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Abstract— An observer whose state lives in a copy of the
space of the given system and that guarantees a vanishing
estimation error exhibits necessarily a symmetric covariant
tensor field of order 2 which is related to the local observability
information. A direct construction of this matrix field is possible
by solving off-line ordinary differential equations. Using this
symmetric covariant tensor field as a Riemannian metric, we
prove that geodesic convexity of the level sets of the output
function is sufficient to allow the construction of an observer
that contracts the geodesic distance between the estimated state
and the system’s state, globally in the estimated state and semi-
globally in the estimation error.

I. INTRODUCTION

For a complete nonlinear system of the form

ẋ = f(x),
y = h(x),

(1)

with x ∈ Rn being the system’s state and y ∈ R the mea-

sured system’s output, we consider the problem of obtaining

an estimate x̂ of the state x by means of the dynamical

system, called observer,

χ̇ = F (χ, y),
x̂ = H(χ, y),

(2)

with χ ∈ Rp being the observer’s state, and x̂ ∈ Rn the

observer’s output, used as the system’s state estimate. More

precisely, we consider the following problem:

(") Given functions f and h, design functions F and H

such that, for the interconnection of systems (1) and

(2), the set

{(x, χ) ∈ R
n × R

p : x = H(χ, h(x))} (3)

is globally asymptotically stable (see Section II for a

definition).

This paper focuses on the particular case where the state χ

of the observer evolves in a copy of the space of the system’s

state x, i.e., they both belong to Rn. In such a case, we can

pick the observer’s output function H trivial, i.e., pick

p = n , x̂ = χ . (4)

Many contributions from different points of view have

been made to address this problem. While a summary of
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the very rich literature on the topic is out of the scope

of this paper, it is important to point out the interest of

exploiting a possible nonexpansivity property of the flow

generated by the observer that emerged from [13]. Study

of nonexpansive flows has a very long history and has been

proposed independently by several authors; see, e.g., [12],

[7], [5], [14] (see also [10] for a historical discussion).

Indeed, as we report in this paper, when problem (") has

a solution then there is necessarily a symmetric covariant

tensor field of order 2 involved. It is then very tempting

to use it as a Riemannian metric to measure the distance

between system’s state x and its estimation x̂, and therefore,

characterize the nonexpansivity of the observer flow.

Riemannian metrics have already been used in the context

of observers in [1], [3] for instance. In these papers, the

authors consider systems whose dynamics follow from a

principle of least action involving a Riemannian metric,

such as Euler-Lagrange systems with a Lagrangian that

is quadratic in the generalized velocities. The Riemannian

metric used in such observer designs depends only on the

system vector field f . This is a key difference with the

approach taken in this paper: the proposed metric depends on

the pair (f, h), i.e., it incorporates the observability property

of the system.

The paper contains three main parts. In Section II we show

that an observer whose state χ lives in a copy of the space

of the state x of the given system guaranteeing a vanishing

estimation error exhibits necessarily a symmetric covariant

tensor field of order 2 that is related to the local observ-

ability information. In Section III we establish a relationship

between the necessary condition in Section II and a local

observability property of system (1). By solving ordinary

differential equations off line, we provide a construction of

a symmetric covariant tensor field of order 2 satisfying the

necessary conditions in Section II. In Section IV, using this

symmetric covariant tensor field as a Riemannian metric, we

propose a set of sufficient conditions for the construction

of an observer guaranteeing contraction of the Riemannian

distance between system’s state and estimated state. To

this end, we follow the formalism introduced in [14] (see

also [9]). In particular we exploit the properties of the

so-called geodesically monotone vector fields which give

rise to nonexpansive flows with expansivity measured via

a Riemannian metric (see also [12], [4, Sections V.3 and

VI.2], [7, Chapter XIV, Part III]). Finally, in Section V, we

briefly discuss the checkability of the sufficient conditions.
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From our knowledge of the literature, we believe that

the ideas which follow are new, although they can be seen

as extensions of what was proposed in [15] under the

restriction of existence of a quadratic Lyapunov function

depending only on the estimation error. For the sake of

simplicity, all along this paper we work under, not always

written, restrictions like, for instance, time independence,

completeness of the given system, functions differentiable

sufficiently many times, single output, Rn (the n-dimensional

Euclidean space) as system state manifold, among others.

Due to space limitations, the proof of the results will be

reported elsewhere.

II. A NECESSARY CONDITION

Let the estimation error be given by

e = x̂ − x.

The interconnection of system (1) and observer (2) under the

conditions in (4) admits (x, e) as state with dynamics given

by

ẋ = f(x),
ė = F (x + e, h(x)) − f(x).

(5)

In this context, the set to be rendered globally asymptotically

stable (GAS) takes the form

A = {(x, e) ∈ R
n × R

n : e = 0} . (6)

By GAS of this particular set we mean that there exists a

class-KL function1 β such that for all pairs (x, e) in Rn×Rn,

the solution (X((x, e), t), E((x, e), t)) of (5) issued from

(x, e) is right maximally defined on [0, +∞) and satisfies:

|E((x, e), t)| ≤ β(ω(x, e), t) ∀t ≥ 0 ,

where ω : Rn × Rn → [0, +∞) is a continuous function

satisfying ω(x, 0) = 0 for all x ∈ Rn.

To state the following proposition, we introduce the Lie

derivative LfP of the symmetric C∞-covariant tensor field

P of order 2 on Rn (see [4] and [11] for a definition). In

x coordinates, it satisfies the following expression (see [4,

Exercise V.2.8]):

v"LfP (x) v (7)

= lim
r→0

[(I+r ∂f
∂x (x))v]!P (x+rf(x))[(I+r ∂f

∂x (x))v]−v!P (x)v
r

,

=
∂

∂x

(

v"P (x) v
)

f(x) + 2 v"P (x)

(

∂f

∂x
(x) v

)

.

Proposition 2.1: If the set A is GAS for (5), then there

exist a C∞ function P : Rn → Rn×n with nonnegative

1A function β : [0, +∞) × [0, +∞) → [0, +∞) is said to belong to
class-KL if it is continuous, nondecreasing in its first argument, nonincreas-
ing in its second argument, and lims↘0 β(s, r) = limr→∞ β(s, r) = 0.

symmetric matrix values and a continuous function ρ : Rn →
R satisfying, for all x in Rn,

LfP (x) ≤ ρ(x)
∂h

∂x
(x)"

∂h

∂x
(x) −

1

2
P (x) . (8)

III. A LINK WITH LOCAL OBSERVABILITY

The necessary condition in (8) is linked to properties

of the family of linear time-varying systems obtained from

linearizing (1) along its solutions. We denote by X(x, t) a

solution to (1) at time t issued from x. Since (1) is assumed

to be complete, for each x, t )→ X(x, t) is defined on

(−∞, +∞). The linearization of f and h evaluated along

a solution X(x, t) gives the functions

Ax(t) =
∂f

∂x
(X(x, t)),

Cx(t) =
∂h

∂x
(X(x, t)).

They allow us to define the following family of linear time-

varying systems:

ξ̇ = Ax(t) ξ,

η = Cx(t) ξ,
(9)

with state ξ ∈ Rn and output η ∈ R. Systems (9) are pa-

rameterized by the initial condition x of the chosen solution

X(x, t). For a given initial condition x ∈ Rn, Φx is the state

transition matrix, which, for all t and τ , satisfies

X(x, t) = Φx(t, τ)X(x, τ).

To state our next result, we need the following two

definitions.

Definition 3.1:

1) Given x ∈ Rn, system (9) is said to be uniformly

detectable if there exists a continuous function

t )→ Kx(t)

such that the origin of

ξ̇ = (Ax(t) − Kx(t)Cx(t)) ξ (10)

is uniformly exponentially stable.

2) The family of systems (9) is said to be reconstructible

uniformly in x if there exist strictly positive real

numbers τ and ε such that we have
∫ 0

−τ

Φx(s, 0)"Cx(s)"Cx(s)Φx(s, 0)ds ≥ ε I (11)

for all x in Rn.

The following proposition states a sufficient condition for

observability in terms of a symmetric covariant tensor field

of order 2. The condition involves the Lie derivative of the

symmetric covariant tensor field along the vector field f .

It also asserts an invariant property that is induced by the
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symmetric covariant tensor field under the reconstructibility

condition.

Proposition 3.2:

1) Suppose there exist strictly positive real numbers p

and p, and a function P : Rn → Rn×n with positive

symmetric matrix values satisfying condition (8) and

0 < p I ≤ P (x) ≤ p I, ∀x ∈ R
n. (12)

Then, for each x ∈ Rn, the linear time-varying system

(9) is uniformly detectable.

2) Conversely, suppose that the family of systems (9) is

reconstructible uniformly in x. Furthermore, assume

that the functions f and h have bounded differential.

Then, there exist a strictly positive real number λ and

a continuous function P : Rn → Rn×n satisfying (12)

such that the system

Π̇ = −Π
∂f

∂x
(x) −

∂f

∂x
(x)"Π

+
∂h

∂x
(x)"

∂h

∂x
(x) − λ Π,

ẋ = f(x)

(13)

admits the set

{(x, Π) ∈ R
n × R

n×n : Π = P (x)}

as an invariant manifold.

Remark 3.3: Item 1) in Proposition 3.2 indicates that the

existence of P satisfying (8) is closely related to the local

observability information of (1). It can be shown that a partic-

ular construction for P in the second item of Proposition 3.2

is given by

P (x) = (14)

lim
T→−∞

∫ 0

T

exp(λs)Φx(s, 0)"Cx(s)"Cx(s)Φx(s, 0)ds

with λ > 0 large enough. A method to approximate this

particular construction is as follows. Given a point x ∈ Rn

where we want to evaluate P , we compute the solution

X(x, t) to ẋ = f(x) backward in time from the initial

condition x, at time t = 0, up to negative time t = −T ,

for some T > 0 such that exp(−λT ) is sufficiently small.

Then, P (x) is given by Π(0), which is the solution at time

t = 0 of

Π̇ = −ΠAx(t) − Ax(t)"Π + Cx(t)"Cx(t) − λ Π

with initial condition Π(−T ) = 0 at time t = −T .

IV. A SUFFICIENT CONDITION

In this section, we employ a symmetric covariant tensor

field P of order 2 and a function ρ satisfying

LfP (x) − ρ(x)
∂h

∂x
(x)"

∂h

∂x
(x) < 0 ∀x ∈ R

n

to design the function F of the observer (2). To that end,

we use P as a Riemannian metric on Rn. Then, define the

length of a C1 path γ between points x1 and x2 as

L(γ)
∣

∣

∣

s2

s1

=

∫ s2

s1

√

dγ

ds
(s)

"

P (γ(s))
dγ

ds
(s) ds,

where

γ(s1) = x1 , γ(s2) = x2 .

The Riemannian distance d(x1, x2) between two such points

is then the minimum of L(γ)
∣

∣

∣

s2

s1

among all possible piece-

wise C1 paths γ between x1 and x2. With the Hopf-Rinow

Theorem (see [4, Lemma VII.7.8]), we know that, if every

geodesic can be maximally extended to R, then the minimum

of L(γ)
∣

∣

∣

s2

s1

is actually given by the length of a (maybe

nonunique) geodesic, which is called a minimal geodesic.

In the following, γ∗ denotes such a minimal geodesic. For

more details, see, e.g., [4] and [6].

The following lemma provides conditions on a symmetric

covariant tensor field P of order 2 that guarantee that

geodesics can be maximally extended to R.

Lemma 4.1: Suppose that a function P : Rn → Rn×n

with symmetric values satisfies

0 < P (x) ∀x ∈ Rn,

limr→∞ r2p(r) = +∞ ,
(15)

where, for any positive real number r,

p(r) = min
x:|x|≤r

min
v:|v|=1

v"P (x)v .

Then, with P as Riemannian metric, any geodesic can be

maximally extended to R.

In the following, the function P is assumed to satisfy the

conditions of Lemma 4.1. Consequently, the Riemannian

distance is given by the length of minimal geodesics. More

precisely, let γ∗ be a minimal geodesic satisfying

γ∗(0) = x , γ∗(ŝ) = x̂ .

The Riemannian distance d(x̂, x) is

d(x̂, x) = L(γ∗)
∣

∣

∣

ŝ

0
= |ŝ| .

With these preliminaries, our choice here to design the

observer is to define its vector field F so that it makes the

Riemannian distance d(x̂, x) between estimated state x̂ and

system state x to decrease along solutions.

Before continuing, we want to indicate that the approach

taken here induces restrictions. To make this clear, we first

observe that, to study the dynamics of the observer, we have

to consider the system given by (1) and (2), whose state lives

in Rn × Rn. We do not introduce a metric on this product

space, but simply a function V : Rn×Rn → [0, +∞) defined

as

V (x, x̂) = d(x̂, x), (16)
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which we use as a Lyapunov function in our analysis. A

remark about this definition is that for it to be consistent,

x and x̂ must be expressed in the same coordinates. Also,

coming from the properties of the distance d, we have that

V satisfies

V (x, x) = 0 ,

V (x1, x2) = V (x2, x1) ,

V (x1, x2) ≤ V (x1, x3) + V (x3, x2) .

On the other hand, we know that, in Lyapunov analysis,

only the geometry of the level sets and not the value of the

Lyapunov function plays a role. Namely, if V is a Lyapunov

function, it is equivalent to consider V and φ ◦ V with φ

being a continuous, strictly increasing function that is 0 at

0. Hence, with our choice of V in (16), we restrict ourselves

to the class of Lyapunov functions V for which there exists

such a function φ such that we have

V(x, x) = 0 ,

V(x1, x2) = V(x2, x1) ,

φ(V(x1, x2)) ≤ φ(V(x1, x3)) + φ(V(x3, x2)) .

Now, coming back to the observer design, as already re-

marked in the proof of Proposition 2.1, a necessary condition

for having the set A in (6), which can equivalently be written

as

A = {(x̂, x) ∈ R
n × R

n : d(x̂, x) = 0} ,

stable is

F (x, h(x)) = f(x) ∀x ∈ R
n . (17)

This is a first constraint we impose on F . It implies that the

observer contains also all solutions to (1). Then, we know

from the first order variation formula (see [17, Theorem

6.14] or [9, Theorem 5.7] for instance) that the evolution

of the distance d(x̂, x) along the solutions is dictated by the

equation

d

dt
d(x̂, x) =

dγ∗

ds
(ŝ)

"

P (γ∗(ŝ))F (γ∗(ŝ), y) (18)

−
dγ∗

ds
(0)

"

P (γ∗(0))F (γ∗(0), y) .

Since the last term on the right-hand side is imposed by (17),

to obtain d
dtd(x̂, x) nonpositive we are left with choosing F

so that

dγ∗

ds
(ŝ)

"

P (γ∗(ŝ))F (γ∗(ŝ), y)

is negative enough to dominate that last term. Satisfying this

requirement would not be a problem if dγ∗

ds
(ŝ) were known.

Indeed, by definition, since

γ∗(ŝ) = x̂,

it would be sufficient to choose, at least when h(x̂) is far

from y,

F (x̂, y) = −k(x̂, y)P (x̂)−1 dγ∗

ds
(ŝ)

with k : Rn×R → R≥0 an arbitrary C1 function. But dγ∗

ds
(ŝ)

represents the direction in which the state estimate x̂ “sees”

the system state x along a minimal geodesic. Unfortunately,

such a direction is unknown and we know only that x belongs

to the following level set of the output function

H(y) = {x̄ : h(x̄) = y} .

Then, to satisfy the above requirement, we need the property:

given x̂ and y, the level set of the output function H(y) is

“seen” from x̂ within a cone whose aperture is less than

π. This property implies that H(y) is (weakly) geodesically

convex; see [16, Definition 6.1.1] and [8, Section 9.4].

Definition 4.2 (weak geodesic convexity): A subset S of

Rn is said to be weakly geodesically convex if, for any pair

of points (x1, x2) ∈ S, there exists a minimal geodesic γ∗

satisfying

γ∗(s1) = x1 , γ∗(s2) = x2,

γ∗(s) ∈ S ∀s ∈ [s1, s2].

The following result establishes a sufficient condition for

weak geodesic convexity.

Lemma 4.3: Let P be a Riemannian metric. Then, a

subset S of Rn such that, for any x̂ in Rn \ S, there exists

a unit vector vx̂ such that, for any minimal geodesic γ∗

satisfying

γ∗(0) ∈ S , γ∗(ŝ) = x̂ ,

we have
dγ∗

ds
(ŝ)

"

P (x̂) vx̂ < 0 ,

is weakly geodesically convex.

This lemma motivates our restriction to consider the level

set of the output function H(y) as being weakly geodesically

convex for any y in R. Actually, we ask for the property that

H(y) is an invariant set for the geodesic flow.

Definition 4.4 (maximal geodesic convexity): We say that

H(y) is maximally geodesically convex for any y in R if,

for any pair (x, v) in Rn × Rn satisfying

∂h

∂x
(x) v = 0 , v"P (x) v = 1 ,

the geodesic γ satisfying

γ(0) = x ,
dγ

ds
(0) = v

is defined on (−∞, +∞) and takes its values in H(h(x)).

Figure 1 provides a graphical interpretation of this property.

Remark 4.5: Using the geodesic equation, we can see that

the maximal geodesic convexity of H(y) for any y in R holds
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∂h
∂x (x)

v = dγ
ds (0)

x

H(y)

γ

Fig. 1. Illustration of the definition of maximal geodesic convexity. The
vector v of the pair (x, v) ∈ Rn × Rn is such that v$P (x)v = 1.

if we have

∂2h

∂xk∂xl
(x) −

n
∑

i=1

∂h

∂xi
(x) Γi

kl(x)

= gk(x)
∂h

∂xl
(x) + gl(x)

∂h

∂xk
(x) ∀(k, l) , ∀x,

where gk are arbitrary functions and Γi
kl are the Christoffel

symbols, which are given by

Γi
kl =

1

2

n
∑

m=1

(

P−1
)

im

(

∂Pmk

∂xl
+

∂Pml

∂xk
−

∂Pkl

∂xm

)

.

In fact, this condition guarantees that H(y) is invariant under

the geodesic flow. More about geodesic convexity can be

found in [16] for instance.

The following proposition provides a construction of an

observer relying on the existence of an appropriate Rieman-

nian metric as well as maximally geodesically convexity of

the output function set H(y).

Proposition 4.6: Let P : Rn → Rn×n be a sufficiently

many time differentiable function with symmetric matrix

values and ρ : Rn → [0, +∞) be a C1 function satisfying,

for all x in Rn,

0 < p I ≤ P (x) ≤ p I (19)

LfP (x) − ρ(x)
∂h

∂x
(x)

" ∂h

∂x
(x) ≤ −q I < 0 (20)

for some q > 0. Assume the set H(y) is maximally geodesi-

cally convex for any y in R. Under these conditions, for any

positive real number E there exists a continuous function

kE : R
n → R

such that the observer given by

F (x̂, y) = f(x̂) + kE(x̂)P (x̂)−1 ∂h

∂x
(x̂)

"

(y−h(x̂)) (21)

renders the set A asymptotically stable with domain of

attraction containing the set

{(x, x̂) : |x̂ − x| < E} .

V. DISCUSSION

According to Proposition 4.6, the design of an observer

following the proposed approach based on a Lyapunov func-

tion coming from a Riemannian distance requires functions

P and ρ satisfying inequalities (19) and (20) and, simulta-

neously, making the level set H(y) maximally geodesically

convex for any y in R.

We have indicated in Remark 3.3 a possible way to satisfy

inequalities (19) and (20). However, finding a solution to

these inequalities that simultaneously satisfies the geodesic

convexity property is in general difficult. Instead of trying to

find a function P for a given pair (f, h), one could proceed

the other way around and try to determine the class of pairs

(f, h) for which a given function P can be associated to.

For instance, consider the case where P is constant. This

is a coordinate dependent property, which implies that, in

these specific coordinates, geodesics are straight lines. Then,

the constraint of maximal geodesic convexity of the level

sets of h translates into the possibility of finding coordinates

denoted x such that h is a function of a linear map of these

coordinates, i.e., it must be in the form

h(x) = µ(Cx) .

Also, in these coordinates, (20) takes the form

P
∂f

∂x
(x) +

∂f

∂x
(x)"P − ν(x)C"C ≤ −Q(x) ∀x ∈ R

n,

for some function ν : Rn → [0, +∞) and positive definite

matrix Q(x).

With this constant P our Lyapunov function is quadratic

on the estimation error x̂ − x. So, in this case, we have

a link with all the many publications proposing observers

with convergence properties asserted via quadratic Lyapunov

functions of the estimation error and where one of the state

components is the measured output; see [18], [2], [15] and

the references therein, to just list a few.

VI. CONCLUSION

We showed that, if the observer problem can be solved

for system (1), then there exists a symmetric covariant tensor

field P of order 2 satisfying property (8). We showed also in

Section III that the satisfaction of such property is related to

the observability of the linear time-varying systems obtained

from linearizing (1) along its solutions.

Conversely, from the data of such a symmetric covariant

tensor field, satisfying (8) and under geodesic convexity

of the level sets of the output function, we showed how

to construct an observer guaranteeing convergence of the

estimation error e to 0, globally in the estimated state x̂

and semi-globally in the error e. To prove this result, we

use the symmetric covariant tensor field as a Riemannian

metric. As written above, up to the lower and upper bounds

in (19), the existence of this symmetric covariant tensor field
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is necessary for the problem to have a solution. We have also

established that a geodesic convexity property is somehow

necessary if we want to be able to make the Riemannian

distance between estimated state and system state to decrease

along the solutions.

Finally, the impossibility of designing an observer

providing global asymptotic stability of the set

{(x, x̂) ∈ Rn × Rn : x = x̂} is likely due to the elementary

form of the proposed observer construction, which is taken

to be a copy of the system plus a correction term that is

linear in the output error y − h(x̂). We expect that other

choices of the observer are possible to obtain a global

asymptotic stability result.
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