x, p̂, u, e) , 2− ε1 ≥ ε4 > 0 . (263)

Note that, in (261),
.
p̂ depends on u via the dependence of the observer gain K on r.

Unfortunately, in this case, it is useless to extend the parameterization by embedding
(Sp) into (Sp,q), since r will remain a factor in the extended observer gain. It follows

that to make sure that
.
p̂ is well-defined, we shall impose that r does not depend on u

whenever u is allowed to depend on
.
p̂.

We have:
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Lemma: (264)
Assume ICS is satisfied. There exists a positive continuous function k1 such that, for
any C1 time function u : IR+ → IRm, all (x(t), p̂(t), ẑf(t), Zf(t),M(t)), solutions of
(Sp∗)-(259)-(261)-(262), defined on [0, T ) with (x(t),M(t)) remaining in Ω×M satisfy
for all t in [0, T ):

1. p̂(t) ∈ Π1

2. ε2 ‖p̂(t)− p∗‖2 + ε1

∫ t

0

r ‖e‖2 ≤ ε3 ‖p̂(0)− p∗‖2

3. if (263) holds, then

∫ t

0

∥∥∥
.
p̂
∥∥∥ ≤ k1(p

∗, p̂(0)) .

Moreover, for all constant k2, the property:

‖Z(t)‖
ρ(x(t), p̂(t), u(t))

≤ k2 ∀ t ∈ [0, T ) (265)

implies the property:

‖Zf(t)‖ ≤ k2 and ‖e(t)‖ ≤ k2

√
ε3
ε2

‖p̂(0)− p∗‖ ∀ t ∈ [0, T ) . (266)

Note that a trivial way of meeting the condition (265) is to choose:

ρ(x, p̂, u) = 1 + ‖Z‖ . (267)

Proof. Point 1 is a straightforward consequence of Point 5 of Lemma (103). For Point
2, first note that (260) and (261) imply:

e = Zf (p̂− p∗) . (268)

Then, let us consider the time derivative of:

W1(t) =
1

2
(p̂(t)− p∗)

T
M−1(t) (p̂(t)− p∗) (269)

along the solutions of (261). This is a well-defined time function since by assumption
M(t) ∈ M. First note that, from (262), we get:

.
M−1 ≤ (2− ε1)Z

T

f Zf r , (270)

then, with Point 4 of Lemma (103) and (268), we get successively:

.
W 1 = (p̂− p∗)

T

[
1

2

.
M−1 (p̂− p∗) + M−1

.
p̂

]

≤
(
1− ε1

2

)
r ‖Zf (p̂− p∗)‖2

+ (p̂− p∗)
T
M−1 Proj

(
M , p̂ , −rM ZT

f e
)

≤
(
1− ε1

2

)
r ‖Zf (p̂− p∗)‖2 − r (p̂− p∗)

T
ZT

f e (271)

+ (p̂− p∗)
T
M−1 Proj

(
M , p̂ , −rM ZT

f e
)
− (p̂− p∗)

T
(
−rZT

f e
)

≤
(
1− ε1

2

)
r ‖Zf (p̂− p∗)‖2 − r (p̂− p∗)

T
ZT

f e

≤ −ε1
2

r ‖e‖2 .
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On the other hand, from (262), we have:

ε2
2

‖p̂(t)− p∗‖2 ≤ W1(t) ≤
λmax

{
M−1(t)

}

2
‖p̂(t)− p∗‖2 , (272)

where λmax {·} denotes the maximum eigenvalue. Point 2 follows readily and also with
(271):

∫ t

0

(p̂− p∗)
T
(
−r ZT

f e
)
−
∫ t

0

(p̂− p∗)
T
M−1 Proj

(
M , p̂ , −rM ZT

f e
)

≤ ε3
2

‖p̂(0)− p∗‖2 . (273)

To prove Point 3, let us define χ as follows:

χ = 0 if P(p̂) ≤ 0 or ∂P
∂p

(p̂)M ZT

f
e ≥ 0

= P(p̂) if P(p̂) > 0 and ∂P
∂p

(p̂)M ZT

f
e < 0 .

(274)

With the definition (102) of Proj and Point 3 in Lemma (103), we get:

(p̂− p∗)
T
(
−ZT

f e
)
− (p̂− p∗)

T
M−1Proj

(
M , p̂ , −M ZT

f e
)

= χ

(
− ∂P

∂p
(p̂)MZT

f
e
) (

∂P
∂p

(p̂) (p̂− p∗)
)

∂P
∂p

(p̂)M ∂P
∂p

(p̂)T
(275)

= χ

∣∣ ∂P
∂p

(p̂)MZT

f
e
∣∣ ( ∂P

∂p
(p̂) (p̂− p∗)

)

∂P
∂p

(p̂)M ∂P
∂p

(p̂)T
(276)

≥ D∗ χ

∣∣ ∂P
∂p

(p̂)MZT

f
e
∣∣ ∥∥ ∂P

∂p
(p̂)
∥∥

∂P
∂p

(p̂)M ∂P
∂p

(p̂)T
. (277)

Then, the expression of
.
p̂ in (261) and the inequality on

.
M in (263) give with (262):

∥∥∥
.
p̂

∥∥∥ =

∥∥∥Proj
(
M , p̂ , −rM ZT

f e
)∥∥∥ (278)

≤ r

∥∥∥MZT

f e

∥∥∥ + r χ

∣∣ ∂P
∂p

(p̂)MZT

f
e
∣∣ ∥∥M ∂P

∂p
(p̂)
∥∥

∂P
∂p

(p̂)M ∂P
∂p

(p̂)T
. (279)

And, with the Cauchy Schwarz inequality and (262), we get:

∫ t

0

∥∥∥
.
p̂
∥∥∥ ≤

√∫ t

0

r ‖e‖2
√∫ t

0

tr
{
rMZT

f ZfM
}

+

∫ t

0

rχ

ε2

∣∣∂P
∂p

(p̂)MZT

f
e
∣∣ ∥∥ ∂P

∂p
(p̂)
∥∥

∂P
∂p

(p̂)M ∂P
∂p

(p̂)T

≤

√∫ t

0

r ‖e‖2
√√√√
∫ t

0

tr

{
−

.
M

ε4

}

+

∫ t

0

rχ

ε2

∣∣∂P
∂p

(p̂)MZT

f
e
∣∣ ∥∥ ∂P

∂p
(p̂)
∥∥

∂P
∂p

(p̂)M ∂P
∂p

(p̂)T
, (280)
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where tr{·} denotes the trace of a matrix. The proof of Point 3 is now straightforward.
We use the inequalities given by Point 2, (273) and (277) and get:

∫ t

0

∥∥∥
.
p̂
∥∥∥ ≤

√
ε3
ε2

‖p̂(0)− p∗‖
√

tr {M(0)}
ε4

+
ε3

2D∗ ε2
‖p̂(0)− p∗‖2 . (281)

Finally, we prove the implication stated in the Lemma. To simplify the notations, let:

ρ(t) = ρ (x(t), p̂(t), u(t)) . (282)

The solution Zf(t) of (258) is for all t in [0, T ):

Zf (t) =

∫ t

0

exp

(
−
∫ t

s

ρ(τ )dτ

)
Z(s) ds . (283)

Therefore, if for all t:

‖Z(t)‖ ≤ k2 ρ(t) , (284)

we have:

‖Zf(t)‖ ≤
∫ t

s

exp

(
−
∫ t

s

ρ(τ ) dτ

)
‖Z(s)‖ ds (285)

≤ k2

∫ t

0

exp

(
−
∫ t

0

ρ(τ ) dτ

)
ρ(s)ds (286)

≤ k2 . (287)

Finally, the inequality on ‖e‖ is a straightforward consequence of this inequality, Point
2 and (268). 2

An important drawback of this result is that it requires a particular initial condition
for the initial condition ẑf(0). Choosing another initial condition may create difficulties
if at the same time r is not guaranteed to be bounded.

3.3 Estimation Design

The estimation design of a dynamic controller for solving the Adaptive Stabilization
problem consists in choosing the observation function h and either the equation error
filtering or the regressor filtering technique. This provides an estimate p̂ which we use
in the nominal control un to obtain the control:

u = un(x, p̂) + v , (288)

where, as in the Lyapunov design case, v may be introduced to counteract the effects

of updating p̂, so that v may depend on
.
p̂. In both the equation error filtering case and

the regressor filtering case, the estimator is trying to find a function p̂ fitting as well

as possible the
.
h equation (222). On the other hand, to show that we are solving the

Adaptive Stabilization problem, we see, from the proof of Proposition (76), that both

the estimation and the control should be such that
.
V is negative. With assumption

PRS, such an objective is met by the control un as long as the
.
V equation is well-fitted

by p̂. Consequently, the fact that the Adaptive Stabilization problem is solved depends

crucially on the fact that, when the
.
h equation is well-fitted, the same holds for the
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.
V equation. More precisely, this fact relies on the properties of the following set value
maps:

F (p, η) = {(p, ν) | ν = V (x, p) and h(x, p) = η }

F †(p, ν) = {(p, η) | η = h(x, p) and V (x, p) = ν } .
(289)

4 Estimation Design with the Observation Function

h = α1 V

α1−V

When we choose the observation function h as:

h(x, p) =
α1 V (x, p)

α1 − V (x, p)
, (290)

the above set value maps F and F † are in fact standard applications defined by:

F (p, η) =

(
p ,

η α1

η + α1

)
and F †(p, ν) =

(
p ,

ν α1

α1 − ν

)
. (291)

As we will show this is a very favorable situation compared with other possible choices
for the observation function h.

4.1 Equation Error Filtering

Let p̂ be obtained from the equation error filtering technique (230)–(232). If we imple-
ment the control:

u = un(x, p̂) , (292)

then, with (47) in assumption PRS, equation (230) gives:

.
ĥ ≤ −r(e, x, p̂) e +

α1
2

(V (x, p̂)− α1)2
∂V

∂p
(x, p̂)

.
p̂ , (293)

where:

ĥ =
α1 V

α1 − V
+ e . (294)

If, instead, assumption MC holds, let p̂ and q̂ be obtained from (234) and use the
control:

u = un(x, p̂) + v
(
x, p̂, q̂,

.
p̂
)
, (295)

with v given by (170) in MC with ∂ =
.
p̂. Then, inequality (293) reduces to:

.
ĥ ≤ −r(e, x, p̂) e . (296)

Since V is positive and e is bounded (see Lemma (235)), ĥ is lower bounded. To

conclude that ĥ is also upper bounded and therefore V is strictly smaller than α1, we
would need to know that re is in L1 but we only know, from Lemma (235), that

√
r e

is in L2. In fact to prove boundedness of ĥ, we need to strengthen assumption PRS:
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Assumption URS (Uniform Reduced-order Stabilizability) (297)
There exists a positive constant c such that, for all (x, p) in Ω ×Π, we have:

∂V

∂x
(x, p) [a(x, un(x, p)) + A(x, un(x, p)) p] ≤ −c V (x, p) . (298)

Example: System (17) Continued (299)
Consider the system (17) rewritten as (50). Assumptions BO, CO and URS are satisfied
if we choose:

un(x1, x2, p1, p2) = −x2
2 + p1 + x1

p2
, (300)

and:

V (x1, x2, p1, p2) = V (x1) =
(
x1 +

2

3

)2

if x1 ≤ −1

=
1

9
exp

(
3

(
1− 1

x2
1

))
if − 1 < x1 < 1

=
(
x1 −

2

3

)2

if 1 ≤ x1 .

(301)

Indeed:

1. The function V is of class C2 with:

d2V

dx1
2
(x1) = 2 if |x1| ≥ 1

= 2
2− x2

1

x6
1

exp

(
3

(
1− 1

x2
1

))
if |x1| < 1 .

(302)

2. If V (x1) is bounded, so is x1, and if V (x1) tends to 0, so does x1. Hence, as in Example
(49), BO and CO are satisfied.

3. Finally, assumption URS is met, since we get:

∂V

∂x
(x, p) [a(x, un(x, p)) + A(x, un(x, p)) p]

= −2
(
x1 +

2

3

)
x3
1 if x1 ≤ −1

−2

3
exp

(
3

(
1− 1

x2
1

))
if − 1 < x1 < 1

−2
(
x1 − 2

3

)
x3
1 if 1 ≤ x1

≤ −2V (x, p) . (303)

⊓⊔

Example: System (25) Continued (304)
For the system (25), assume the function L satisfies the following growth condition:
there exist a positive constant γ and an integer j such that:

|L(y)| ≤ γ
(
|y|+ |y|j

)
. (305)
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Under this condition, we can find functions V and un such that assumptions BO,
CO and URS are satisfied by the non-minimal state-space representation (27) of (25).
Indeed, let Φ(p) be the following invertible matrix:

Φ(p) =




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 p 0
0 0 0 1 0 p
0 0 0 0 1 0
0 0 0 0 0 1




. (306)

It allows us to define new coordinates:

χ = Φ(p)x =

(
χ1

χ2

)
, (307)

and to rewrite (27) in the following block form:

.
χ =

(
F1 0

0 F2

)
χ +

(
G1

0

)
[u+ L(y)] +

(
0

G2

)
L(y) (308)

y = (H1 0)χ+ δ(t) , (309)

where the pair (F1 , G1) is controllable and the matrix F2 is Hurwitz. It follows that
there exist matrices C1, P1 and P2 and strictly positive constants α1 and α2 such that:

P1 (F1 −G1C1) + (F1 −G1C1)
T P1 = −I ≤ −2α1 P1

P1 F2 + FT
1 P2 = −I ≤ −2α2 P2 .

(310)

Let us now define a function U by:

U(χ) =

(
χT
1 P1χ1

)j

2j
+

(
χT
1 P1χ1

)

2
+ β

(
χT
2 P2χ2

)

2
, (311)

where β is a strictly positive constant. By letting:

V (x, p) = U (Φ(p)x) , (312)

assumptions BO and CO are clearly satisfied. To check that assumption URS holds
also, we choose un as:

un(x, p) = −C1 χ1 − L(y) ,

(
χ1

χ2

)
= Φ(p)x . (313)

Then along the solutions of:

.
χ =

(
F1 −G1C1 0

0 F2

)
χ +

(
0

G2

)
L (H1χ1 + δ(t)) , (314)



Adaptive Stabilization of Nonlinear Systems 387

the time derivative of U satisfies:

.
U =

[(
χT
1 P1χ1

)j−1

+ 1

]
χT
1 P1 (F1 −G1C1)χ1

+ β
[
χT
2 P2F2χ2 + χT

2 P2G2L (H1χ1 + δ(t))
]

≤ −α1

[(
χT
1 P1χ1

)j

+
(
χT
1 P1χ1

)]
− α2 β

(
χT
2 P2χ2

)

+ β
(
χT
2 P2χ2

) 1

2 |L|
√

G2
TP2G2 . (315)

But the growth condition (305), satisfied by the function L, and Young’s inequality
imply the existence of four positive constants γ1 to γ4 such that, for all χ1, χ2 and δ,
we have:

(
χT
2 P2χ2

) 1

2 |L(H1χ1 + δ)|
√

G2
TP2G2

≤ α2

2

(
χT
2 P2χ2

)
+ γ1

(
χT
1 P1χ1

)
+ γ2 |δ|2 + γ3

(
χT
1 P1χ1

)j

+ γ4 |δ|2j . (316)

We have established: .
U ≤ −cU + β

[
γ2 |δ|2 + γ4 |δ|2j

]
, (317)

where:
c = min {2(α1 − βγ1) , 2j(α1 − βγ3) , βα2} . (318)

It follows that assumption URS holds, up to the presence of the exponentially decaying
terms in δ, if β is chosen sufficiently small. ⊓⊔
Example: Introduction to System (320) (319)
Consider the system .

x1 = x2 + p∗ x2
1

.
x2 = x3
.
x3 = u .

(320)

Following the Lyapunov design proposed in [27], we choose:

un(p, x) = −
(

1

2k
+

1

2
+ 2pχ1

)(
χ3 −

χ2

2
− χ2k−1

1

)

+
[

1

4k2
+

2pχ1

k
− (2k − 1)χ2k−2

1 − 2pχ2

](
χ2 −

χ1

2k

)

−
χ3

2
− χ2

(
χ2
2

2
+

χ2k
1

2k

)j−1

, (321)

and:

V (p, x) = U(χ) =
χ2
3

2
+

1

j

(
χ 2
2

2
+

χ 2k
1

2k

)j

, (322)

where k and j are integers larger or equal to 1 and χ is given by:

χ =

(χ1

χ2

χ3

)
=




x1

x2 +
x1

2k
+ p x2

1

x3 +
1

2

(
x2 +

x1

2k
+ px2

1

)

+
(

1

2k
+ 2px1

) (
x2 + px2

1

)
+ x2k−1

1




. (323)
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Note that, if k = j = 1, un is a linearizing feedback.
Since V is positive definite and radially unbounded, assumptions BO and CO are

satisfied. Assumption URS holds also, since a straightforward computation shows that
the time derivative of V along the solutions of (320) with p instead of p∗ satisfies:

.
V = −V . (324)

⊓⊔

Proposition (325)
Let assumptions BO, URS and ICS hold and choose:

h(x, p) =
α1 V (x, p)

α1 − V (x, p)
and r(e, x, p) = 1 +

(
α1 V (x, p)

α1 − V (x, p)

)2

. (326)

If assumption Λ-LP is satisfied with:

Λ(x, t) =
∂h

∂x
(x, p̂(t)) , (327)

and:

either assumption MC holds, α1 is chosen smaller than or equal to α0 , x(0) belongs
to Ω0 and V (x(0), p̂(0)) < α1,

or we are in the global case, i.e., Ω0 = Ω = IRn, α1 = α0 = +∞ and there exists
a C0 function d1 : Π → IR+ such that, for all (x, p) in IRn ×Π:
∥∥∥∥
∂V

∂p
(x, p)

∥∥∥∥ ·
∥∥∥∥
[
∂V

∂x
(x, p)A(x, un(x, p))

]T∥∥∥∥ ≤ d1(p) max{1 , V (x, p)2} , (328)

then all the corresponding solutions (x(t), p̂(t), ĥ(t)) of (Sp∗)-(230)-(231)-(232) are
well-defined on [0,+∞), unique, bounded and:

lim
t→∞

V (x(t), p̂(t)) = 0 . (329)

It follows that the Adaptive Stabilization problem is solved if assumption CO holds also.

Proposition (325) is an extension to the case when V is not radially unbounded of a
result established by Pomet and Praly [23, 21].

Proof.
Case: Assumption MC holds: The system we consider is, with notation (13):

.
x = a

(
x , un(x, p̂) + v(x, p̂, q̂,

.
p̂)
)
+A

(
x , un(x, p̂) + v(x, p̂, q̂,

.
p̂)
)

p∗

.
ĥ = −r(e, x, p̂) e +

∂h

∂x
(x, p̂) [a0(x) + A0(x)p̂+ un(x, p̂)⊙ (b(x) +B(x)p̂)]

+
∂h

∂x
(x, p̂) v

(
x, p̂, q̂,

.
p̂
)
⊙ (b(x) +B(x)q̂) +

∂h

∂p
(x, p̂)

.
p̂

e = ĥ − h(x, p̂)

.
p̂ = Proj

(
I, p̂ ,−

[
∂h

∂x
(x, p̂) (A0(x) + un(x, p̂)⊙B(x))

]T
e

)
, p̂(0) ∈ Π1

.
q̂ = Proj

(
I, q̂ ,−

[
∂h

∂x
(x, p̂) v(x, p̂, q̂,

.
p̂)⊙B(x)

]T
e

)
, q̂(0) ∈ Π1 ,

(330)
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with:

h(x, p) =
α1 V (x, p)

α1 − V (x, p)
, r(e, x, p) = 1 + h(x, p)2 , (331)

and, with notation (13):

∂V

∂p
(x, p̂)

.
p̂ +

∂V

∂x
(x, p̂) v(x, p̂, q̂,

.
p̂)⊙ [b(x) +B(x) q̂ ] = 0 . (332)

¿From our smoothness assumptions on the various functions and with Point 1 of Lemma
(103), this system has a locally Lipschitz-continuous right-hand side in the open set
defined by:

(x, p̂, q̂, ĥ) ∈ Ω ×Π ×Π × IR and V (x, p̂) < α1 . (333)

It follows that, for any initial condition in this open set, there exists a unique solution
(x(t), p̂(t), q̂(t), ĥ(t)), defined on a right maximal interval [0, T ), with T possibly infinite,
and satisfying (333) for all t in [0, T ) and in particular:

V (x(t), p̂(t)) < α1 ∀ t ∈ [0, T ) . (334)

Applying Points 3 and 4 of Lemma (235), we also know that, for all t in [0, T ):

p̂(t) ∈ Π1 and q̂(t) ∈ Π1

∥∥∥∥∥∥∥

p̂(t)− p∗

q̂(t)− p∗

∥∥∥∥∥∥∥

2

+ ‖e(t)‖2 + 2

∫ t

0

r ‖e‖2 ≤

∥∥∥∥∥∥∥

p̂(0) − p∗

q̂(0)− p∗

∥∥∥∥∥∥∥

2

+ ‖e(0)‖2 def
= β2 . (335)

Then, with assumption URS, (332), (334) and (331), we get successively from the
.
ĥ

equation in (330):

.
ĥ ≤ −r e − c

α1
2 V

(α1 − V )2
(336)

≤
√
r
(√

r |e|
)
− c

α1

α1 − V
h (337)

≤ (1 + h)
(√

r |e|
)
− c h (338)

≤ −
(
c−
(√

r |e|
))

h +
√
r |e| (339)

≤ −
(
c−
(√

r |e|
))

ĥ + (1 + |e|)
√
r |e| + c |e| . (340)

Now, inequality (335) implies that the assumption of Lemma (583) in Appendix B is
satisfied with:

X = ĥ , (341)

and, by using the fact that r ≥ 1:

ϑ1 =
√
r |e| , σ1 = 2, S11 =

β2

2

̟1 = (1 + β)
√
r |e| + c |e| , ζ1 = 2, S21 = 2

(
(1 + β)2 + c2

) β2

2
.

(342)

It follows that there exists a constant Υ , depending only on the initial condition, such
that, for all t in [0, T ), we have:

0 ≤ α1 V (x(t), p̂(t))

α1 − V (x(t), p̂(t))
= h(x(t), p̂(t)) = ĥ(t) − e(t) ≤ Υ + β . (343)
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Hence, we have established, for all t in [0, T ):

V (x(t), p̂(t)) ≤ α1(Υ + β)

α1 + Υ + β
< α1

−β ≤ ĥ(t) ≤ Υ

‖p̂(t)− p∗‖ ≤ β and p̂(t) ∈ Π1

‖q̂(t)− p∗‖ ≤ β and q̂(t) ∈ Π1 .

(344)

Then, from assumption BO, we know the existence of a compact subset Γ of Ω such
that:

x(t) ∈ Γ ∀ t ∈ [0, T ) . (345)

Hence, the solution remains in a compact subset of the open set defined in (333). It

follows by contradiction that T = +∞ and that x(t) and p̂(t), u(t) and
.
p̂(t) are bounded

on [0,+∞). Then, using the second conclusion of Lemma (583), we have:

lim sup
t→+∞

ĥ(t) ≤ 0 . (346)

Also, from (229) and the fact that the solution is bounded, we deduce that
.
e is bounded.

Since, from (335), e is in L2([0,+∞)), we have established:

lim
t→+∞

e(t) = 0 . (347)

This yields:

0 ≤ lim sup
t→+∞

h(x(t), p̂(t)) = lim sup
t→+∞

ĥ(t) − lim
t→+∞

e(t) ≤ 0 . (348)

With the definition of h, (334), and assumption CO, this implies:

lim
t→+∞

x(t) = E . (349)

Case: Inequality (328) holds: The system we consider is:

.
x = a (x , un(x, p̂)) +A (x , un(x, p̂)) p

∗

.
ĥ = −r(e, x, p̂) e +

∂V

∂x
(x, p̂)A(x, un(x, p̂)) p̂ +

∂V

∂x
(x, p̂) a(x, un(x, p̂))

+
∂V

∂p
(x, p̂)

.
p̂

e = ĥ − V (x, p̂)

.
p̂ = Proj

(
I , p̂ , −

(
∂V

∂x
(x, p̂)A(x, un(x, p̂))

)T
e

)
, p̂(0) ∈ Π1 ,

(350)

with:
r(e, x, p̂) = 1 + V (x, p̂)2 . (351)

¿From our smoothness assumptions on the various functions and with Point 1 of Lemma
(103), this system has a locally Lipschitz-continuous right-hand side for all (x, p̂, ĥ) in
IRn × Π × IR. It follows that, for any initial condition in this open set, there exists
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a unique solution (x(t), p̂(t), ĥ(t)), defined on a right maximal interval [0, T ), with T
possibly infinite, and remaining in this set. Applying Points 1 and 2 of Lemma (235),
we also know that, for all t in [0, T ):

p̂(t) ∈ Π1

‖p̂(t)− p∗‖2 + ‖e(t)‖2 + 2

∫ t

0

r ‖e‖2 ≤ ‖p̂(0)− p∗‖2 + ‖e(0)‖2 def
= β2 . (352)

Then, as in the previous case, with assumption URS, we get from the
.
ĥ equation in

(350):
.
ĥ ≤ −r e − c V +

∂V

∂p

.
p̂ . (353)

But, by using inequality (328), Point 2 of Lemma (103), (351) and the expression of
.
p̂

in (350), we get successively:

∥∥∥∥
∂V

∂p

.
p̂

∥∥∥∥ ≤
∥∥∥∥
∂V

∂p

∥∥∥∥
∥∥∥∥Proj

(
I , p̂ , −

(
∂V

∂x
A
)T

e

)∥∥∥∥

≤
∥∥∥∥
∂V

∂p

∥∥∥∥
∥∥∥∥
[
∂V

∂x
A
]T∥∥∥∥ |e|

≤ d1(p̂(t)) max{1 , V 2} |e|

≤ d1(p̂(t))
(
1 + V 2

)
|e|

≤ d1(p̂(t)) r |e| . (354)

Since d1 depends continuously on p̂(t) which satisfies (352), there exists a constant k
depending only on p̂(0) and e(0) such that (353), (354) and the expression of e in (350)
give:

.
ĥ ≤ (1 + k)

√
r
(√

r |e|
)
− c V

≤ (1 + k) (1 + ĥ− e)
(√

r |e|
)
− c (ĥ− e)

≤ −
(
c− (1 + k)

√
r|e|
)
ĥ + (1 + k) (1 + |e|)

(√
r |e|
)
+ c |e| . (355)

Hence, with Point 2 of Lemma (235), the assumption of Lemma (583) in Appendix B
is satisfied with (see (352)):

X = ĥ (356)

and

ϑ1 = (1 + k)
√
r|e| , σ1 = 2, S11 = (1 + k)2

β2

2

̟1 = (1 + k)(1 + β)
(√

r|e|
)
+ c|e|, ζ1 = 2, S21 = 2

(
(1 + k)2(1 + β)2 + c2

) β2

2
.

(357)
¿From here, we conclude the proof exactly as in the previous case. 2
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Compared with the Lyapunov design, we see that, when the Matching Condition
(MC) holds, the equation error filtering technique, with V as the observation function,
requires the more restrictive Uniform Reduced-order Stabilizability (URS) assumption.
However, if assumption MC does not hold, nothing is known for the Lyapunov design,
whereas here the Adaptive Stabilization problem is solved in the global case by the
equation error filtering technique if the quadratic growth condition (328) is satisfied.

Example: System (320) Continued (358)
For the system (320), we have shown that assumption BO, CO and URS are satisfied.
For assumption MC, we get (see (322)):

∂V

∂p
= χ2χ

2
1

(
χ2
2

2
+

χ2k
1

2k

)j−1

+χ3

[
χ2
1

2
+ 2χ1

(
χ2 −

χ1

2k

)
+
(

1

2k
+ 2pχ1

)
χ2
1

]
, (359)

and:
∂V

∂x
b = χ3 . (360)

Hence, (170) cannot be satisfied, since, when
∂V

∂x
b is zero,

∂V

∂p
is not necessarily zero.

Then, let us see if the growth condition (328) holds. We have to compare the product
of the norms of (see (322)):

∂V

∂x
A =

∂U

∂χ
∂χ

∂x1
x2
1 and

∂V

∂p
=

∂U

∂χ
∂χ

∂p

to a power of V = U . We have, writing everything in the χ coordinates in which U has
a simpler expression:

∂U

∂χ
=

((
χ2
2

2
+

χ2k
1

2k

)j−1

χ2k−1
1 ,

(
χ2
2

2
+

χ2k
1

2k

)j−1

χ2 , χ3

)
(361)

∂χ

∂x1
=




1

1

2k
+ 2pχ1

(
1

2k
+ 2pχ1

)(
1

2
+ 2pχ1

)
+ 2p

(
χ2 −

χ1

2k

)
+ (2k − 1)χ2k−2

1




(362)

∂χ

∂p
=




0

χ2
1

χ2
1

2
+ 2χ1

(
χ2 −

χ1

2k

)
+
(

1

2k
+ 2pχ1

)
χ2
1


 . (363)

To obtain our inequalities, we note that:

|χ1| ≤ (γ U)
1

2kj , |χ2| ≤ (γ U)
1

2j , |χ3| ≤ (γ U)
1

2 , (364)

with:
γ = sup

{
j(2k)j , j2j , 2

}
, (365)

and, for any positive α:

|a+ b Uα| ≤ (|a|+ |b|) sup {1 , Uα} . (366)
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We get:

∥∥∥∂V
∂x

A

∥∥∥ ≤ d1(p) sup {1 , Uα1} and

∥∥∥∥
∂V

∂p

∥∥∥∥ ≤ d2(p) sup {1 , Uα2} , (367)

with:

d1(p) =
[
(c1 + 2 |p|) + (c1c2 + 2c2 |p|+ 4p2) + 2 |p|+ (2k − 1)

]
γα1

α1 = sup

{
1 +

1

2kj
, 1− 1

2j
+

3

2kj
,
1

2
+

2

kj
,
1

2
+

1

2j
+

1

kj
,
1

2
+

k

kj

}

d2(p) = [2 + |c1 − c2|+ 2 |p|] γα2 (368)

α2 = sup

{
1− 1

2j
+

1

kj
,
1

2
+

3

2kj
,
1

2
+

k + 1

2kj

}
. (369)

It follows that:

∥∥∥∂V
∂x

(p, x)A (x, un(p, x))
∥∥∥
∥∥∥∥
∂V

∂p
(p, x)

∥∥∥∥ ≤ d1(p) d2(p) (1 + V (p, x)α ) , (370)

where α depending on j and k is given in Table 1. Hence, for this example, (328) is
satisfied if we choose k > 2 and j > 1. ⊓⊔

Table 1. α(k, j)

j 1 2 3 4 5
k

1 9/2 11/4 5/2 19/8 23/10

2 11/4 17/8 25/12 33/16 41/20

3 8/3 2 2 2 2

4 21/8 31/16 47/24 63/32 79/40

5 13/5 19/10 29/15 39/20 49/25

4.2 Regressor Filtering

When the regressor filtering (258)–(261) is used, using (259) and (261) we get:

.
ĥ = −ρ(x, p̂, u) e + Zf

.
p̂

+
α1

2

(α1 − V (x, p̂))2

(
∂V

∂x
(x, p̂) (a(x, u) + A(x, u)p̂) +

∂V

∂p
(x, p̂)

.
p̂

)
, (371)

where:

ĥ = h(x, p̂) + e = Zf p̂ + ẑf . (372)

Hence, if:

u = un(x, p̂) , (373)
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and (47) in assumption PRS holds, we have:

.
ĥ ≤ −ρ(x, p̂, u) e +

(
α1

2

(α1 − V (x, p̂))2
∂V

∂p
(x, p̂) + Zf

)
.
p̂ . (374)

Compared with equation (293) for the equation error filtering case, we have the extra

term Zf

.
p̂. But, thanks to Lemma (264), we know that we may choose ρ and

.
M in

order to guarantee that Zf is bounded and
.
p̂ is absolutely integrable. It follows that

the following counterpart to Proposition (325) can be established:

Proposition (375)
Let assumptions BO, URS and ICS hold. Choose:

h(x, p) =
α1 V (x, p)

α1 − V (x, p)

ρ(x, p, u) = 1 +

∥∥∥∥
α1

2

(α1 − V (x, p))2
∂V

∂x
(x, p)A(x, u)

∥∥∥∥

r(x, p, u, e) = ρ(x, p, u)2 ,

(376)

and:
.
M = G (M , Zf , r) , ε3 M(0) > I , (377)

where G is a negative symmetric matrix, depending locally-Lipschitz-continuously on
its arguments and satisfying (see (262) and (263)):

−ε4 M ZT

f Zf M r ≥ G ≥ −(2− ε1)M ZT

f ZfM r . (378)

If assumption Λ-LP is satisfied with:

Λ(x, t) =
∂h

∂x
(x, p̂(t)) , (379)

and:

either assumption MC holds and, with notation (13), B(x) ≡ 0, α1 is chosen smaller
than or equal to α0 , x(0) belongs to Ω0 and V (x(0), p̂(0)) < α1,

or we are in the global case, i.e., Ω0 = Ω = IRn, α1 = α0 = +∞ and there exists
a C0 function d2 : Π → IR+ such that, for all (x, p) in IRn ×Π:

∥∥∥∥
∂V

∂p
(x, p)

∥∥∥∥ ≤ d2(p) max{1 , V (x, p)} , (380)

then all the corresponding solutions (x(t), p̂(t), ẑf(t), Zf(t)),M(t) of (Sp∗), (259), (261),
(262) and (377) are well-defined on [0,+∞), unique, bounded and:

lim
t→∞

V (x(t), p̂(t)) = 0 . (381)

It follows that the Adaptive Stabilization problem is solved if assumption CO holds also.
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Proof.
Case: Assumption MC holds: In this case, we assume also that A(x, u) does not depend
on u, i.e., with notation (13), we have:

A(x, u) = A0(x) . (382)

The system we consider is:

.
x = a (x , u) + A0(x) p

∗

.
ẑf = ρ(x, p̂) zf +

∂h

∂x
(x, p̂) a(x, u) +

∂h

∂p
(x, p̂)

.
p̂ , ẑf(0) = h(x(0), p̂(0))

zf = h(x, p̂) − ẑf
.
Zf = −ρ(x, p̂)Zf +

∂h

∂x
(x, p̂)A0(x) , Zf(0) = 0

e = Zf p̂ − zf
.
p̂ = Proj

(
M , p̂ , −M ZT

f
r(x, p̂) e

)
, p̂(0) ∈ Π1

.
M = G (M , Zf , r(x, p̂)) , M(0) > 0 ,

(383)

with:

u = un(x, p̂) + v(x, p̂,
.
p̂) , h(x, p) =

α1 V (x, p)

α1 − V (x, p)
, r(x, p) = ρ(x, p)2 , (384)

and

ρ(x, p) = 1 +

∥∥∥∥
α1

2

(α1 − V (x, p))2
∂V

∂x
(x, p)A0(x))

∥∥∥∥ , (385)

where:
∂V

∂p
(x, p̂)

.
p̂ +

∂V

∂x
(x, p̂) v(x, p̂,

.
p̂)⊙ b(x) = 0 . (386)

Since r does not depend on u,
.
p̂ is explicitly defined. Then, from our smoothness

assumptions on the various functions and with Lemma (103), this system (383) has a
locally Lipschitz-continuous right-hand side in the open set defined by:

(x, ẑf, Zf, p̂,M) ∈ Ω × IR× IRl ×Π ×M and V (x, p̂) < α1 . (387)

It follows that, for any initial condition in this open set, there exists a unique solution
(x(t), ẑf(t), Zf(t), p̂(t),M(t)), defined on a right maximal interval [0, T ), with T possibly
infinite, and satisfying (387). Applying Points 1 and 2 of Lemma (264), we also know
that, for all t in [0, T ):

p̂(t) ∈ Π1

ε2 ‖p̂(t)− p∗‖2 + ε1

∫ t

0

r ‖e‖2 ≤ ε3 ‖p̂(0)− p∗‖2 def
= β2 . (388)

Moreover, our choice for ρ implies with the last statement of Lemma (264) that, for all
t in [0, T ):

‖Zf‖ ≤ 1 and ‖e‖ ≤
√

ε3
ε2

‖p̂(0)− p∗‖ . (389)
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Then, since we have (see (260)):
zf = Zf p

∗ , (390)

we conclude also that for all t in [0, T ):

‖zf‖ ≤ ‖p∗‖ . (391)

Finally, since M(t) ∈ M for all t in [0, T ), (377) and (378) imply that
.
M is negative

and: .
M−1 ≤ (2− ε1)Z

T

f Zf r . (392)

With (389) and (377), this implies, for all t in [0, T ):

I

ε3 + (2− ε1)
∫ T

0
r

≤ M(t) ≤ M(0) . (393)

Then, for ĥ defined in (372), we get by (371) and (298) in assumption URS:

.
ĥ ≤ −ρ e − c

α1
2 V

(α1 − V )2
+ Zf

.
p̂ (394)

≤ −
(√

r |e|
)
− c h + Zf

.
p̂ (395)

≤ −c ĥ +
√
r |e| + c |e| + Zf

.
p̂ . (396)

With (388) and Point 3 of Lemma (264), the assumption of Lemma (583) in Appendix
B is satisfied with:

X = ĥ (397)

and:

̟1 =
√
r |e| + c |e| , ζ1 = 2, S21 = 2

(
1 + c2

) β2

ε1

̟2 =

∥∥∥
.
p̂

∥∥∥ , ζ2 = 1, S22 = k1(p
∗, p̂(0)) .

(398)

It follows that there exists a constant Υ depending only on the initial conditions such
that, for all t in [0, T ), we have:

0 ≤ α1 V (x(t), p̂(t))

α1 − V (x(t), p̂(t))
= h(x(t), p̂(t)) (399)

= ĥ(t) − e(t) (400)

≤ Υ +

√
ε3
ε2

‖p̂(0)− p∗‖ , (401)

where we have used (389). Hence, we have established, for all t in [0, T ):

V (x(t), p̂(t)) ≤
α1 (Υ +

√
ε3
ε2

‖p̂(0)− p∗‖)
α1 + Υ +

√
ε3
ε2

‖p̂(0) − p∗‖
< α1

‖p̂(t)− p∗‖ ≤ β√
ε2

and p̂(t) ∈ Π1

‖Zf(t)‖ ≤ 1

‖zf(t)‖ ≤ ‖p∗‖ .

(402)
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Then, from assumption BO, we know the existence of a compact subset Γ of Ω such
that:

x(t) ∈ Γ ∀ t ∈ [0, T ) . (403)

We have also:
I

ε3 + (2− ε1)T R
≤ M(t) ≤ M(0) , (404)

where R is an upper bound for
∫ T

0
r whose existence follows from the continuity of the

function r and the boundedness of x and p̂. Finally, with the continuity of the function
h and the fact that:

ẑf = h(x, p̂) − zf , (405)

we have proved that the solution remains in a compact subset of the open set defined
in (387). It follows by contradiction that T = +∞ and in particular that x(t), p̂(t),

u(t) and
.
p̂(t) are bounded on [0,+∞). ¿From here, we conclude the proof exactly as

in the proof of Proposition (325).

Case: Inequality (380) holds: The system we consider is the system (383) with:

u = un(x, p̂) , h(x, p) = V (x, p) , (406)

ρ(x, p, u) = 1 +
∥∥∥∂V
∂x

(x, p)A(x, u))
∥∥∥ and r(x, p, u, e) = ρ(x, p, u)2 . (407)

¿From our smoothness assumptions on the various functions and with Lemma (103),
this system has a locally Lipschitz-continuous right-hand side in the open set defined
by:

(x, ẑf, Zf, p̂,M) ∈ IRn × IR× IRl ×Π ×M . (408)

It follows that, for any initial condition in this open set, there exists a unique solution
(x(t), ẑf(t), Zf(t), p̂(t),M(t)), defined on a right maximal interval [0, T ), with T possibly
infinite and satisfying (408). Then, as in the previous case, we have, for all t in [0, T ):

p̂(t) ∈ Π1

ε2 ‖p̂(t)− p∗‖2 + ε1

∫ t

0

r ‖e‖2 ≤ ε3 ‖p̂(0)− p∗‖2 def
= β2

‖Zf‖ ≤ 1 and ‖e‖ ≤
√

ε3
ε2

‖p̂(0)− p∗‖

‖zf‖ ≤ ‖p∗‖
I

ε3 + (2− ε1)
∫ T

0
r

≤ M(t) ≤ M(0) .

(409)

By taking care of the fact that we are not using v to cancel the term ∂V
∂p

.
p̂, we get also:

.
ĥ ≤ −ρ e − c V +

(
∂V

∂p
+ Zf

)
.
p̂ . (410)

And, by using (409), inequality (380), and the continuity of the function d2, we have:
∥∥∥∥
∂V

∂p

∥∥∥∥ ≤ d2(p̂(t)) max{1 , V } (411)

≤ k (1 + V ) (412)
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for some constant k depending only on p̂(0). Hence, with our choice for ρ and r, we
have established:

.
ĥ ≤ −ρ e − c V + (k (1 + V ) + 1)

∥∥∥
.
p̂

∥∥∥ (413)

≤ −
(
c− k

∥∥∥
.
p̂
∥∥∥
)

ĥ +
√
r |e| + c |e| + (k (1 + |e|) + 1)

∥∥∥
.
p̂
∥∥∥ . (414)

Hence, with (409), the assumption of Lemma (583) in Appendix B is satisfied with:

X = ĥ (415)

and

ϑ1 = k
∥∥∥
.
p̂
∥∥∥ , σ1 = 1, S11 = k k1(p

∗, p̂(0))

̟1 =
√
r |e| + c |e| , ζ1 = 2, S21 = 2

(
1 + c2

) β2

ε1

̟2 =
[
k
(
1 +

√
ε3
ε2

‖p̂(0) − p∗‖
)
+ 1
] ∥∥∥

.
p̂
∥∥∥ , ζ2 = 1, S22 = k1(p

∗, p̂(0)) .

(416)

¿From here, we conclude the proof exactly as in the previous case. 2

In practice, to apply this Proposition, we must be allowed to choose the partic-
ular value for the initial condition ẑf(0) and a vanishing observer gain K ((263) is
assumed). Compare with Proposition (325) where we have no constraint on the initial
conditions and the observer gain is not forced to decay to zero. However, Proposition
(375) shows that the regressor filtering technique with V as observation function has
also the property of providing a solution to the Adaptive Stabilization problem in the
case where the Matching Condition (MC) does not hold. Then, besides this question of
initial conditions and observer gains, the choice between the two estimation techniques
depends on which of the linear growth condition (380) or quadratic growth condition
(328) holds.

Example: System (320) Continued (417)
For the system (320), let us see if the growth condition (380) holds. From (367), we
have: ∥∥∥∥

∂V

∂p

∥∥∥∥ ≤ d2(p) sup {1 , Uα2} , (418)

where d2 is given by (368) and α2 satisfying (369) depends on j and k and is given in
Table 2. Hence, for this example (380) is satisfied if we choose k > 1 and j > 1. This
is different from what we obtained in Example (358) where the equation error filtering
is to be used. ⊓⊔

5 Estimation Design with an Observation Function h not

Directly Related to V

When the observation function h is not directly related to V , the set value maps F
and F † defined in (289) do not have any particular properties. Consequently assump-
tion PRS or URS does not give any information on the dynamics of h. Similarly, the

estimation does not necessarily provide a better fit of the
.
V equation. To overcome
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Table 2. α2(k, j)

j 1 2 3 4 5
k

1 2 5/4 7/6 9/8 11/10

2 5/4 1 1 1 1

3 7/6 11/12 17/18 23/24 29/30

4 9/8 7/8 11/12 15/16 19/20

5 11/10 17/20 9/10 37/40 47/50

this difficulty and guarantee some properties for F and F †, we have to refine our as-
sumptions. Namely, we have to relate V to h. In the global case, i.e., for Ω = IRn, this
yields:

Assumption RBO (Refined Boundedness Observability) (419)
For all positive real numbers α, all compact subsets K of Π and all vectors x0 ∈ IRn, we
can find a compact subset Γ of IRn such that for any C1 time functions p̂ : IR+ → Π
and u : IR+ → IRm and any solution x(t) of (44) defined on [0, T ), we have the
following implication:

‖h(x(t), p̂(t))‖ ≤ α and p̂(t) ∈ K ∀ t ∈ [0, T ) → x(t) ∈ Γ ∀ t ∈ [0, T ) . (420)

Namely, the boundedness of the full state vector x is “observable” from the boundedness
of the “output” function h.

Assumption RURS (Refined Uniform Reduced-Order Stab.) (421)
There exists a positive constant c and two functions:

f : IRk ×Π → IRk of class C1 and U : IRk ×Π → IR+ of class C2 ,

with U known and:

1. f(O, p) = 0 ∀ p ∈ Π

2. U(h, p) = 0 ⇐⇒ h = 0

3. ∀α ≥ 0 , ∀K compact subset of Π, the set

{h |U(h, p) ≤ α and p ∈ K} is a compact subset of IRk ,

such that, for all (x, p, h) in IRn ×Π × IRk, we have:

1. f(h(x, p) , p) =
∂h

∂x
(x, p) [a(x, un(x, p)) + A(x, un(x, p)) p]

2.
∂U

∂h
(h, p) f(h, p) ≤ −c U(h, p) .

(422)

The meaning of assumption RURS is that, for any fixed vector p in Π , the time
derivative of h along the solutions x of (Sp) in closed loop with the control

u = un(x, p) , (423)
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is simply:
.
h = f(h, p) , (424)

i.e., this control makes the reduced-order system, consisting of the components of h,
autonomous and decoupled from the other components of the full state vector x. More-
over, U is a Lyapunov function for this reduced-order system implying that it admits
0 ∈ IRk as a globally asymptotically stable equilibrium point.

Assumption RCO (Refined Convergence Observability) (425)

For any bounded C1 time functions p̂ : IR+ → Π and u : IR+ → IRm with
.
p̂ also

bounded and for any solution x(t) of (44) defined on [0,+∞), we have the following
implication:

lim
t→∞

h(x(t), p̂(t)) exists and is zero

and x(t) is bounded on [0,+∞)



 =⇒ lim

t→∞
x(t) exists and is equal to E .

Assumption RMC (Refined Matching Condition) (426)
The functions a and A are affine in u, the function U does not depend on p and there
exists a known C1 function v(x, p, q, ∂) from IRn ×Π ×Π × IRl to IRm satisfying:

∂h

∂p
(x, p) ∂ +

∂h

∂x
(x, p)v ⊙ [b(x) +B(x)q] = 0 . (427)

Note the strong restriction on U in assumption RMC.

Example: System (17) Continued (428)
For the system (17) rewritten as (50) in Example (49), the refined assumptions RBO,
RCO, RURS and RMC are satisfied if we choose:

h(x1, x2, p1, p2) = x1 , un(x1, x2, p1, p2) = −x2
2 + p1 + x1

p2
, (429)

and:

U(h, p1, p2) =
(
h+

2

3

)2

if h ≤ −1

=
1

9
exp
(
3
(
1− 1

h2

))
if − 1 < h < 1

=
(
h− 2

3

)2

if 1 ≤ h ,

(430)

with:

f(h, p1, p2) = −h3 , Π = IR× (IR+ − {0}) (431)

and

Γ =
{
x ∈ IR2 | ‖x‖ ≤ ‖x(0)‖+ α(1 + |c3|)

}
. (432)

⊓⊔
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5.1 Equation Error Filtering

Let p̂ be obtained from the equation error filtering technique (230)–(232). If the control
is given by:

u = un(x, p̂) , (433)

equation (230) gives with the help of (422) in assumption RBO:

.
ĥ = f(ĥ , p̂) +

[
−r(e, x, p̂) e+

(
f(ĥ− e , p̂)− f(ĥ, p)

)
+

∂h

∂p
(x, p̂)

.
p̂

]
. (434)

If, instead, assumption RMC holds, let p̂ and q̂ be obtained from (234) and use the
control:

u = un(x, p̂) + v
(
x, p̂, q̂,

.
p̂
)
, (435)

with v given by (427) in RMC with ∂ =
.
p̂. Then (434) reduces to:

.
ĥ = f(ĥ , p̂) +

[
−r(e, x, p̂) e+

(
f(ĥ− e , p̂)− f(ĥ, p)

)]
. (436)

In view of assumption RURS, the term enclosed in brackets in both (434) and (436)
should be considered as perturbations. To be able to apply techniques a la Total Sta-
bility (see Lakshmikantham and Leela [11]), we need to compare the components of
this perturbation with the “Lyapunov function” U . This motivates the following as-
sumption:

Assumption GC1 (Growth Conditions 1) (437)
There exist two positive continuous functions d3, defined on Π × IRk and d4, defined
on Π and a known positive real number λ, with λ ≤ 1, such that, for all (h, p) in
IRk ×Π:

1.

∣∣∣∂U
∂h

(h, p) (f(h− e , p)− f(h , p))

∣∣∣ ≤ d3(p, e) max
{
1, U(h, p)2−λ

}
‖e‖

2.

∥∥∥∂U
∂h

(h, p)

∥∥∥ ≤ d4(p) max
{
1, U(h, p)λ

}
.

(438)

Moreover, if assumption RMC does not hold, then λ < 1 and there exist three positive
continuous functions di, i = 5, 7 defined on Π and two positive real numbers ω and κ,
with ω + κ ≤ 2− λ such that, for all (x, p) in IRn ×Π:

3.

∥∥∥∥
∂h

∂p
(x, p)

∥∥∥∥
∥∥∥∥
[
∂h

∂x
(x, p)A(x, un(x, p))

]T∥∥∥∥ ≤ d5(p) max{1, U(h(x, p), p)2(1−λ)}

4.

∥∥∥∥
∂U

∂p
(h, p)

∥∥∥∥ ≤ d6(p) max{1 , U(h, p)ω} ∀h ∈ IRk

5.
∥∥∥∂h
∂x

(x, p)A(x, un(x, p))
∥∥∥ ≤ d7(p) max{1 , U(h(x, p), p)κ} .

(439)

We have:
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Proposition (440)
Let assumptions Λ-LP, RBO, RURS, ICS and GC1 hold in the global case with

Λ(x, t) =
∂h

∂x
(x, p̂(t)) , (441)

and choose:

r(e, x, p̂) =
(
1 + U(ĥ, p̂)(1−λ)

)2

. (442)

All the corresponding solutions (x(t), p̂(t), ĥ(t)) of (Sp∗)-(230)-(231) are unique, bounded
and well-defined on [0,+∞) and:

lim
t→∞

h(x(t), p̂(t)) = 0 . (443)

It follows that the Adaptive Stabilization problem is solved if assumption RCO holds
also.

Proof.
Case: Assumption RMC holds: The system we consider is, with notation (13):

.
x = a

(
x , un(x, p̂) + v(x, p̂, q̂,

.
p̂)
)
+A

(
x , un(x, p̂) + v(x, p̂, q̂,

.
p̂)
)

p∗

.
ĥ = −r(e, x, p̂) e +

∂h

∂x
(x, p̂) [a0(x) + A0(x)p̂+ un(x, p̂)⊙ (b(x) +B(x)p̂)]

+
∂h

∂x
(x, p̂) v

(
x, p̂, q̂,

.
p̂
)
⊙ (b(x) +B(x)q̂) +

∂h

∂p
(x, p̂)

.
p̂

e = ĥ − h(x, p̂)

.
p̂ = Proj

(
I, p̂ ,−

[
∂h

∂x
(x, p̂) (A0(x) + un(x, p̂)⊙B(x))

]T
e

)
, p̂(0) ∈ Π1

.
q̂ = Proj

(
I, q̂ ,−

[
∂h

∂x
(x, p̂) v(x, p̂, q̂,

.
p̂)⊙B(x)

]T
e

)
, q̂(0) ∈ Π1 ,

(444)

with r(e, x, p̂) defined by (442) and, with notation (13):

∂h

∂p
(x, p̂)

.
p̂ +

∂h

∂x
(x, p̂) v(x, p̂, q̂,

.
p̂)⊙ [b(x) +B(x) q̂ ] = 0 . (445)

¿From our smoothness assumptions on the various functions and with Point 1 of Lemma
(103), this system has a locally Lipschitz-continuous right-hand side in the open set
defined by: (

x, p̂, q̂, ĥ
)

∈ IRn ×Π ×Π × IRk . (446)

It follows that, for any initial condition in this open set, there exists a unique solution
(x(t), p̂(t), q̂(t), ĥ(t)), defined on a right maximal interval [0, T ), with T possibly infinite
and satisfying (446). Applying Points 3 and 4 of Lemma (235), we also know that, for
all t in [0, T ):

p̂(t) ∈ Π1 and q̂(t) ∈ Π1

∥∥∥∥∥∥∥

p̂(t)− p∗

q̂(t)− p∗

∥∥∥∥∥∥∥

2

+ ‖e(t)‖2 + 2

∫ t

0

r ‖e‖2 ≤

∥∥∥∥∥∥∥

p̂(0)− p∗

q̂(0)− p∗

∥∥∥∥∥∥∥

2

+ ‖e(0)‖2 def
= β2 .

(447)
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Now, from assumption RMC, the function U given by assumption RURS depends on
h only. Then, letting:

Û(t) = U(ĥ(t)) , (448)

we look at the time derivative of Û along the solutions of (444) (see also (436)). ¿From
(422) in assumption RURS, (438) in assumption GC1 and (442), we get successively:

.
Û ≤ −c Û +

∂U

∂h
(ĥ)
[
−r(e, x, p̂) e+

(
f(ĥ− e , p̂)− f(ĥ, p)

)]

≤ −c Û + d4(p̂) max
{
1, Ûλ

}
r ‖e‖

+ d3(p̂, e) max
{
1, Û2−λ

}
‖e‖

≤ −c Û + d3(p̂, e)
(
1 + Û1−λ

)
‖e‖
(
1 + Û

)

+ d4(p̂) max
{
1, Ûλ

}(
1 + Û1−λ

)2

‖e‖

≤ −c Û +
[
(d3(p̂, e) + 2 d4(p̂))

(
1 + Û1−λ

)
‖e‖
] (

1 + Û
)

≤ −
[
c − k

(
1 + Û1−λ

)
‖e‖
]
Û + k

(
1 + Û1−λ

)
‖e‖ , (449)

where the constant k depends only on the initial conditions and satisfies:

d3(p̂(t), e(t)) + 2 d4(p̂(t)) ≤ k ∀ t ∈ [0, T ) . (450)

Such an inequality holds since we have (447) and the functions d3 and d4 are continuous.
With (442), inequality (449) implies that the assumption of Lemma (583) in Appendix
B is satisfied with:

X = Û (451)

and:

ϑ1 = k
(
1 + Û1−λ

)
‖e‖ , σ1 = 2, S11 = k2 β2

2

̟1 = k
(
1 + Û1−λ

)
‖e‖ , ζ1 = 2, S21 = k2 β2

2
.

(452)

With the property 3 of U in assumption RURS, it follows that there exists a constant
Υ depending only on e(0), p̂(0) and q̂(0) such that, for all t in [0, T ), we have:

∥∥∥ĥ(t)
∥∥∥ ≤ Υ . (453)

Then, with (447), this implies the existence of a constant α depending only on e(0),
p̂(0) and q̂(0) such that, for all t in [0, T ):

‖h(x(t), p̂(t))‖ ≤
∥∥∥ĥ(t)

∥∥∥ + ‖e(t)‖ (454)

≤ α , (455)

and we also know from (447) that p̂(t) ∈ K and q̂(t) ∈ K, where K is the following
compact subset of Π :

K = {p | ‖p− p∗‖ ≤ β }
⋂

Π1 . (456)

Then, from assumption RBO, there exists of a compact subset Γ of IRn such that:

x(t) ∈ Γ ∀ t ∈ [0, T ) . (457)
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With (447) and (453), we have established that the solution remains in a compact
subset of the open set defined by (446). This implies by contradiction that T = +∞
and that x(t), p̂(t), u(t) and

.
p̂(t) are bounded on [0,+∞).

Then, using the second conclusion of Lemma (583) and the properties of the func-
tion U , we have:

lim
t→+∞

ĥ(t) = 0 . (458)

Also, from (229) and the fact that the solution is bounded, we deduce that
.
e is bounded.

Since, from (447), e is in L2([0,+∞)), we have also:

lim
t→+∞

e(t) = 0 . (459)

This yields:

lim
t→+∞

h(x(t), p̂(t)) = lim
t→+∞

ĥ(t) − lim
t→+∞

e(t) = 0 . (460)

With assumption RCO this implies finally:

lim
t→+∞

x(t) = E . (461)

Case: Assumption RMC does not hold : The system we consider is:

.
x = a (x , un(x, p̂)) +A (x , un(x, p̂)) p

∗

.
ĥ = −r(e, x, p̂) e +

∂V

∂x
(x, p̂)A(x, un(x, p̂)) p̂ +

∂V

∂x
(x, p̂) a(x, un(x, p̂))

+
∂V

∂p
(x, p̂)

.
p̂

e = ĥ − V (x, p̂)

.
p̂ = Proj

(
I , p̂ , −

[
∂h

∂x
(x, p̂)A(x, un(x, p̂))

]T
e

)
, p̂(0) ∈ Π1 ,

(462)

with r(e, x, p̂) defined by (442). ¿From our smoothness assumptions on the various func-
tions and from Point 1 of Lemma (103), this system has a locally Lipschitz-continuous
right-hand side in IRn ×Π × IRk. It follows that, for any initial condition in this open
set, there exists a unique solution (x(t), p̂(t), ĥ(t)), defined on a right maximal interval
[0, T ), with T possibly infinite.

Applying Points 1 and 2 of Lemma (235), we also know that, for all t in [0, T )

p̂(t) ∈ Π1

‖p̂(t)− p∗‖2 + ‖e(t)‖2 + 2

∫ t

0

r ‖e‖2 ≤ ‖p̂(0)− p∗‖2 + ‖e(0)‖2 def
= β2 .

(463)

Then, as in the previous case, we study the evolution of the time derivative of Û along
the solutions of (462) (see also (434)), with:

Û(t) = U(ĥ(t), p̂(t)) . (464)



Adaptive Stabilization of Nonlinear Systems 405

¿From (422) in assumption RURS, Point 2 of Lemma (103), (438) and (439) in as-

sumption GC1, (442), and the expression of
.
p̂ in (462), we get successively:

.
Û ≤ −c Û +

∂U

∂h
(ĥ, p̂)

[
−r e+

(
f(ĥ− e , p̂)− f(ĥ, p)

)
+

∂h

∂p
(x, p̂)

.
p̂

]

+
∂U

∂p
(ĥ, p̂)

.
p̂

≤ −c Û

+
∥∥∥∂U
∂h

(ĥ, p̂)
∥∥∥
[
r ‖e‖+

∥∥∥∥
∂h

∂p
(ĥ, p̂)

∥∥∥∥
∥∥∥∥
[
∂h

∂x
(x, p̂)A(x, un(x, p̂))

]T∥∥∥∥ ‖e‖
]

+

∣∣∣∂U
∂h

(ĥ, p̂)
(
f(ĥ− e , p̂)− f(ĥ, p)

)∣∣∣

+

∥∥∥∥
∂U

∂p
(ĥ, p̂)

∥∥∥∥
∥∥∥∥
[
∂h

∂x
(x, p̂)A(x, un(x, p̂))

]T∥∥∥∥ ‖e‖

≤ −c Û

+ d4(p̂) max
{
1, Ûλ

}[
r ‖e‖+ d5(p̂) max{1 , U(h(x, p̂), p̂)2(1−λ)} ‖e‖

]

+ d3(p̂, e) max
{
1, Û2−λ

}
‖e‖

+ d6(p̂) max{1 , Ûω} d7(p̂) max{1 , U(h(x, p̂), p̂)κ} ‖e‖ . (465)

A difficulty appearing in this inequality and which we have not encountered yet is the
distinction between Û = U(ĥ, p̂) and U(h, p̂) = U(ĥ− e , p̂). As proved in Appendix C,
thanks to point 2 in (438) of assumption GC1, these two quantities are related by:

max{1 , U(h(x, p̂), p̂)γ} ≤ δ
[
max{1 , Ûγ}+max{1 , Ûλγ}

(
‖e‖γ + ‖e‖

γ
1−λ

)]
,

(466)
where γ is any positive real number and δ ≥ 1 depends only on d4(p̂). Since the
functions di, i = 3, 7 are continuous and e and p̂ are bounded from (463), there exists
a constant k depending only on the initial conditions such that inequality (465) yields:

.
Û ≤ −c Û

+ k max
{
1, Ûλ

}(
1 + Û1−λ

)2

‖e‖

+ k max
{
1 , Ûλ

}

×
[
max

{
1, Û2(1−λ)

}
+max

{
1, Û2λ(1−λ)

}(
‖e‖2(1−λ) + ‖e‖2

)]
‖e‖

+ k max
{
1, Û2−λ

}
‖e‖

+ k max
{
1, Ûω

}

×
[
max

{
1, Ûκ

}
+max

{
1, Ûλκ

}(
‖e‖κ + ‖e‖ κ

1−λ

)]
‖e‖ .

(467)

Since assumption GC1 gives
ω + κ ≤ 2− λ , (468)

we have:

max{1 , Ûω} max{1 , Ûκ} ≤
(
1 + Û

)(
1 + Û

)1−λ

. (469)
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Hence, (467) can be simplified in:

.
Û ≤ −c Û

+5 k
(
1 + Û

)(
1 + Û1−λ

)
‖e‖

+ k max{1 , Ûλ}
[
max{1 , Û2λ(1−λ)}

(
‖e‖2(1−λ)+1 + ‖e‖3

)] def
= (a)

+ k max{1 , Ûω}
[
max{1 , Ûλκ}

(
‖e‖κ+1 + ‖e‖1+ κ

1−λ

)] def
= (b) .

(470)

Let us now show that the terms (a) and (b) defined in this inequality can be bounded
from above by terms of the form:

(
1 + Û

) [(
1 + Û1−λ

)
‖e‖
]γ

,

with 0 < γ ≤ 2.

(a) If 2λ− 1 > 0, and since

λ+ 2 λ (1− λ) = 1 + (2λ− 1) (1− λ) , (471)

we get:

(a) ≤ k
(
1 + Û

)[(
1 + Û1−λ

)
‖e‖
]2λ−1 (

‖e‖4(1−λ) + ‖e‖4−2λ
)
, (472)

where, knowing from (463) that ‖e‖ is bounded, the same holds for the last term
between parentheses, since we have positive powers.
If 2λ− 1 ≤ 0, and since

λ+ 2λ (1− λ) ≤ 2 (1− λ) , (473)

we get:

(a) ≤ k
[(

1 + Û1−λ
)

‖e‖
]2 (

‖e‖1−2λ + ‖e‖
)

(474)

≤ k
(
1 + Û

)[(
1 + Û1−λ

)
‖e‖
]2 (

‖e‖1−2λ + ‖e‖
)
. (475)

(b) If κ < 1, and since

ω + λκ ≤ 1 + (1− κ) (1− λ) , (476)

we get:

(b) ≤ k
(
1 + Û

)[(
1 + Û1−λ

)
‖e‖
]1−κ (

‖e‖2κ + ‖e‖ κ
1−λ

+κ
)
. (477)

If κ ≥ 1, and since

ω + λκ ≤ 1 + 2 (1− λ) , (478)

we get:

(b) ≤ k
(
1 + Û

) [(
1 + Û1−λ

)
‖e‖
]2 (

‖e‖κ−1 + ‖e‖ κ
1−λ

−1
)
. (479)
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With these inequalities, and the expression (442) for r, (470) yields an inequality we
write formally as:

.
Û ≤ −c Û + 5 k

(
1 + Û

)√
r‖e‖

+
(
1 + Û

)[
ka
(√

r‖e‖
)γa

+ kb
(√

r‖e‖
)γb] , (480)

where the last term represents the sum (a)+(b), with ka and kb two constants depend-
ing only on the initial conditions, and

0 < γa ≤ 2 , 0 < γb ≤ 2 . (481)

This inequality can be rewritten as:
.
Û ≤ −

(
c− 5 k

√
r ‖e‖ −

[
ka
(√

r‖e‖
)γa

+ kb
(√

r‖e‖
)γb]) Û

+ 5 k
√
r‖e‖ +

[
ka
(√

r‖e‖
)γa

+ kb
(√

r‖e‖
)γb] . (482)

We may now apply Lemma (583) in Appendix B with

X = Û (483)

and

ϑ1 = 5 k
√
r‖e‖ , σ1 = 2, S11 = 25 k2 β2

2

ϑ2 = ka
(√

r‖e‖
)γa

, σ2 =
2

γa
, S12 = ka

2 β2

2

ϑ3 = kb
(√

r‖e‖
)γb , σ3 =

2

γb
, S13 = kb

2 β2

2

̟1 = 5 k
√
r‖e‖ , ζ1 = 2, S21 = 25 k2 β2

2

̟2 = ka
(√

r‖e‖
)γa

, ζ2 =
2

γa
, S22 = ka

2 β2

2

̟3 = kb
(√

r‖e‖
)γa

, ζ3 =
2

γb
, S23 = kb

2 β2

2
.

(484)

¿From here, we conclude the proof exactly as in the previous case. 2

This proposition shows that, in fact, the observation h cannot be chosen indepen-
dently of V . The refined assumptions RCO and RURS specify the link between these
two functions with U playing the role of V . However, not taking h = V creates some
difficulties. Even when the Refined Matching Condition (RMC) is met, some extra
conditions are required – the increment condition in point 1 and the growth condition
in point 2 of assumption GC1. Nevertheless, as with the other estimation designs, we
may have a solution to the Adaptive Stabilization problem when assumption RMC
does not hold.

Corollary [Campion and Bastin[2]] (485)
Let, in equation (Sp), the functions a and A be known and affine in u and let Π be
an open subset of IRl which satisfies assumption ICS. Assume there exist three known
functions:

h : IRn ×Π → IRn of class C2, a diffeomorphism for each p,
un : IRn ×Π → IRm of class C1 , and

v : IRn ×Π ×Π × IRl → IRm of class C1 ,
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such that:

1. h satisfies assumption RCO,
2. for all (x, p, q, ∂) in IRn ×Π ×Π × IRl, we have:

∂h

∂p
(x, p) ∂ +

∂h

∂x
(x, p) v ⊙ [b(x) +B(x) q] = 0 , (486)

3. and by letting
ϕ = h(x, p) , (487)

the time derivative of ϕ along the solutions of (Sp) with u = un satisfies:

.
ϕ = C ϕ , (488)

where C is an n× n matrix satisfying:

P C + CTP = −I , (489)

with P a symmetric positive definite matrix.

Under these conditions, the Adaptive Stabilization problem is solved by the dynamic
controller consisting of (234) and:

u = un(x, p̂) + v
(
x, p̂, q̂,

.
p̂
)
. (490)

Proof. Let us first notice that, the functions a, A and h being known, assumption
Λ-LP holds with:

Λ(x, t) =
∂h

∂x
(x, p̂(t)) . (491)

Then, we define two functions U and f as follows:

U(h) = hTP h (492)

and
f(h , p) = C h . (493)

¿From the assumptions, conditions Λ-LP, RURS and RMC are satisfied.
Now, define the function F by:

F : IRn ×Π → IRn ×Π .
(x, p) (h(x, p) , p)

(494)

This function is a diffeomorphism. Hence, for all compact subsets K of Π and all
positive real numbers α, the set:

F−1 {(ϕ, p) | p ∈ K and ‖ϕ‖ ≤ α}

is a compact subset of Ω ×Π , and therefore its projection:

Γα,K = {x | ∃ p ∈ K : ‖h(x, p)‖ ≤ α} (495)

is a compact subset of IRn. It follows that assumption RBO holds.
Finally, let us check that (438) in assumption GC1 is satisfied. We have:

∥∥∥∂U
∂h

(h, p)

∥∥∥ =

∥∥∥hTP
∥∥∥ (496)

≤
√

λmax {P}U(h)
1

2 , (497)
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and also:
∣∣∣∂U
∂h

(h, p) (f(h− e , p)− f(h , p))

∣∣∣ =
∣∣∣hTP Ce

∣∣∣ (498)

≤ U(h)
1

2

√
eTCTP C e (499)

≤
√

λmax

{
CTP C

}
U(h)

1

2 ‖e‖ . (500)

Hence, (438) holds with any λ satisfying:

1

2
≤ λ ≤ 1 . (501)

So we choose λ = 1 in order to simplify the expression of r in (442). 2

Note that in Corollary (485) the Matching Condition (486) can be replaced by
Points 3 and 5 of assumption GC1, namely:

There exist two positive continuous functions d5 and d7 defined on Π such that, for all
(x, p) in IRn ×Π:

∥∥∥∥
∂h

∂p
(x, p)

∥∥∥∥ ·
∥∥∥∥
[
∂h

∂x
(x, p)A(x, un(x, p))

]T∥∥∥∥ ≤ d5(p) max{1 , ‖h(x, p)‖2}
∥∥∥∂h
∂x

(x, p)A(x, un(x, p))

∥∥∥ ≤ d7(p) max{1 , ‖h(x, p)‖3} .
(502)

5.2 Regressor Filtering

When the regressor filtering technique (258)–(261) is applied, by letting:

ĥ = h(x, p̂) + e = Zf p̂ + ẑf , (503)

and using (259) and (261), we get:

.
ĥ = f(ĥ , p̂) +

[
−ρ e+

(
f(ĥ− e , p̂)− f(ĥ, p̂)

)
+

(
∂h

∂p
+ Zf

)
.
p̂

]
, (504)

if the control u is:

u = un(x, p̂) . (505)

And we get:

.
ĥ = f(ĥ , p̂) +

[
−ρ e+

(
f(ĥ− e , p̂)− f(ĥ, p̂)

)
+ Zf

.
p̂
]
, (506)

if assumption RMC holds, A does not depend on u and we use:

u = un(x, p̂) + v(x, p̂,
.
p̂) , (507)

where, with notation (13):

∂h

∂p
(x, p̂)

.
p̂+

∂h

∂x
(x, p̂)v(x, p̂,

.
p̂)⊙ b(x) = 0 . (508)
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Compared with the equation error filtering case, we have the extra term Zf

.
p̂ in both

(504) and (506). However, we know that, by choosing ρ appropriately, Zf is bounded.

And, by using a vanishing observation gain,
.
p̂ is absolutely integrable. This latter

property being different from what we have in the error filtering case, different growth
conditions are needed:

Assumption GC2 (Growth Conditions 2) (509)
There exist three positive continuous functions di , i = 8, 10, with d8 defined on Π×IRk

and d9 and d10 defined on Π, two positive real numbers λ and κ, with λ < 1 and κ
known, such that, for all (ϕ, x, p) in IRk × IRn ×Π:

1.
∣∣∣∂U
∂h

(ϕ, p) (f(ϕ− e , p)− f(ϕ , p))
∣∣∣ ≤ d8(p, e) max

{
1, U(ϕ, p)κ+λ

}
‖e‖

2.
∥∥∥∂U
∂h

(ϕ, p)
∥∥∥ ≤ d9(p) max

{
1, U(ϕ, p)λ

}

3.

∥∥∥∂h
∂x

(x, p)A(x, un(x, p))

∥∥∥ ≤ d10(p) max {1 , U(h(x, p), p)κ} .

(510)

Moreover, if assumption RMC does not hold, there exist two positive continuous func-
tions d11 and d12, defined on Π such that, for all (ϕ, x, p) in IRk × IRn ×Π:

4.

∥∥∥∥
∂h

∂p
(x, p)

∥∥∥∥ ≤ d11(p) max
{
1 , U(h(x, p), p)(1−λ)

}

5.

∥∥∥∥
∂U

∂p
(ϕ, p)

∥∥∥∥ ≤ d12(p) max {1 , U(ϕ, p)} .

(511)

Note that there is no constraint on κ besides its existence. We have:

Proposition (512)
Let assumptions Λ-LP, RBO, RURS, ICS and GC2 hold in the global case with:

Λ(x, t) =
∂h

∂x
(x, p̂(t)) . (513)

Choose:

r(x, p̂) =
(
1 + U(ĥ, p̂)κ

)2

(514)

ρ(x, p̂, u) = 1 +
∥∥∥∂h
∂x

(x, p)A(x, u)
∥∥∥ , (515)

and, in (262):
.
M = G (M , Zf , r) , ε3 M(0) > I , (516)

where G is a negative symmetric matrix, depending locally-Lipschitz-continuously on
its arguments and satisfying (see (262) and (263)):

−ε4 M ZT

f Zf M r ≥ G ≥ −(2− ε1)M ZT

f ZfM r . (517)

Assume that A does not depend on u when u is chosen to depend on
.
p̂. Under these

conditions, all the solutions (x(t), p̂(t), ẑf(t), Zf(t)),M(t) of (Sp∗), (259), (261), (262),
(516) are well-defined on [0,+∞), unique, bounded and:

lim
t→∞

h(x(t), p̂(t)) = 0 . (518)

It follows that the Adaptive Stabilization problem is solved if assumption RCO holds
also.
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Proposition (512) generalizes a result established by Pomet and Praly [22] who choose
the state vector x as the observation function h.

Proof.
Case: Assumption MC holds: In this case, we assume also that A(x, u) does not depend
on u, i.e., with notation (13), we have:

A(x, u) = A0(x) . (519)

The system we consider is:

.
x = a (x , u) + A0(x) p

∗

.
ẑf = ρ(x, p̂, u) zf +

∂h

∂x
(x, p̂) a(x, u) +

∂h

∂p
(x, p̂)

.
p̂ , ẑf(0) = h(x(0), p̂(0))

zf = h(x, p̂) − ẑf
.
Zf = −ρ(x, p̂)Zf +

∂h

∂x
(x, p̂)A0(x) , Zf(0) = 0

e = Zf p̂ − zf
.
p̂ = Proj

(
M , p̂ , −M ZT

f
r(x, p̂) e

)
, p̂(0) ∈ Π1

.
M = G (M , Zf , r(x, p̂)) , M(0) > 0 ,

(520)

with r given by (514), ρ given by (515) and:

u = un(x, p̂) + v(x, p̂,
.
p̂) , (521)

where v satisfies (515). Since r does not depend on u,
.
p̂ is explicitly defined. Then,

from our smoothness assumptions on the various functions and with Lemma (103), this
system has a locally Lipschitz-continuous right-hand side in the open set defined by:

(x, ẑf, Zf, p̂,M) ∈ IRn × IRk ×Mkl(IR)×Π ×M . (522)

It follows that, for any initial condition in this open set, there exists a unique solution
(x(t), ẑf(t), Zf(t), p̂(t),M(t)), defined on a right maximal interval [0, T ), with T possibly
infinite, and satisfying (522). Then, as in the proof of Proposition (375), we have, for
all t in [0, T ):

p̂(t) ∈ Π1

ε2 ‖p̂(t)− p∗‖2 + ε1

∫ t

0

r ‖e‖2 ≤ ε3 ‖p̂(0)− p∗‖2 def
= β2

‖Zf‖ ≤ 1 and ‖e‖ ≤
√ε3

ε2
‖p̂(0)− p∗‖

‖zf‖ ≤ ‖p∗‖
I

ε3 + (2− ε1)
∫ T

0
r

≤ M(t) ≤ M(0) .

(523)
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Now, as in the proof of Proposition (440), we look at the time derivative along the

solutions of (520) (see also (506)) of Û defined in (448). ¿From (510) in assumption
GC2, (422) in assumption RURS, (514), (515), and (523), we get successively:

.
Û ≤ −c Û +

∂U

∂h
(ĥ)
[
−ρ(x, p̂, u) e+

(
f(ĥ− e , p̂)− f(ĥ, p)

)
+ Zf

.
p̂
]

≤ −c Û

+ d9(p̂)d10(p̂) max
{
1, Ûλ

}
(1 + max {1 , U(h(x, p̂))κ}) ‖e‖

+ d8(p̂, e) max
{
1, Ûκ+λ

}
‖e‖

+ d9(p̂) max
{
1 , Ûλ

}∥∥∥
.
p̂
∥∥∥ . (524)

And, with Appendix C, we have the following inequality:

max {1 , U(h(x, p̂), p̂)κ} ≤ δ max
{
1 , Ûκ

}

+ δ
[
max

{
1 , Ûλκ

}(
‖e‖κ + ‖e‖ κ

1−λ

)]
(525)

for some constant δ ≥ 1 depending only on d9(p̂). Since the functions di, i = 8, 10 are
continuous and e and p̂ are bounded from (523), there exists a constant k depending
only on the initial conditions such that:

.
Û ≤ −c Û

+ k
(
1 + Ûλ

)[
‖e‖ + 2

(
1 + Ûκ

)
‖e‖
]

+ k
(
1 + Ûλ

)[(
1 + Ûκ

)
‖e‖
]λ (

‖e‖1+κ−λ + ‖e‖ κ
1−λ

+1−λ
)

+ k
(
1 + Ûλ

)∥∥∥
.
p̂
∥∥∥ . (526)

Finally, since r satisfies (514), e is bounded, and from GC2 we have λ < 1, we get more
simply:

.
Û ≤ −

[
c −

(
k‖e‖+ 2k

√
r‖e‖+ k

(√
r‖e‖

)λ
+ k

∥∥∥
.
p̂
∥∥∥
)]

Û

+2k
√
r‖e‖ + k

(√
r‖e‖

)λ
+ k

∥∥∥
.
p̂
∥∥∥ . (527)

We may now apply Lemma (583) in Appendix B with:

X = Û (528)

and:

ϑ1 = k‖e‖+ 2k
√
r‖e‖ , σ1 = 2, S11 = 10 k2 β

2

ε1

ϑ2 = k
(√

r‖e‖
)λ

, σ2 =
2

λ
, S12 = k

2 β2

ε1

ϑ3 = k
∥∥∥
.
p̂
∥∥∥ , σ3 = 1, S13 = k2 k1(p

∗, p̂(0))

̟1 = 2k
√
r‖e‖ , ζ1 = 2, S21 = 4 k2 β2

ε1

̟2 = k
(√

r‖e‖
)λ

, ζ2 =
2

λ
, S22 = k

2 β2

ε1

̟3 = k
∥∥∥
.
p̂
∥∥∥ , ζ3 = 1, S23 = k2 k1(p

∗, p̂(0)) .

(529)
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With property 3 of U in assumption RURS, it follows that there exists a constant Υ
depending only on the initial conditions such that, for all t in [0, T ), we have:

∥∥∥ĥ(t)
∥∥∥ ≤ Υ . (530)

Then, with (523), this implies the existence of a constant α, depending only on the
initial conditions, such that, for all t in [0, T ):

‖h(x(t), p̂(t))‖ ≤
∥∥∥ĥ(t)

∥∥∥ + ‖e(t)‖ (531)

≤ α . (532)

We also know from (447) that p̂(t) ∈ K, where K is the following compact subset of Π :

K =

{
p

∣∣∣∣ ‖p− p∗‖ ≤ β√
ε2

} ⋂
Π1 . (533)

With assumption RBO, this proves the existence of a compact subset Γ of IRn such
that:

x(t) ∈ Γ ∀ t ∈ [0, T ) . (534)

Finally, with the continuity of the functions r and h and the fact that:

ẑf = h(x, p̂) − zf , (535)

we have established that the solution remains in a compact subset of the open set
defined in (522). It follows by contradiction that T = +∞ and that the time functions

x(t), p̂(t), u(t) and
.
p̂(t) are bounded on [0,+∞). ¿From here, we conclude the proof

exactly as in the proof of Proposition (440).

Case: Assumption RMC does not hold: The only difference with the previous case, is
that we use

u = un(x, p̂) (536)

instead of (521), and the fact that U may depend on p. Hence, everything remains the
same up to, but not including, equation (524). To get the equivalent of (524), we have
to evaluate the time derivative of:

Û(t) = U(h(x(t), p̂(t))) (537)

along the solutions of (504). We get successively:
.
Û ≤ −c Û +

∂U

∂p
(ĥ, p̂)

.
p̂

+
∂U

∂h
(ĥ, p̂)

[
−ρ(x, p̂, u) e+

(
f(ĥ− e , p̂)− f(ĥ, p)

)
+

(
∂h

∂p
+ Zf

)
.
p̂

]

≤ −c Û

+ d9(p̂)d10(p̂) max
{
1, Ûλ

}
(1 + max {1 , U(h(x, p̂))κ}) ‖e‖

+ d8(p̂, e) max
{
1, Ûκ+λ

}
‖e‖

+ d9(p̂) max
{
1 , Ûλ

}∥∥∥
.
p̂

∥∥∥

+ d9(p̂) d11(p̂) max
{
1 , Ûλ

}
max

{
1 , U(h(x, p̂))1−λ

}∥∥∥
.
p̂
∥∥∥

+ d12(p̂) max{1 , Û}
∥∥∥
.
p̂
∥∥∥ . (538)
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With Appendix C, we get similarly to (525):

max{1 , U(h(x, p̂), p̂)1−λ} ≤ δ max{1 , Û1−λ}

+ δ
[
max{1 , Ûλ(1−λ)}

(
‖e‖1−λ + ‖e‖

)]
. (539)

And, since 0 ≤ λ < 1 implies:
λ (2− λ) < 1 , (540)

we have also:

max
{
1, Ûλ

}
max

{
1, Ûλ(1−λ)

}(
‖e‖1−λ + ‖e‖

)
≤
(
1 + Û

) (
‖e‖1−λ + ‖e‖

)
. (541)

As in the previous case, this implies the existence of a constant k depending only on
the initial conditions such that:

.
Û ≤ −

[
c − k

(
‖e‖+

√
r‖e‖+

(√
r‖e‖

)λ
+
∥∥∥
.
p̂
∥∥∥
)]

Û

+ k
(
‖e‖+

√
r‖e‖ +

(√
r‖e‖

)λ
+

∥∥∥
.
p̂

∥∥∥
)
. (542)

We can now apply Lemma (583) in Appendix B with:

X = Û (543)

and:

ϑ1 = k
(
‖e‖+√

r‖e‖
)
, σ1 = 2, S11 = 2k2 β

2

ε1

ϑ2 = k
(√

r‖e‖
)λ

, σ2 =
2

λ
, S12 = k2 β2

ε1

ϑ3 = k

∥∥∥
.
p̂

∥∥∥ , σ3 = 1, S13 = k2 k1(p
∗, p̂(0))

̟1 = k
(
‖e‖+√

r‖e‖
)
, ζ1 = 2, S21 = 2k2 β2

ε1

̟2 = k
(√

r‖e‖
)λ

, ζ2 =
2

λ
, S22 = k2 β2

ε1

̟3 = k
∥∥∥
.
p̂
∥∥∥ , ζ3 = 1, S23 = k2 k1(p

∗, p̂(0)) .

(544)

¿From here, we conclude as in the previous case. 2

Again, in practice, to apply Proposition (512), we must be allowed to choose a
particular value for the initial condition ẑf(0), and a vanishing observer gain K ((263)
is assumed). However, the main feature of this result together with Proposition (440) is
that, when the observation function h is not related to V and assumption RMC is not
satisfied, it provides solutions to the Adaptive Stabilization problem under different
growth conditions.

Corollary (545)
Let, in equation (Sp), the functions a and A be known and affine in u and let Π be
an open subset of IRl which satisfies assumption ICS. Assume there exist two known
functions:

h : IRn ×Π → IRn of class C2 which is a diffeomorphism for each p, and
un : IRn ×Π → IRm of class C1 ,

a positive real number κ and a positive continuous function d10, defined on Π, such
that:
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1. h satisfies assumption RCO,
2. for all (x, p) in IRn ×Π, we have:

∥∥∥∂h
∂x

(x, p)A(x, un(x, p))

∥∥∥ ≤ d10(p) max{1 , ‖h(x, p)‖2κ} , (546)

3. by letting:
ϕ = h(x, p) , (547)

the time derivative of ϕ along the solutions of (Sp) with u = un satisfies:

.
ϕ = C ϕ , (548)

where C is an n× n matrix satisfying:

P C + CTP = −I , (549)

with P a symmetric positive definite matrix.

Under these conditions, if

either the function A does not depend on u and there exists a known function:

v : IRn ×Π × IRl → IRm of class C1 , (550)

such that, for all (x, p, ∂) in IRn ×Π × IRl, we have:

∂h

∂p
(x, p) ∂ +

∂h

∂x
(x, p) v ⊙ b(x) = 0 , (551)

or there exists a positive continuous function d11, defined on Π such that, for all
(x, p) in IRn ×Π:

∥∥∥∥
∂h

∂p
(x, p)

∥∥∥∥ ≤ d11(p) max{1 , ‖h(x, p)‖2} , (552)

then the Adaptive Stabilization problem is solved by the dynamic controller consisting
of (259), (261), (262, (516), and:

u = un(x, p̂) + v
(
x, p̂, q̂,

.
p̂
)

(553)

if v exists, or:
u = un(x, p̂) (554)

if not.

Proof. This proof follows exactly the same lines as the proof of Corollary (485). In
particular, the above growth conditions are nothing but GC2 with:

λ =
1

2
, U(h) = hTP h and f(h , p) = C h . (555)

2

This Corollary (545) should be compared with the result of Nam and Arapostathis
in [16]. In the same context of adaptive feedback linearization, they propose the same
dynamic controller except that:

1. the Matching Condition (551) is not assumed,
2. they do not restrict the choice of ẑf(0),
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3. the observer gain is not allowed to go to zero, namely, (263) does not hold,
4. ρ is kept constant,
5. finally r is given by:

r =

(
1 +

∥∥∥∂h
∂x

(x, p)A(x, un(x, p))
∥∥∥
2
)−1

, (556)

i.e., they impose κ = 1.

As a consequence, Nam and Arapostathis get a solution to the Adaptive Stabilization
problem under more restrictive Growth Conditions. Namely, instead of (546), they
assume: ∥∥∥∂h

∂x
(x, p)A(x, un(x, p))

∥∥∥ ≤ d10(p) max{1 , ‖h(x, p)‖} , (557)

and, instead of (552), they have:
∥∥∥∥
∂h

∂p
(x, p)

∥∥∥∥ ≤ d11(p) max{1 , ‖h(x, p)‖} . (558)

6 Conclusion

In this paper, we have given a unified and generalizing overview of most (not all!)
of the presently proposed approaches to stabilize an equilibrium point of a nonlinear
system described by a differential equation containing unknown parameters. Table 3
summarizes our results.

A key assumption is the fact that the right-hand side of the differential equation de-
scribing the system depends linearly on these unknown parameters or at least on those
actually needed for the control (see Example (49)). To meet this assumption, called Λ-
Linear Parameterization Λ-LP, we have mentioned the fact that it may be useful not to
work with the a priori given coordinates and parameterization: a parameter-dependent
change of coordinates and a reparameterization, i.e., a transformation of the param-
eters, are allowed (see [14] and [29]). Also, Middleton and Goodwin [15], Pomet and
Praly [22] and Slotine and Li [30], for example, have shown that the proposed results
extend in some cases to a more general case called Implicit Linear Parameterization
in [19]. Finally, Mareels, Penfold and Evans [13] have shown that it is also possible to
follow a non parametric approach to solve the problem of stabilizing an equilibrium
point of a system whose dynamics are not completely known.

Another important assumption is assumption PRS and its more restrictive versions
URS and RURS. It guarantees not only that the system is stabilizable, but also that
a parameter-dependent control law for this stabilization is known. It follows that the
only problem addressed here is: how can we use this control law when the parameters
are unknown, i.e., how can we make this control law adaptive?

Table 3 shows the ten routes we have studied for designing and analyzing adaptive
controllers of nonlinear systems. It shows the interplay between structural assumptions,
control design techniques and estimation algorithms. In particular, it emphasizes the
fact that any stabilizing control law cannot necessarily be made adaptive. It has to
give the closed-loop system properties which differ depending on which control design
and estimation technique is used. However, a general very desirable property is the fact
that the so-called Matching Condition (MC) can be satisfied.

Implicit in all what has been presented was the assumption that the state is com-
pletely measured. It follows that the problem we are addressing is a very particular case
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of the Error Feedback Regulator problem stated by Isidori [6, Sect. 7.2]. But thanks to
this particularity, we have solved the problem under less restrictive assumptions. It is
also worth mentioning that the results established by Kanellakopoulos, Kokotovic and
Middleton [10] lead us to expect that relaxation of the assumptions is also possible in
some cases when the state is not completely measured.

Table 3. Summary of results

Fundamental
assumptions

Design
method

Basic
assumptions

Estimation
algorithm

Additional
assumptions

Λ-LP
ICS

-

-

-

Lyapunov

Estimation

h =
α1V

α1 − V

Estimation
h not rel. V

-

-

-

BO
PRS
CO

BO
URS
CO

RBO
RURS
RCO

-

-

-

-

EEF

RF

EEF

RF

-

-

-

-

-

-

-

-

-

-

V ind. of p

MC

MC

GC (328)

MC

GC (380)

RMC, GC (438)

GC (438)–(439)

RMC, GC (510)

GC (510)–(511)

BO : Boundedness Observability CO : Convergence Observability
EEF : Equation Error Filtering Λ-LP : Λ-Linear Parameterization
GC : Growth Condition ICS : Imbedded Convex Sets
MC : Matching Condition PRS : Pointwise Reduced-order Stabilizability
R : Refined RF : Regressor Filtering

URS : Uniform Reduced-order Stabilizability
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Appendices

A: Proof of Lemma (103)

In this proof, we denote by S the following open subset of Π × IRl:

S =

{
(p, y)

∣∣∣∣P(p) > 0 and
∂P
∂p

(p) y > 0

}
. (559)

Proj(M,p, y) differs from y if and only if (p, y) belongs to S.

Point 1: We make the following preliminary remark:
Since 0 ≤ P(p) and M ∈ M imply:

∂P
∂p

(p)M
∂P
∂p

(p)T > 0 , (560)

and P is a twice continuously differentiable function,

1. the function Proj(M,p, y) is continuously differentiable in the set M× S,

2. Proj(M,p, y) tends to y as P(p) or
∂P
∂p

(p) y tends to 0,

3. for any compact subset C of

M ×
{
(p, y)

∣∣∣∣P(p) ≥ 0 and
∂P
∂p

(p) y ≥ 0

}
,

there exists a constant kC bounding the Jacobian matrix:

‖∇Proj(M,p, y)‖ ≤ kC ∀ (M,p, y) ∈ C . (561)

Now, let (M1, p1, y1) and (M0, p0, y0) be two points such that, for any α in [0, 1],
the point (Mα, pα, yα) is in the set M×Π × IRl, with:

Mα = αM1 + (1− α)M0

pα = αp1 + (1− α) p0

yα = αy1 + (1− α) y0 .

(562)

Four cases must be distinguished:

Case 1: (p1, y1) and (p0, y0) are not in S. Then, we have trivially:

‖Proj(M1, p1, y1)− Proj(M0, p0, y0)‖ = ‖y1 − y0‖ . (563)

Case 2: For all α in [0, 1], (pα, yα) lies in S. Then, from the above preliminary remark
and the Mean Value Theorem, we get:

‖Proj(M1, p1, y1)− Proj(M0, p0, y0)‖ ≤ k [‖M1 −M0‖+ ‖p1 − p0‖+ ‖y1 − y0‖]
(564)

with the constant k given by (561).

Case 3: Say (p0, y0) belongs to S but (p1, y1) does not. Then, we define α∗ by:

α∗ = min
0 ≤ α ≤ 1
(pα, yα) 6∈ S

α . (565)
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Since S is open, all the points of the segment [ (M0, p0, y0) , (Mα∗ , pα∗ , yα∗) ) have
their (p, y) component lying in S. But (pα∗ , yα∗) is not in S. With (561) and (562),
this implies:

‖Proj(Mα∗ , pα∗ , yα∗)− Proj(M0, p0, y0)‖
≤ k [‖M1 −M0‖+ ‖p1 − p0‖+ ‖y1 − y0‖] . (566)

We also have:

‖Proj(M1, p1, y1)− Proj (Mα∗ , pα∗ , yα∗)‖ = ‖y1 − yα∗‖ ≤ ‖y1 − y0‖ . (567)

This yields:

‖Proj(M1, p1, y1)− Proj(M0, p0, y0)‖
≤ (1 + k) [‖M1 −M0‖+ ‖p1 − p0‖+ ‖y1 − y0‖] . (568)

Case 4: Finally, when both (p1, y1) and (p0, y0) belong to S, but there are some α in
(0, 1) for which (pα, yα) is not in S, we define α∗ as above and let:

β∗ = max
0 ≤ β ≤ 1
(pβ, yβ) 6∈ S

β . (569)

Then all the points of the segments [(M0, p0, y0) , (Mα∗ , pα∗ , yα∗)) and
((Mβ∗ , pβ∗ , yβ∗) , (M1, p1, y1)] have their (p, y) component in S. But the points (pα∗ , yα∗)
and (pβ∗ , yβ∗) are not in S. With (561), we get:

‖Proj(M1, p1, y1)− Proj(Mβ∗ , pβ∗ , yβ∗)‖
+ ‖Proj(Mα∗ , pα∗ , yα∗)− Proj(M0, p0, y0)‖

≤ 2k [‖M1 −M2‖+ ‖p1 − p2‖+ ‖y1 − y2‖] . (570)

The conclusion follows, since we have trivially:

Proj(Mβ∗ , pβ∗ , yβ∗)− Proj(Mα∗ , pα∗ , yα∗) = yβ∗ − yα∗ . (571)

Point 2: For (p, y) not in S the inequality of point 2 is trivial. If (p, y) is in S, a direct
computation gives:

Proj(M,p, y)TM−1Proj(M,p, y) = yTM−1y −
P(p) (2− P(p))

(
∂P
∂p

(p)y
)2

∂P
∂p

(p)M ∂P
∂p

(p)T
. (572)

The conclusion follows since, by definition, for all (p, y) in S with p in Π1, we have:

P(p) (2− P(p)) > 0 . (573)

Point 3: For any p satisfying P(p) ≥ 0, let q be the orthogonal projection of p∗ on the
hyperplane through p and orthogonal to ∂P

∂p
(p), i.e.,

q = p∗ −
∂P
∂p

(p)(p− p∗)
∥∥ ∂P

∂p
(p)
∥∥2

∂P
∂p

(p)T . (574)
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Since P is a convex function we have:

P(q) ≥ P(p) +
∂P
∂p

(p) (q − p) (575)

≥ P(p) ≥ 0 . (576)

It follows that q is not an interior point of the set Π0 and, therefore, ‖q − p∗‖ is
larger or equal to D∗, the distance from p∗ to the boundary of the closed set Π0 =
{p | P(p) = 0}, i.e., we have:

(
∂P
∂p

(p)(p− p∗)
)2

∥∥ ∂P
∂p

(p)
∥∥2 ≥ D∗2 . (577)

The conclusion follows from the fact that, p∗ being an interior point of the set Π0

(see (95) and (93)), the Basic Separation Hahn-Banach Theorem [4, Theorem V.1.12]
implies:

∂P
∂p

(p)(p− p∗) > 0 ∀ p : P(p) ≥ 0 . (578)

Point 4: Again, point 4 is clear for all (p, y) not in S. And, for (p, y) in S, we get, using
point 3:

(p− p∗)TM−1Proj(M,p, y)

= (p− p∗)TM−1y −
P(p)

(
∂P
∂p

(p)y

) (
∂P
∂p

(p)(p− p∗)

)

∂P
∂p

(p)M
∂P
∂p

(p)T

≤ (p− p∗)TM−1y . (579)

Point 5: Let us compute the time derivative of P(p(t)) along a solution of (104). We
get:

.
P(p̂(t)) = ∂P

∂p
(p̂(t))y(t) if P(p̂(t)) ≤ 0 or ∂P

∂p
(p̂(t)) y(t) ≤ 0

= ∂P
∂p

(p̂(t))y(t) (1− P(p̂(t))) if P(p̂(t)) > 0 and ∂P
∂p

(p̂(t)) y(t) > 0 .

(580)
Therefore, we have:

.
P(p̂(t)) ≤ 0 if P(p̂(t)) ≥ 1 . (581)

Since the initial condition satisfies:

P(p̂(0)) ≤ 1 , (582)

a continuity argument proves that the same holds for all t where p̂(t) is defined.
⊓⊔
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B: A Useful Technical Lemma

Lemma: (see also [3, Theorem IV.1.9]) (583)
Let X be a C1 time function defined on [0 , T ) ( 0 < T ≤ +∞), satisfying:

.
X ≤ −cX +

∑

i

ϑi(t)X(t) +
∑

j

̟j(t) , (584)

where c is a strictly positive constant,
∑

i

and
∑

j

are finite sums and ϑi, and ̟j are

positive time functions satisfying:
∫ T

0

ϑi
σi ≤ S1i and

∫ T

0

̟j
ζj ≤ S2j , (585)

where σi ≥ 1 and ζj ≥ 1. Under this assumption, X(t) is bounded from above on [0, T )
and, precisely:

X(t) ≤ K1 X(0) +K2 ∀ t ∈ [0, T ) , (586)

with K1 and K2 depending only on σi, ζj , S1i and S2j .
Moreover, if T is infinite then:

lim sup
t→∞

X(t) ≤ 0 . (587)

Proof. This is a straightforward consequence of a known result on differential inequal-
ities. ¿From (584), one derives (see [5, Theorem I.6.1]):

X(t) ≤ X(0) e

−ct+

∫ t

0

∑

i

ϑi

+

∫ t

0

e

[
−c(t−τ)+

∫ t

τ

∑

i

ϑi

]

∑

j

̟j(τ ) dτ . (588)

Let θi > 1 and ηj > 1 be defined by:

1

σi

+
1

θi
= 1 and

1

ζj
+

1

ηj
= 1 . (589)

Inequalities (585) and the Hölder Inequality yield, for any positive t and τ , t ≥ τ :

∫ t

τ

ϑi ≤ (t− τ )
1

θi

(∫ t

τ

ϑi
σi

) 1

σi

(590)

≤ (t− τ )
1

θi S1i

1

σi . (591)

Similarly, we get:

∫ t

0

e−
c
2
(t−τ)̟j(τ )dτ ≤

(
2

c

) 1

ηj

(∫ t

0

e−
c
2
(t−τ)̟j(τ )

ζjdτ

) 1

ζj

≤
(
2

c

) 1

ηj

(
e−

c
2

t
2

∫ t
2

0

̟j(τ )
ζjdτ +

∫ t

t
2

̟j(τ )
ζjdτ

) 1

ζj

≤
(
2

c

) 1

ηj

(
e−

c
2

t
2S2j +

∫ t

t
2

̟j(τ )
ζjdτ

) 1

ζj

. (592)



422 Praly, Bastin, Pomet, and Jiang

Then, let us note that the function:

f(x) = − c

2
x +

∑

i

S1i

1

σi x
1

θi (593)

is well-defined and continuous on [0,+∞), with:

f(0) = 0 and f(+∞) = −∞ . (594)

This implies the existence of a constant K1 depending only on S1i and σi such that,
for all 0 ≤ τ ≤ t:

exp

(
− c

2
(t− τ ) +

∑

i

(t− τ )
1

θi S1i

1

σi

)
≤ K1 . (595)

With this bound, (588) and (592) we have established:

X(t) ≤ K1


e− c

2
tX(0) +

∑

j

(
2

c

) 1

ηj

(
e−

c
2

t
2 S2j +

∫ t

t
2

̟j(τ )
ζjdτ

) 1

ζj


 . (596)

The proof is completed by noticing that (585) implies that, if T = +∞, we have:

lim
t→+∞

∫ t

t
2

̟j(τ )
ζjdτ = 0 . (597)

2

C: An Inequality

Lemma: (598)
Let U : IRk → IR+ be a C1 function such that:

∥∥∥∂U
∂h

(h)

∥∥∥ ≤ d max
{
1, U(h)λ

}
∀h ∈ IRk , (599)

with 0 ≤ λ < 1 and d a positive constant. For any positive real number γ, there exists
a constant δ such that, for all (h, e) in IRk × IRk, we have:

max {1 , U(h− e)γ} ≤ δ max {1 , U(h)γ}

+δ
[
max

{
1 , U(h)λγ

}(
‖e‖γ + ‖e‖

γ
1−λ

)]
. (600)

Proof. Let us define a function W as follows:

W (h) = max
{
1 , U(h)1−λ

}
. (601)

This function is of class C1 in the open set {h |U(h) > 1} with:

∥∥∥∂W
∂h

(h)
∥∥∥ ≤ d (1− λ) . (602)

Then, for all (h, e) in IRk × IRk, we have:

W (h− e)−W (h) ≤ d (1− λ) ‖e‖ . (603)
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This is proved by breaking the segment [h− e , h] into pieces depending on whether U
is larger than 1 or not and by noting that W (h− e)−W (h) is equal to the sum of the
variations of W on the two extreme pieces only (see the proof of Point 1 in Appendix
A). This yields:

max {1, U(h− e)γ} −max {1, U(h)γ} ≤ (W (h) + d (1− λ) ‖e‖)
γ

1−λ −W (h)
γ

1−λ .
(604)

Let us now note that, for all τ ≥ 0, the function:

f(x) =
(1 + x)τ − xτ

xτ + xλτ + 1
(605)

is positive, well-defined and continuous on [0,+∞), with:

f(0) = 1 and f(+∞) = 0 . (606)

This implies the existence of a constant K depending only on γ and λ such that:

max {1 , U(h− e)γ} −max {1 , U(h)γ}

≤ K
[
W (h)

γ
1−λ +W (h)

λγ
1−λ (d(1− λ) ‖e‖)γ + (d(1− λ) ‖e‖)

γ
1−λ

]
. (607)

The conclusion follows readily. 2
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