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Abstract— We study the relation between the exponential
stability of an invariant manifold and the existence of a
Riemannian metric for which the flow is “transversally” con-
tracting. More precisely, we investigate how the following prop-
erties are related to each other: i). A manifold is “transversally”
exponentially stable; ii). The “transverse” linearization along
any solution in the manifold is exponentially stable; iii). There
exists a Riemannian metric for which the flow is “transversally”
contracting. We show the relevance of these results in the study
of incremental stability, observer design and synchronization.
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I. INTRODUCTION

The property of an attractive (non-trivial) invariant mani-
fold is often sought in many control design principle. In the
classical internal-model based output regulation [13], it is
known that the closed-loop system must have an attractive
invariant manifold, on which, the tracking error is equal to
zero. In the Immersion & Invariance [5] and in the sliding-
mode control approaches, designing an attractive manifold
is an integral part of the design procedure. Many multi-
agent system problems, such as, formation control, consensus
and synchronization problems, are closely related to the
analysis and design of an attractive invariant manifold, see,
for example, [7], [28], [32].

In this paper, we study the attractiveness of an invariant
manifold through a contraction-based analysis. Our results
can potentially provide a new framework on the control
design for making an invariant manifold attractive.

The study of contracting flows has been widely studied in
the literature and for a long time. See [15], [16], [10], [8],
[18], [17], [29]. It deals with flows which are contracting
the distance between the trajectories they generate. This can
be used to infer the global convergence of any trajectories
to each other. It has been used to analyze synchronization
behavior [23], to design an observer [26] and to design a
contraction-based “backstepping”-controller [34]. See [14]
for a historical discussion on the contraction analysis and
[30] for a partial survey.

The notion of contraction is closely related to the incre-
mental stability notion for nonlinear systems [3], [9], [4]
and its variant on convergent systems [19], [22]. In [3],
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[4], a Lyapunov characterization of incremental stability (δ-
GAS for autonomous systems and δ-ISS for non-autonomous
one) is given based on the Euclidean distance between two
states that evolve in an identical system. A generalization to
this is given in [35] using a general distance metric in the
incremental Lyapunov function definition.

This paper is divided into two parts. The first part is
discussed in Section II where we analyze a dynamical
system that admits a transverse exponentially stable invariant
manifold. In particular, we establish a link between this
exponential stability property and the behavior of a transverse
linearized system. Furthermore, embedded in this property,
we show the existence of a matrix function which enables
us to define a Riemannian distance to the manifold which is
contracted by the flow.

In the second part of the paper, given in Section III, we
apply the aforementioned analysis in three different contexts.
In Section III-A, we consider the incremental stability con-
text where we show that the exponential incremental stability
property is equivalent to the existence of a Riemannian
distance which is contracted by the flow and can be used as
a δ-GAS Lyapunov function. Section III-B is devoted to the
observer design context where we revisit some of the results
obtained in [26] and give necessary and sufficient conditions
to design an exponential (local) full-order observer. Finally,
synchronization problem is addressed in Section III-C where
we give some necessary and sufficient conditions to achieve
(local) exponential synchronization of two systems.

All along the paper, only the main ideas of proofs are
given. For a full version of the paper with complete proofs,
the reader may refer to [1]. Note moreover that an extension
[2] of these results to the global case is submitted for
publication.

II. TRANSVERSALLY EXPONENTIALLY STABLE
MANIFOLD

Throughout this section, we consider a system in the form

ė = F (e, x) , ẋ = G(e, x) (1)

where e is in Rne , x is in Rnx and the functions F : Rne ×
Rnx → Rne and G : Rne ×Rnx → Rnx are C2. We denote
by (E(e0, x0, t), X(x0, e0, t)) the (unique) solution which
goes through (e0, x0) in Rne×Rnx at time t = 0. We assume
it is defined for all positive times, i.e. the system is forward
complete.

Additionally, we assume that F satisfies this assumption.
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Assumption 1: There exists a positive real number µ, such
that : ∣∣∣∣∂F∂e (0, x)

∣∣∣∣ ≤ µ ∀x ∈ Rnx (2)

and the manifold E := {(x, e) : e = 0} is invariant which is
equivalent to :

F (0, x) = 0 ∀x . (3)
In the following, to simplify our notations, we denote by

Be(a) the open ball of radius a centered at the origin in Rne .
We study the links between the following three properties.

TULES-NL (Transversal uniform local exponential stabil-
ity)
The system (1) is forward complete and there exist
strictly positive real numbers r, k and λ such that we
have, for all (e0, x0, t) in Be(r)× Rnx × R≥0,

|E(e0, x0, t)| ≤ k|e0| exp(−λt) . (4)

Namely the manifold E is exponentially stable for the
system (1), locally in e, uniformly in x.

UES-TL (Uniform exponential stability for the transversally
linear system)
The system

˙̃x = G̃(x̃) := G(0, x̃) (5)

is forward complete and there exist strictly posi-
tive real numbers k̃ and λ̃ such that any solution
(Ẽ(ẽ0, x̃0, t), X̃(x̃0, t)) of the transversally linear sys-
tem

˙̃e =
∂F

∂e
(0, x̃)ẽ , ˙̃x = G̃(x̃) (6)

satisfies, for all (ẽ0, x̃0, t) in Rne × Rnx × R≥0,

|Ẽ(ẽ0, x̃, t)| ≤ k̃ exp(−λ̃t)|ẽ0| . (7)

Namely the manifold Ẽ := {(x̃, ẽ) : ẽ = 0} is
exponentially stable for this system (6) uniformly in
x̃.

ULMTE (Uniform Lyapunov matrix transversal equation)
For all positive definite matrix Q, there exists a contin-
uous function P : Rnx → Rne×ne and strictly positive
real numbers p and p such that P has a derivative dG̃P

along G̃ in the following sense

dG̃P (x̃) := lim
h→0

P (X̃(x̃, h))− P (x̃)
h

(8)

and we have, for all x̃ in Rnx ,

dG̃P (x̃) + P (x̃)
∂F

∂e
(0, x̃) +

∂F

∂e
(0, x̃)′P (x̃) ≤ −Q (9)

p I ≤ P (x̃) ≤ p I . (10)

Comments :
1. Here we are not interested in the possibility of a solution

near the invariant manifold to inherit some properties of
solutions in this manifold, such as, the asymptotic phase,
reduction principle, etc., nor in the existence of some

special coordinates allowing us to exhibit some invariant
splitting in the dynamics (exponential dichotomy). This
explains why, besides forward completeness, we assume
nothing for the in-manifold dynamics given by :

ẋ = G̃(x) = G(0, x) .

This explains also why, not to mislead our reader, we
prefer to use the word “transversal” instead of “normal”
as seen for instance in the various definitions of normally
hyperbolic submanifolds given in [11, §1].

2. To simplify our presentation and concentrate our atten-
tion on the main ideas, we assume everything is global
and/or uniform, including restrictive bounds. Most of this
can be relaxed with working on open or compact sets,
but then with restricting the results to time interval where
a solution remains in such a particular set.

3. The condition (9) can be seen as the monotonicity
condition for a particular form of [29, (6)] in the
case of a horizontal Finsler-Lyapunov function when
V ((x, e), (δx, δe)) = δTe P (x)δe.

4. A coordinate free definition of the matrix valued function
P above is possible. It would relate it to a covariant two-
tensor on Rne ×Rnx and make clear how the derivative
operator d is related to the Lie derivative of such a tensor.
Having found such a definition of no specific help in our
present study, we do not pursue in this direction.

A. TULES-NL “⇒” UES-TL

In the spirit of Lyapunov first method, we have
Proposition 1: Under Assumption 1, if Property TULES-

NL holds and there exist positive real numbers ρ and c such
that, for all x in Rnx ,∣∣∣∣∂G∂x (0, x)

∣∣∣∣ ≤ ρ (11)

and, for all (e, x) in Be(kr)× Rnx ,∣∣∣∣ ∂2F∂e∂e
(e, x)

∣∣∣∣ ≤ c , ∣∣∣∣ ∂2F∂x∂e
(e, x)

∣∣∣∣ ≤ c , ∣∣∣∣∂G∂e (e, x)
∣∣∣∣ ≤ c ,

(12)
then Property UES-TL holds.
Proof sketches : Let S in N and r̃ > 0 both to be made
precise later. The idea of the proof is to compare a given
e-component of a solution (Ẽ(ẽ0, x̃0, t), X̃(x̃0, t)) initiated
from (ẽ0, x̃0) in Be(r̃) × Rnx with pieces of e-component
of solutions (E(ẽi, x̃i, s), X(ẽi, x̃i, s)) of (1) where :

ẽi = Ẽ(ẽ0, x̃0, iS) , x̃i = X̃(x̃0, iS) ∀i ∈ N

Indeed, if we define, for each integer i, the following time
functions on [0, S]

Zi(s) = |E(ẽi, x̃i, s)− Ẽ(ẽ0, x̃0, s+ iS)| ,

it can be shown employing the bounds on the derivatives of
the vector fields in (11) and (12) that for each integer i such
that ẽi is in Be(r), and for all s in [0, S], Zi(s) ≤ c γ(s) |ẽi|2
where γ is a continuous function.
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Moreover, if we have ẽj in Be(r) for all j in [0, i], then
we have also, for all s in [0, S] and all j in [0, i],

|Ẽ(ẽ0, x̃0, s+ jS)| ≤ |E(ẽj , x̃j , s)|+ |Zj(s)| ,

≤
[
k exp(−λs) + γ(s)|ẽj |

]
|ẽj |.

If we select S sufficiently large we get exponential conver-
gence of the sequence ẽi and the existence of (k̃, λ̃) such that
(7) holds provided ẽ0 ∈ Be(r̃) with r̃ selected sufficiently
small. By taking advantage of the homogeneity of the system
(6) in the ẽ component we extend this result ∀ẽ0 ∈ Rne . 2

B. UES-TL ⇒ ULMTE

In the spirit of Lyapunov matrix equation we have
Proposition 2: Under Assumption 1, if Property UES-TL

holds then Property ULMTE holds.
Proof sketches : Let (Ẽ(ẽ0, x̃0, t), X̃(x̃0, t)) be the solution
of (6) passing through (ẽ0, x̃0) in Rne × Rnx .

The idea of the proof is to show that, for every symmetric
positive definite matrix Q, the function P : Rnx → Rne×ne

given by

P (x̃) = lim
T→+∞

∫ T

0

(
∂Ẽ

∂ẽ
(0, x̃, s)

)′
Q
∂Ẽ

∂ẽ
(0, x̃, s)ds

is well defined, continuous and satisfies all the requirements
of the property ULMTE. 2

C. ULMTE “⇒” TULES-NL

Proposition 3: If Property ULMTE holds and there exist
positive real numbers η and c such that, for all (e, x) in
Be(η)× Rnx , ∣∣∣∣∂P∂x (x)

∣∣∣∣ ≤ c , (13)∣∣∣∣ ∂2F∂e∂e
(e, x)

∣∣∣∣ ≤ c , ∣∣∣∣ ∂2F∂x∂e
(e, x)

∣∣∣∣ ≤ c , ∣∣∣∣∂G∂e (e, x)
∣∣∣∣ ≤ c ,(14)

then Property TULES-NL holds.
Proof sketches : Taking the function V (e, x) = e′P (x)e as
a (partial) Lyapunov function, we get the result. 2

III. APPLICATIONS

In this section, we apply propositions 1, 2 and 3 in three
cases: exponentially incrementally stable systems, exponen-
tial full order observer design, and exponential synchroniza-
tion.

A. Incremental stability

The notion of contraction relates to a system defined on
Rn as

ẋ = f(x) . (15)

which has the property that some distance between any pair
of its solution is monotonically decreasing with time.

Finding the appropriate distance is not always easy. The
results in Section II may help in this regard by giving us a
Riemannian distance.

In this context, with the help of the result of the first sec-
tion, we may show that if we have an exponential contraction,
then there exists strictly decreasing Riemannian metric along
the solution which may be used as a Lyapunov function to
describe the contraction. More precisely, the result we get is
the following.

Proposition 4 (Incremental stability): Assume the func-
tion f in (15) is C3 with bounded first, second and third
derivatives. Let X(x, t) denotes its solutions.

Then the following 3 properties are equivalent.
P1: System (15) is exponentially incrementally stable.

Namely there exist two strictly positive real numbers
k and λ such that for all (x1, x2) in Rn×Rn we have,
for all t in R≥0,

|X(x1, t)−X(x2, t)| ≤ k|x1 − x2| exp(−λt) . (16)

P2: The manifold E = {(x, e), e = 0} is exponentially
stable for the system

ė =
∂f

∂x
(x)e , ẋ = f(x) (17)

Namely there exist two strictly positive real numbers
ke and λe such that for all (e, x) in Rn × Rn, the
corresponding solution of (17) satisfies

|E(e, x, t)| ≤ ke|e| exp(−λet) , ∀t ∈ R≥0 .

P3: There exists a positive definite matrix Q in Rn×n, a
C2 function P : Rn → Rn×n and strictly positive real
numbers p and p such that P has a derivative dfP
along f in the following sense

dfP (x) = lim
h→0

P (X(x, h))− P (x)
h

(18)

and we have, for all x in Rn,

dfP (x) + P (x)
∂f

∂x
(x) +

∂f

∂x
(x)′P (x) ≤ −Q , (19)

p I ≤ P (x) ≤ p I . (20)
Comments :
1. The equivalence P1 ⇔ P3 is nothing but one version

of the well established relation between (geodesically)
monotone vector field (semi-group generator) (operator)
and contracting (non-expansive) flow (semi-group). See
[15], [10], [6], [12] and many others.

2. Asymptotic incremental stability for which Property P1
is a particular case is known to be equivalent to the
existence of an appropriate Lyapunov function. This has
been established in [33], [31], [3] or [25] for instance.

Proof sketches :
P1 ⇒ P2 ⇒ P3: These two implications follow readily from
the results of Section II where we let nx = ne = n and

F (e, x) = f(x+ e)− f(x) , G(e, x) = f(x) .
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Identity (3) is satisfied and so are inequalities (2), (11), (12)
with r = +∞. Also the boundedness of the first derivative
of f implies the forward completeness of systems (1) and
(5). As a consequence P1⇒ P2 follows from Proposition 1
and P2⇒ P3 from Proposition 2. Note moreover that the fact
that P is C2 is obtained employing the boundedness of the
first, second and third derivatives of f .

P3 ⇒ P1 To prove this implication it is sufficient to adapt
anyone of the proofs available in the full state (e, x) case to
the partial state e case. See [15, Theorem 1] or [12, Theorems
5.7 and 5.33] or [21, Lemma 3.3] (replacing f(x) by x +
hf(x)). 2

B. The Observer design case

1) Problem definition and necessary conditions: Another
setup which may be of interest when dealing with transversal
exponential stability concerns the design of observers. This
has been advocated in [17] for instance. More precisely,
consider a system defined on Rn with an output defined on
Rp

ẋ = f(x) , y = h(x) . (21)

On this system, we make the following assumption.
Assumption 2: The functions f and h have bounded first

and second derivatives and there exists a C1 function K :
Rn × Rp → Rp with bounded first and second derivatives
satisfying

K(h(x), x) = 0 ∀x ∈ Rn (22)

and such that the manifold {(x, x̂) : x = x̂} is exponentially
stable for the system

ẋ = f(x) , ˙̂x = f(x̂) +K(y, x̂) . (23)

More precisely, there exist three strictly positive real number
r, k and λ such that we have, for all (x, x̂, t) in Rn×Rn×
R≥0 satisfying |x− x̂| ≤ r,

|X(x, t)− X̂(x, x̂, t)| ≤ k|x− x̂| exp(−λt) .
Proposition 5 (Necessary condition): If Assumption 2

holds then
1) the ẽ component of the solutions of the auxiliary

system

ẋ = f(x) , ˙̃e =
∂f

∂x
(x)ẽ , ỹ =

∂h

∂x
(x)ẽ ,

with ỹ as measured output is detectable. Namely, there
exist a continuous function K̃ : Rn → Rn and strictly
positive real numbers k̃ and λ̃ such that, the component
Ẽ(ẽ, x, t) of any solution of the system

ẋ = f(x) , ˙̃e =
∂f

∂x
(x)ẽ+ K̃(x)

∂h

∂x
(x)ẽ ,

satisfies, for all (ẽ, x, t) in Rn × Rn × R≥0,

|Ẽ(ẽ, x, t)| ≤ k̃ exp(−λ̃t)|ẽ| ;

2) for all positive definite matrix Q in Rn×n there exist
a continuous function P : Rn → Rn×n and strictly

positive real numbers p and p such that inequality (20)
holds, P has a derivative dfP along f in the sense of
(18), and we have, for all (x, v) in Rn×Rn satisfying
∂h
∂x (x)v = 0,

v′dfP (x̃)v + 2v′P (x̃)
∂f

∂x
(x)v ≤ −v′Qv . (24)

Comment: Necessity of (24) has been established in [24,
Proposition 2.1] under the weaker assumption of asymptotic
stability of the manifold {(x, x̂) : x = x̂}. But then
inequality (20) may not hold.

Proof : By letting e = x− x̂ we have (1) with

F (e, x) = f(x+ e)− f(x) +K(h(x), x+ e) ,

G(e, x) = f(x) .

So our assumptions imply we have forward completeness and
property TULES-NL and inequalities (11) and (12) hold.

With Proposition 1, we know property UES-TL holds. It
follows that the manifold {(x, ẽ) : ẽ = 0} is exponentially
stable uniformly in x for the system

˙̃e =
∂f

∂x
(x̃)ẽ+

∂K

∂x
(h(x), x)ẽ , ˙̃x = f(x̃) . (25)

We remark that (22) gives

∂K

∂y
(h(x), x)

∂h

∂x
(x) +

∂K

∂x
(h(x), x) = 0 ∀x ∈ Rn .

Hence property 1 of Proposition 5 holds with

K̃(x) =
∂K

∂y
(h(x), x) .

But then, with Proposition 2, we have also property
ULMTE. So we have a continuous function P satisfying
(10), with a derivative (8) satisfying (9). Since, in the present
context we have :

∂F

∂e
(0, x) =

∂f

∂x
(x) +

∂K

∂x
(h(x), x) ,

=
∂f

∂x
(x)− ∂K

∂y
(h(x), x)

∂h

∂x
(x) ,

Equation (9) becomes, for all x in Rnx ,

dfP (x) + P (x)

[
∂f

∂x
(x)− ∂K

∂y
(h(x), x)

∂h

∂x
(x)

]
+

[
∂f

∂x
(x)− ∂K

∂y
(h(x), x)

∂h

∂x
(x)

]′
P (x) ≤ −Q .

So property 2 of Proposition 5 does hold. 2

2) A sufficient condition: It is established in [27] that,
with some extra smoothness properties, the converse of
Proposition 5 holds. Namely we have

Proposition 6 (Sufficient condition): If
1. the function h has bounded first and second derivatives,
2. there exist a positive definite matrix Q, a C2 function
P : Rn → Rn×n with bounded derivative, and strictly
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positive real numbers p, p, and ρ such that inequalities
(20) hold and we have, for all (x, v) in Rn × Rn,

v′dfP (x)v + 2v′P (x)
∂f

∂x
(x)v − ρ

∣∣∣∣∂h∂x (x)v
∣∣∣∣2 ≤ −v′Qv ,

(26)
then, there exists k and ε > 0 such that, with the observer
given by

˙̂x = f(x̂) − k P (x̂)−1
∂h

∂x
(x̂)>[h(x̂)− y] ,

with k ≥ k, the following holds, for all (x, x̂) in Rn × Rn

satisfying d(x̂, x) < ε
k ,

D+d(x̂, x) ≤ −r d(x̂, x) . (27)
Comment : It is shown in [26] that it is possible to replace
the upper bound ε

k in (27) by any real number provided a
geodesic convexity assumption is satisfied by the level sets
h−1(y).

C. The synchronization case

1) Problem definition and necessary conditions: Consider
two systems given by the following differential equations

ẋ1 = f(x1) + g(x1)u1 , ẋ2 = f(x2) + g(x2)u2 . (28)

They have the same drift vector field f , and the same control
vector field g : Rn → Rn×p but not the same controls
in Rp. So they define two different dynamics in the same
space, here Rn. The problem we consider in this section is to
construct a control law u1 = φ1(x1, x2) and u2 = φ2(x1, x2)
which ensures uniform exponential synchronization. That is
the following 2 properties hold.
• the control law φ is such that we have, for all x in Rn,

φ1(x, x) = φ2(x, x) = 0 , (29)

• if we denote the solutions of the closed loop system
X1(x1, x2, t), X2(x1, x2, t) initiated from (x1, x2) at
t = 0, there exist two positive real numbers k and λ
such that such that for all x = (x1, x2) in Rn×Rn and
for all t in the domain of existence of the solutions, we
have

|X1(x1, x2, t)−X2(x1, x2, t)| (30)

≤ k exp(−λt) |x1 − x2| .
Based on our main result, we get the following necessary
condition for synchronization.

Proposition 7 (Necessary condition): Consider the sys-
tems in (28) and assume uniform exponential synchro-
nization is achieved by some feedback (φ1, φ2). Assume
moreover that f , g, φ1 and φ2 have bounded first and second
derivatives then the following two points are satisfied.
Q1: The origin of the transversally linear system

˙̃e =
∂f

∂x
(x̃)ẽ+ g(x̃)u , ˙̃x = f(x̃) , (31)

is stabilizable by a (linear in ẽ) state feedback.
Q2: For all positive definite matrix Q, there exists a con-

tinuous function P : Rn → Rn×n and strictly positive

real numbers p and p such that inequalities (20) holds,
P has a derivative dfP along f in the sense of (18),
and the following Artstein like condition holds, for all
(v, x) in Rn × Rn satisfying v′P (x)g(x) = 0,

dfv
′P (x)v + 2v′P (x)

∂f

∂x
(x)v ≤ −v′Qv . (32)

Proof : With e defined as

e = x2 − x1 , x = x2 ,

we arrive at (1) with

F (e, x) = f(x+ e)− f(x)
+g(x+ e)φ1(x+ e, x)− g(x)φ2(x+ e, x) ,

G(e, x) = f(x) + g(x)φ2(x+ e, x) ,

It follows from the assumption that Property TULES-NL
is satisfied with r = +∞ and that Assumption 1 and
inequalities (11) and (12) hold. We conclude that Property
ULES-TL is satisfied also. But, with (29), we have :

∂F

∂e
(0, x̃) =

∂f

∂x
(x̃) + g(x̃)

[
∂φ1
∂x1

(x̃, x̃)− ∂φ2
∂x1

(x̃, x̃)

]
We conclude that there exist strictly positive real numbers k̃
and λ̃ such that any solution (Ẽ(ẽ0, x̃0, t), X̃(x̃0, t)) of

˙̃e =
∂f

∂x
(x̃)ẽ+ g(x̃)

[
∂φ1
∂x1

(x̃, x̃)− ∂φ2
∂x1

(x̃, x̃)

]
ẽ ,

˙̃x = f(x̃) ,

satisfies, for all (ẽ0, x̃0, t) in Rn × Rn × R≥0,

|Ẽ(ẽ0, x̃, t)| ≤ k̃ exp(−λ̃t)|ẽ0| .

This proves that Property Q1 does hold.
Also we know, from Proposition 2, that Property ULMTE

is satisfied. So in particular we have a function P satisfying
the properties in Q2 and such that we have, for all (v, x) in
Rn × Rn,

v′dfP (x̃)v

+2v′P (x̃)

(
∂f

∂x
(x̃) + g(x̃)

[
∂φ1
∂x1

(x̃, x̃)− ∂φ2
∂x1

(x̃, x̃)

])
v

≤ −v′Qv

which implies (32) when v′P (x)g(x) = 0. 2

2) A sufficient condition: Similar to the analysis of in-
cremental stability and observer design in the previous sub-
sections, by using a function P satisfying the property Q2
in Proposition 7 , we can solve the synchronization problem
and make a Riemannian distance to decrease exponentially
along the closed-loop solutions.

We do this under an extra assumption which is that, up to
a scaling factor, the control vector field g is a gradient field
with P as Riemannian metric.

Proposition 8 (Sufficient condition): If
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1. there exist a C2 function U : Rn → R which has bounded
first and second derivatives, and a C1 function α : Rn →
Rp such that, for all x in Rn,

∂U

∂x
(x)′ = P (x)g(x)α(x) ; (33)

2. there exist a positive definite matrix Q, a C2 function
P : Rn → Rn×n with bounded derivative, and strictly
positive real numbers p, p, and ρ such that inequalities
(20) hold and we have, for all (x, v) in Rn × Rn,

v′dfP (x)v + 2v′P (x)
∂f

∂x
(x)v − ρ

∣∣∣∣∂U∂x (x)v

∣∣∣∣2 ≤ −v′Qv ,
(34)

then there exist real numbers k and ε > 0 such that, with
the controls given by

φ1(x1, x2) = φ(x1, x2)

φ2(x1, x2) = φ(x2, x1) ,

where

φ(xa, xb) = −kα(xa) [U(xa)− U(xb)]

and k ≥ k, the following holds, for all (x, x̂) in Rn × Rn

satisfying d(x̂, x) < ε
k ,

D+d(x̂, x) ≤ −r d(x̂, x) . (35)

IV. CONCLUSION

We have studied the relationship between the exponential
stability of an invariant manifold and the existence of a
Riemannian metric for which the flow is “transversally”
contracting. It was shown that the following properties are
related to each other:

1) A manifold is “transversally” exponentially stable;
2) The “transverse” linearization along any solution in the

manifold is exponentially stable;
3) There exists a Riemannian metric for which the flow

is “transversally” contracting.
This framework allows to characterize the property of expo-
nential incremental stability. Furthermore, it gives necessary
conditions for the existence of a full order exponential ob-
server and exponential synchronization. Moreover, it allows
to give sufficient conditions for local results.
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