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Abstract

We design and implement a controller to swing up a
spherical pendulum carried on by a three links robot
arm. This controller is the patch of two linear con-
trollers and a nonlinear one. The latter is based on
energy and kinetic momentum assignment and relies in
part on the forwarding design technique.

1 Problem statement.

We consider a system made of a spherical pendulum
carried on by a three links robot arm called 2kπ (see
figure 1). We address the problem of swinging up the
pendulum (M in figures 1 and 2), i.e. bringing it to
its open loop unstable vertical position while having its
actuated end point (P in figures 1 and 2) at a prescribed
position. More details about the experiment and some
implementation data are available in [6, section 6] or
can be found at
http://cas.ensmp.fr/CAS/2kPi/index-e.html

This exactly same problem has been solved in [6].
There, exploiting the property that the system is flat,
our colleagues have obtained a solution by designing an
open-loop trajectory steering the pendulum from the
downward to the upward equilibrium and designing a
tracking controller. But our problem differs from the
one studied in [2, section 3.2] where the spherical pen-
dulum is controlled only via a planar 2 D acceleration
and only local asymptotic stability of the upward equi-
librium is considered, without a requirement on the ul-
timate position of the actuated end point.

We propose a solution leading to a closed-loop behavior
completely different to what is achieved in [6]. Roughly,
here, instead of realizing a fast swing, we put the em-
phasis on reducing the input magnitude during this

1Extended and corrected version of a paper published
in the proceedings of the 39th IEEE Conference on De-
cision and Control, December 2000.

swing.

As in [6], we postulate that the robot arm is nothing
but an actuator delivering a desired 3 D acceleration
at the actuated end point (P in figures 1 and 2) from
its controlled three torques. Of course this assumption
does not hold1 and to make it more realistic, we have
to cope with constraints in the controller design : state
constraints, bandwidth constraints and saturation con-
straints.

With the above postulate, the dynamics of the system
is reduced to the dynamics of the free end point M of
the pendulum subject to gravity and to the acceleration
of the actuated end point P . Let us denote (see figure
2) :

• M the free end point of the pendulum and "M the
vector it defines from the desired rest point of the
actuated end point,

• P , the actuated end point and "P the correspond-
ing vector,

• "g, the normalized gravity force,

• "b the unit vector
−−→
PM

PM
,

• l, the length of the pendulum (= PM).

• "u = "̈P , the acceleration the robot arm is able to
produce at P , i.e. the control in our design,

• "x . "y, the scalar product of "x and "y,

• "x ∧ "y, the vector product in R3 of "x and "y.

1There is no continuous bijection between R3 and S2 × S1.
This implies that the actuated end point, denoted P below must
remain in a prescribed domain for its desired acceleration to be
made possible for the robot arm.

Also, the robot arm is not an ideal mechanical system with
motors able to deliver arbitrary torques. There are frictions, flex-
ibilities, saturation on the motors, . . . .
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Figure 1: The robot arm 2kπ
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Figure 2: spherical pendulum with controlled acceleration

From Newton’s equation, we get the dynamics as :





"̈b =
"g − "u

l
−

(
"g − "u

l
."b + "̇b ."̇b

)
"b

"̈P = "u

"b ."b = 1
"̇b ."b = 0

(1)

This system evolves in S2×TS2 ×R3 ×R3 and we want
to bring the state from any initial condition to the final
rest point :

"b = −"g

g
, "̇b = "P = "̇P = 0 . (2)

Extending to the spherical case what has been done
in [8] for the circular case, we solve the problem by
invoking three controllers :

1. A linear (local) controller based on linearization
around the downward equilibrium and in charge
of the “take off” from this point.

2. A nonlinear (regional) controller making the pen-
dulum move from a neighborhood of the down-

ward equilibrium to a neighborhood of the up-
ward equilibrium. It actually assigns specific val-
ues to the mechanical energy and the kinetic mo-
mentum with respect to the vertical axis. Its de-
sign relies in part on the forwarding technique.

3. A linear (local) controller based on linearization
around the upward equilibrium and in charge of
the “landing” on this point.

The controllers 1 and 3 being linear, their design is
standard and not developed here. However it is for
tuning the controller 3 that we encountered the main
difficulties in the implementation. On the other hand
the design of the nonlinear controller is more involved.
We described its main steps below. A complete de-
scription of the design and implementation of the three
controllers can be found in [1].

If, at this stage, the reader needs some more motiva-
tions for going further in reading this paper, he can have
a look at the video which can be downloaded from :
http://www.stud.enst.fr/~albouy/robot/demo.avi

or
http://cas.ensmp.fr/~praly/Publications/XavierX96_1.avi

2 Ideas behind the design of the non linear
controller.

2.1 Assigning open loop invariants for the ("b,"̇b)
coordinates.
As already proposed by many authors [9, 3, 8], . . . , at
least in the case of a circular pendulum, a way to real-
ize the swing up of the pendulum is to make asymptot-
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ically stable the closure of the homoclinic orbit2 of the
pendulum and the desired rest point for the actuated
end point P . Indeed, in this case, we are guaranteed
that, in finite time, the state of the overall system will
be in a neighborhood of the desired equilibrium. In
the circular case, this closure of the homoclinic orbit
is completely characterized as a level set of the total
mechanical energy which is here :

E =
1
2

"̇b ."̇b −
"b . "g

l
(3)

In the spherical case, the closure of the homoclinic or-
bits are lying in the 2 dimensional submanifold of the
manifold S2 × TS2 where "̇b is obtained from "b ∈ S2 by
solving the equations :

"̇b."̇b = 2
"b."g

l
+ 2

g

l
, "̇b."b = 0 , "̇b.("b∧"g) = 0 . (4)

The first equation says that the total mechanical en-
ergy is equal to the one of the upward rest position
"b = −!g

g . The second equation is nothing but the conse-
quence that "b being a unit vector, its norm is constant.
The third equation is the expression of the fact that "b
remains in a vertical plane, i.e. since the vector "b ∧ "g

is orthogonal to the vertical plane containing "b, "̇b must
be orthogonal to this vector. In other words, in the
spherical case, the manifold containing the closure of
the homoclinic orbits is not the whole set :

E =
g

l
, (5)

but its intersection with the set

J = "̇b.("b∧ "g) = 0 (6)

where J is the kinetic momentum with respect to the
vertical axis. As in the circular case, both E and J are
open loop invariants. In particular, we get :

Ė = −
"̇b."u

l
, J̇ = −

"b ∧ "g

l
."u . (7)

It follows that to make the closure of the homoclinic or-
bits asymptotically stable it is sufficient to assign these
two invariants (E, J) to their prescribed values (g/l, 0).
This task can be achieved since the sign of their speed
is dictated by the direction of "u.

2.2 Forwarding to cope with ("P , "̇P ).
While swinging up the pendulum, we have to asymp-
totically stabilize the origin for the ("P , "̇P) coordinates.
Since we have simply :

"̈P = "u , (8)
2One which makes just one turn in infinite time from the up-

ward equilibrium back to this position.

like for the two open loop invariants above, the task of
regulating "̇P around the origin can be easily realized.

But on the other hand we do not have directly access
to "̇P from u. This makes the objective of regulation
of "P at the origin more difficult to meet. Neverthe-
less, we observe that "P is a state component integrat-
ing a function of the other state components, and more
specifically here "̇P . So, once the control objective has
been met for the ("̇P ,"b,"̇b) coordinates, we can cope with
the position "P by applying the forwarding technique as
described in [7].

2.3 Summary.
To summarize, the non linear controller we design aims
at making the set :

S =
{

("P , "̇P ,"b,"̇b) : E =
g

l
, J = 0, "P = "̇P = 0

}
(9)

asymptotically stable with a basin of attraction as large
as possible. To design such a controller, we proceed in
two steps :

1. In a first step, we deal with the ("̇P ,"b,"̇b) coordinates.
We apply a passivity design (see [4, Theorems 2.5.1
and 2.5.2]) to get a regulator of (E − g/l, J, "̇P ) at
zero.

2. In a second step, we cope with "P by applying the
forwarding technique based on the construction of
a Lyapunov function. This construction relies on a
change of coordinate exhibiting the stability prop-
erty, for the overall system, provided by the control
law designed in the first step.

3 Controller design.

3.1 The ("̇P ,"b,"̇b) subsystem.
At this stage we want to make the set :

S1 =
{

("̇P ,"b,"̇b) : E =
g

l
, J = 0 , "̇P = 0

}
(10)

asymptotically stable with a basin of attraction as large
as possible.

Let K be a radially unbounded, C2 function on R2

whose only stationary point is at the origin. We do not
specify what this function is now since we want to keep
some flexibility for handling the overall system later on.
Consider the function :

V1("̇P ,"b,"̇b) = K(E − g

l
, J) +

a

2
"̇P ."̇P , (11)

with a a strictly positive real number. This function is
radially unbounded on R3×S2×TS2 and is zero on and
only on the set S1. Its derivative along the solutions is :
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V̇1 = (12)

−∂K
∂E (E − g

l , J) !̇b.!u
l − ∂K

∂J (E − g
l , J)

!b∧!g
l ."u + a "̇P ."u .

This derivative is made non positive by picking "u as :

"u = −Λ1("̇P ,"b,"̇b) × (13)

×
(
−∂K

∂E (E − g
l , J) !̇b

l −
∂K
∂J (E − g

l , J)
!b∧!g

l + a "̇P

)

where Λ1 is any matrix with positive definite symmetric
part. From the property of V1, the set S1 is made glob-
ally stable. But, with the above analysis, we cannot
claim anything about attractiveness nor the domain of
attraction. Nevertheless we go on with our design.

3.2 The overall system.
In the previous paragraph, we have taken care of the
("̇P ,"b,"̇b) coordinates. To deal with "P , we apply the
forwarding technique of [7]. We introduce the change
of coordinate (see Appendix A or [1]) :

"Q = "P (14)

+
Γ"̇P − ∂K

∂E
(E − g

l
, J)

"b

l
− ∂K

∂J
(E − g

l
, J)"b∧ "̇b

a

where Γ is any positive definite symmetric (constant)
matrix satisfying, for some ε > 0,

(1 − ε) Γ ≥ I |Φ| (15)

where Φ is the matrix :

Φ =

[
∂2K

∂E∂J

"b

l

]
⊗

"b ∧ "g

l
+

[
∂2K

∂E∂J
("b ∧ "̇b)

]
⊗

"̇b

l
(16)

+

[
∂2K

∂E2

"b

l

]
⊗

"̇b

l
+

[
∂2K

∂J2
("b ∧ "̇b)

]
⊗

"b ∧ "g

l

+
∂K

∂J

1
l

(
0−b3 b2

b3 0−b1
−b2 b1 0

)

⊗ denoting the usual tensor product. Such an inequal-
ity gives actually a constraint on the function K intro-
duced above. It can be shown that, by picking :

K(E, J) = log
(

1 +
l2

g2
E2 + c

l

2g3
J2

)
(17)

where c is an adjusted strictly positive real number,
the corresponding matrix Φ is bounded as requested in
(15).

The motivation for (14) is actually that, by letting3 :

Λ1 = (Φ + Γ)−1 (18)

"u = −Λ1

(
−∂K

∂E
!̇b
l −

∂K
∂J

!b∧!g
l + a "̇P

)
+"v (19)

3Note that the symmetric part of Λ1 is made positive definite
by (15).

where "v is an intermediate control, we get very simply :

"̇Q = −Γ
a

"v . (20)

This means that the control (13), with the particular
matrix Λ1 given by (18), not only makes the set S1

globally stable in R3×S2×TS2 but makes also the set S,
given in (9), globally stable in R3×R3×S2×TS2. This
is confirmed by considering for instance the Lyapunov
function :

V2("Q, "̇P ,"b,"̇b)

= V1("̇P ,"b,"̇b) +
1
2

"Q.[Π"Q] (21)

= K(E − g

l
, J) +

a

2
"̇P ."̇P +

1
2

"Q.[Π"Q] (22)

which, when Π is any symmetric positive definite (con-
stant) matrix, is radially unbounded on R3 ×R3 ×S2 ×
TS2 and is zero on and only on the set S. Indeed, it
gives :

V̇2 = (23)

−
(
−∂K

∂E

"̇b

l
− ∂K

∂J

"b ∧ "g

l
+ a"̇P

)
.

.

[
Λ1

(
−∂K

∂E

"̇b

l
− ∂K

∂J

"b ∧ "g

l
+ a "̇P

)]

+

[(
−∂K

∂E

"̇b

l
− ∂K

∂J

"b ∧ "g

l
+ a "̇P

)
− ΠΓ

a
"Q

]
."v .

This leads us to choose the intermediate control "v as :

"v = −Λ2

[(
−∂K

∂E

"̇b

l
− ∂K

∂J

"b ∧ "g

l
+ a "̇P

)
− ΠΓ

a
"Q

]

(24)
where Λ2 is is any matrix with positive definite symmet-
ric part. This says that the control we have obtained
to make the set S asymptotically stable is :

"u = − (Φ + Γ)−1

[
−∂K

∂E

"̇b

l
− ∂K

∂J

"b ∧ "g

l
+ a "̇P

]
(25)

− Λ2

[(
−∂K

∂E

"̇b

l
− ∂K

∂J

"b ∧ "g

l
+ a "̇P

)
− ΠΓ

a
"Q

]

It contains several parameters : the function K, the
real number a, the matrices Λ2, Π and Γ. They have
to be chosen in particular so that (15) holds.

With this choice for "u, we get that V̇2 is non positive
globally and that it is zero if and only if :

−
∂K

∂E

"̇b

l
−

∂K

∂J

"b ∧ "g

l
+ a "̇P = 0 (26)

"Q = 0 (27)
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By applying LaSalle invariance principle, it is shown in
Appendix B that all the solutions converge to one of
the following set :

1. The singleton

("P , "̇P ,"b,"̇b) =

(
∂K
∂E (−2g/l, 0)"g

la|g| , 0,
"g

|g| , 0
)

corresponding to the open loop stable downward
equilibrium,

2. The singleton ("P , "̇P ,"b,"̇b) = (0, 0,− !g
|g| , 0) corre-

sponding to the desired upward equilibrium,

3. The closure of the homoclinic orbits with "P =
"̇P = 0.

Only the last two sets give rise to points (E, J, "̇P , "Q)
which are stationary point of V2. It follows that the first
set is unstable. Actually, with the help of [5], a local
linear analysis shows that the corresponding point can
have a stable manifold of measure at most zero. Since
the other two sets are contained in the closure of the
homoclinic orbits, we can conclude that the desired S
is made attractive for all points except may be those in
a set of zero measure.

4 Implementation and results.

For the implementation of the control law, the environ-
ment provided with the robot arm 2kπ :

• gives us the overall state, reconstructed, from an-
gle measurements, via an had hoc numeric differ-
entiation and smoothing.

• computes the torques from the desired accelera-
tion of the actuated end point.

• takes care of all the real time tasks.

This allows us to concentrate our attention only on
the state feedback itself. This feedback is obtained by
patching three controllers (see [1]) :

1. A linear controller stabilizing asymptotically an
oscillatory trajectory which is an open loop solu-
tion. This solution evolves in the neighborhood
of the downward equilibrium and is contained in
a prescribed vertical plane,

2. The nonlinear controller described above,

3. A linear controller stabilizing asymptotically the
upward equilibrium.

The switches between these controllers are dictated by
criteria evaluating how well the task they are assigned
is fulfilled.

In the implementation, the main difficulties we have
encountered are :

• The friction which we have had to compensate
partially in computing the torques from the de-
sired acceleration of the actuated end point.

• The measurement noise coming mainly from the
fact that the various speeds are reconstructed and
not measured. This has led us to introduce filters,
not on the primitive signals, but more specifically
on some functions of them which are involved in
our controllers.

• The possible instability of the vertical plane. This
occurs typically when the energy and kinetic mo-
mentum are closed to their desired values (i.e.
"u ≈ 0) and the energy is positive. This has led us
to decompose the swing in two steps :

1. A first step where the energy is assigned to a
value close to 0 (not high enough) and such
that the vertical plane is stable.

2. A second step where the energy is assigned
the nominal value.

• The fact that, if the non linear controller does
not achieve his task very properly, the subsequent
linear controller may ask for too strong controls
or create too large amplitudes of the actuated end
point.

Nevertheless all these difficulties have been overcome
and a result can be seen on the video which can be
downloaded from :
http://www.stud.enst.fr/~albouy/robot/demo.avi

or
http://cas.ensmp.fr/~praly/Publications/XavierX96_1.avi
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A Expression of "Q

Following [7], we look for a new coordinate "Q to be
used in place of "P . This coordinate should be such
that, when the control is given by (13), the derivative
"̇Q is zero. More specifically, let us look for "Q in the
form :

"Q = "P − M
(
"̇P ,"b,"̇b

)
(28)

where M is a C1 function. The constraint

"̇Q = 0 (29)

translates into :

˙︷ ︷
M

(
"̇P ,"b,"̇b

)
= "̇P . (30)

This says that we need to express "̇P as a derivative of
a function of ("̇P ,"b,"̇b). In order to find this expression,
let us recall the data :
– Dynamics :





"̈P = "u

!b∧!g
l = "b ∧ "̈b + !b∧!u

l

(31)

– Control law :

Λ−1
1 "u =

∂K

∂E

"̇b

l
+

∂K

∂J

"b ∧ "g

l
− a "̇P (32)

Then, since K is a function of E and J only and we
have (7), we obtain :






∂K

∂E

"̇b

l
=

˙︷ ︷
∂K

∂E

"b

l
+ Φ1u

∂K

∂J

"b ∧ "g

l
=

˙︷ ︷
∂K

∂J
"b ∧ "̇b + Φ2u

(33)

where Φ1 and Φ2 are some functions of ("̇P ,"b,"̇b). Us-
ing these relations in the expression of the control law
yields :

(
Λ−1

1 − Φ1 −Φ2

)
"̈P =

˙︷ ︷(
∂K

∂E

"b

l
+

∂K

∂J
"b ∧ "̇b − a "P

)

(34)
But, by choosing Λ1 as (see (18)) :

Λ1 = (Φ1 + Φ2 + Γ)−1 , (35)

where Γ is a constant matrix, we get our result in the
form (see(14)) :

−Γ "̈P +

˙︷ ︷(
∂K

∂E

"b

l
+

∂K

∂J
"b ∧ "̇b

)
= a "̇P . (36)

B The closed loop limit sets

We study here the bounded solutions of (1), (26) and
(27) with "u = 0.

With "u = 0, we know that E, J and therefore K, ∂K
∂E

and ∂K
∂J are constant. Then the time derivative of (26)

gives :
∂K

∂E
"̈b +

∂K

∂J
"̇b ∧ "g = 0 (37)

or, with (1),

∂K

∂E

[
"g

l
−

(
"g

l
."b + "̇b ."̇b

)
"b

]
+

∂K

∂J
"̇b ∧ "g = 0 (38)

By multiplying by "̇b, this implies
∂K

∂E
g ."̇b = 0. So :

1. either the constant
∂K

∂E
is zero. In this case (37)

gives :

(a) either the constant
∂K

∂J
is zero. But then

E = g
l , J = 0 since this point is the only

stationary point of K. This says that, for
the solutions we are studying, "b evolves in
the closure of the homoclinic orbits. Also,
from (14), (26) and (27), we get "P = "̇P = 0.

(b) or "̇b ∧ "g is constant and zero. In this case
"b ∧ "g is constant and so is "̇P from (26). But
since the solutions under investigation are
bounded, "̇P cannot be constant without be-
ing zero. This in its turn implies that "b ∧ "g
is zero, i.e. "b is colinear with "g. But "b be-
ing of unit norm, we must have "b = ±!g

g and
"̇b = 0. This implies E = ∓ g/l and J = 0.
And from (14) and (27), we get "P = 0.

2. or g ."̇b = 0. In this case, since "̇b is also orthogonal
to "b, "̇b is colinear with "b ∧ "g, i.e.

"̇b = λ"b ∧ "g (39)

Then (37) yields :

∂K

∂E

(
λ̇"b ∧ "g + λ"̇b ∧ "g

)
= −∂K

∂J
"̇b ∧ "g (40)

With the identity :

"a ∧
(
"b ∧ "c

)
= ("a ."c)"b −

(
"a ."b

)
"c (41)

we obtain :

∂K

∂E
λ̇"b ∧ "g =

(
∂K

∂E
λ +

∂K

∂J

)
λ

[
g2"b − ("g ."b)"g

]
.

(42)
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But"b∧"g being orthogonal to"b and "g, the terms on
each side must be zero. So we get in particular :

(
∂K

∂E
λ +

∂K

∂J

)
λ

[
g2"b − ("g ."b)"g

]
= 0 . (43)

Since the cases ∂K
∂E = 0, "̇b∧"g = 0 (implied by λ =

0) and"b∧"g = 0 (implied by"b and "g colinear) have
been studied already, we consider the following
implication of this equation :

λ = −
∂K
∂J
∂K
∂E

(44)

With this expression, we get "̇P = 0 from (26).
Hence "P is constant and, with (14) and (27), we
have :

const. =
∂K

∂E

g ∧"b

l
+

∂K

∂J
g ∧ ("b ∧ "̇b) (45)

= −





∂K

∂E
lλ

+
∂K

∂J
g ."b



 "̇b (46)

where we have used g ."̇b = 0. (46) says that "̇b is
constant, i.e. "̈b = 0. From (1) we get that "b and "g
are colinear and conclude as in the case 1b above.
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