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ABSTRArn 
In this paper we  investigate  the  twin  issues of robustness 

as  well  as performance in  the  adaptive  control of linear, sto- 
chastic  systems.  Towards this end  we  present  an  adaptive 
controller  which  provides optimal performance under ideal 
conditions, while  providing stable behavior when  the  idealness 
assumptions  are  violated. Specifically, our  adaptive  controller 
has  the  following  properties: 
(i)  When  the  system  under  control is of the  order  assumed, 

with  delay  also  as  assumed, is of minimum  phase,  and 
the  disturbance satisfies  a positive  real  condition on its 
spectrum,  then  the  mean-square  tracking  error is optimal. 

(ii)  When  the  positive  realness  condition  on  the  disturbance 
is violated,  then  the  system  remains  mean  square  stable. 

(iii)  When  the  system  violates  the  “ideal”  conditions  and is 
merely  in a  graph-topological neighborhood of systems 
satisfying  (i),  then  the  adaptive  controller  still  provides 
mean  square  stability. 

(iv)  When  the  adaptation gain is made  non-vanishing,  then 
stability is still preserved. 

I. INTRODUCTION 
In  recent  years  much progress has been made  on  the 

study of adaptive  controllers  for  linear  stochastic  systems. 
In  1981,  Goodwin, Ramadge and  Caines [l] were  able  to 

exhibit a family of stochastic  gradient based adaptive con- 
trollers  which  were self-optimizing in  the  sense  that  the mean 
square  tracking  error  was  optimal, Le., equal  to  the  minimum 
mean  square  error  attainable if the  true  system  were  known 
to  start  with. In 1985, Becker, Kumar  and  Wei [2] were  esta- 
blished to  establish  the self-tuning property  for  the re@ation 
problem, i.e., the  parameter  estimates  were  shown  to so con- 
verge that  the  resulting  asymptotic  regulator is optimal. 
Recently,  in  1987,  Kumar  and  Praly [3] exhibited  adaptive 
controllers  for  the tracking problem which  also possess the 
self-tuning  property.  They  also  showed  how  to  construct 
such  self-tuning  trackers  for  importance classes of problems, 
such  as  the case of maintaining a  given set-point, when  the 
reference  trajectory is insufficiently  exciting. 

Inevitably,  these exact results  are  dependent on the  true 
system  under  control  satisfying  some  assumptions.  Typically 
these  assumptions  are  that: 
( i)   the order of the  system is as  assumed, 
(ii)  the delay of the  system is known, 
(iii) the  disturbance  entering  into  the  system is a stochastic 

(iv)  the  system satisfies  a minimum-phase condition. 
The first two  assumptions  allow us to choose a structure 

for  the  controller, so that  the  parameters  within  this  structure 
can  then be tuned  to  asymptotic  optimality.  The  third 
assumption  above is essentially a pseudo-gradient assumption 
which  guarantees  that  the  adaptation  mechanism  tunes  the 
parameters  in  the  right  direction.  Such a positive-real  condi- 
tion  arises in recursive  identification; see Solo 141, Ljung  and 

process satisfying a certain positive-real condition, 
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Soderstrom [51 and  Kumar  and  Varaiya [61. The  last  assump- 
tion  above  arises in minimum-variance  control using  a station- 
ary (Le. time-invariant)  control  law,  and  in  such a case  it is 
needed to  guarantee  that  while  the  output  variance of the  sys- 
tem is minimized,  the  input  sequence does not  blow  up. 
(However,  as  we  show  in  the  more  detailed  version of this 
paper 171, for  some  non-minimum phase systems  one c w  
achieve  minimum  variance  control  with  finite  power  input 
when  the  controller is adaptive,  and  thus  time  varying.) 

When  adaptive  controllers  are used in  practice. i t  is how- 
ever  inevitable  that  the so-called “idealized”  assumptions  will 
not be satisfied  by  the  true  system  under  control.  For exam- 
ple,  the  true  system  may  even be infinite-dimensional. Begin- 
ning with  Ioannou  and  Kokotovic 181 and  Rohrs,  Valavani, 
Athans  and Stein 191, the  role of these  assumptions  has  there- 
fore  come  under increasing scrutiny,  and  the topic of robust 
adaptive  control  has  attracted  much  research  attention. 

In this paper we  pay  simultaneous  attention  to  both per- 
formance as  well  as robustness. Specifically,  one would not 
want  to  achieve  robustness  by sacrificing performance. 

We  formulate  these  twin goals as  follows.  First  we 
would  like  our  adaptive  controller  to  achieve  optimal  perfor- 
mance  when  the  “idealized”  assumptions  are  satisfied,  thus 
ensuring  that  nominal  behavior is good. Second, we  would 
like  the  adaptive  controller  to be robust, i.e. stable,  when 
applied to  as  large a class of systems  as possible. 

In  attempting  to  make precise what is meant  by a “large 
class of systems”  we  consider  the graph  topology on  the space 
of linear  systems; see Vidyasagar  [lo].  This is the weakest 
topology  under  which a constant  linear  feedback  controller 
preserves  stability  when  small  perturbations  from  the nomi- 
nal  system,  with  respect  to  this  topology,  are  allowed,  and  the 
frequency response changes  only  slightly  (in  “sup”  norm). 
Viewing  our  adaptive  controllers  as  conducting a real  time 
search  over  the space of linear  feedback  controllers,  we 
require  that  our  adaptive  controller  preserves  stability  when 
the  true  system  lies  in a graph topological neighborhood of the 
set of “ideal”  systems. 

In  the  next  section  we describe an  adaptive  controller 
which  has  the  performance  and  robustness  properties 
described in the  Abstract. 

11. THE ADAPTIVE CONTROLLER 
We choose three  integers  nR, ns and  nc  which describe the 

dimensions of our  adaptive  controller,  and  an  integer d >, I to 
describe  the  “nominal”  delay.  In  addition,  we choose  a “nom- 
inal”  parameter  vector @‘, two positive  numbers 0 < A, < AI 
which  will  serve  as  bounds  on  the  eigenvalues of the  “covari- 
ance  matrix,”  and  three  further  positive  integers P, uo  and K. 
All  these  are a priori constants chosen in  the  “design” phase. 

Let u and y be the  input  and  output of the  system  to be 
controlled,  and  let  ym be a bounded  reference  trajectory 
which  we  want  the  output y of the  system  to  follow  as 
closely as possible. 

Our  adaptive  controller is then defined recursively by the 
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following  equations.  Let 

be the “regression vector,”  and  p(t) defined by, 

be a “normalizing sequence.” Set, 

@(t-d) := 4(t-d) , 
P”( t 1 

and 

where  the  “covariance  matrix”  F(t)  and  the  “parameter  esti- 
mate”  8(t)  are defined below, 

Above, sd( t )  := first element of the  vector  8’(t), 
F,(t) := first  column of the  matrix  F(t),  and 
F,, := (1,l)-th  element of the  matrix  F(t). 
The  parameter  estimate  8(t) is then defined recursively  by 

Having  obtained a parameter  estimate 8(t) a t  time t, the con- 
trol  input  u(t) is chosen so that, 

This  completes  the  description of the  adaptive  controller. 

IIL DISCUSSION OF THE ADAPTIVE CONTROLLER 
The  adaptive  contoller described above  incorporates  three 

modifications from  the  standard  “least  squares  parameter 
estimator  plus  certainty  equivalent  control”  adaptive con- 
trollers. 

First,  the  signals 4 and e are  normalized  by  the  normaliz- 
ing sequence p”. The  resulting  normalized  signals 0, e, etc. are 
then  utilized  by  the  adaptive  controller.  The reason for  doing 
this  lies  in  the  fact  that  when  unmodeled  dynamics  are 
present,  their  contribution  to  the  output is roughly  compar- 
able  to p” in an 1, sense; see also  Egardt 1111. 
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Second,  the  eigenvalues of the  matrix  F(t)  are  kept  in  the 
interval [Ao,A,]. .This is also  well  motivated since i t  is known 
that  the  unbounded  condition  number of F(t), as t+m, can 
cause  problems  even  in  recursive  parameter  identification; see 
Lai and  Wei 1121 and  Kumar  and  Varaiya [61. 

Last, the  parameter  estimator  8(t) is forced to  stay  in a 

(large)  sphere  with  center 8‘ and  radius 2, and  the  first 

component of 8(t),  which  corresponds  to  an  estimate of the 
“high  frequency  gain” is kept  bounded below by uo. This is 
motivated  by  the  problem of keeping the  parameter  estimates 
in  a bounded  set,  which is known  to be important  to  control 
laws of the  form  (1); see Egardt  [ll]. 

Though  all  our modifications are  well  motivated  and 
appear  reasonable, it is an open question  whether  adaptive 
controllers  without  these modifications possess good perfor- 
mance  and  robustness  properties in theory. 

IV. MAIN RESULTS 

Kh 

h0 

Our  first  result  shows  that  the  inputs  and  outputs  are 
mean-square  bounded  when  the  disturbance  in a nominal 
plant is mean  square  bounded.  Thus  no  statistical  properties 
of the  disturbance,  or a positive  real  condition,  are  assumed 
here. 

Theorem 1. Suppose the  true  system satisfies the  following 
properties: 
(i)  A(q-’)y(t) = q-dB(q-’) + d(t)  where A and B are poly- 

nomials in the  delay  operator q-’. 

(iii)  All  the zeroes of the  polynomials B and C are  strictly 

(iv)  There  exist  polynomials S* and R* of degrees ns  and  nR, 

S*(q-’)A(q-’) + q-dR*(q-’)B(q-’) = B(q-’) . 
(v)  The  first  component so’ of the  vector 8‘ and SqO)  are each 

outside  the  unit  circle. 

respectively,  such  that 

2 0 0 .  

(vi) 118‘-8*11 \< K where 
8* := (s*,,s*,, . . . , S*,~,T*~, . . . , r*,R,O,O)T where s * ~  and 
r*i are  the  coe5cients of q-’ in  the  polynomials  Sqq-’) 
and  Rqq-’),  respectively. 
Then,  the  adaptive  controller gives  rise to  inputs  and  out- 

puts  which  satisfy, 

Our  second  result  shows  that  the  adaptive  controller 
yields  optimal  performance, vis-a-vis the  time  average of the 
square of the  tracking  error,  when  the  disturbance satisfies  a 
positive  real  condition on its spectrum, 

Theorem 2. Suppose that  in  addition  to  the  properties  in 
Theorem 1, the  true  system satisfies the  following  additional 
assumptions: 

The  disturbance  d(t) is given by, 
d(t) = C(q-’)w(t) . 

C(q-’) is a polynomial of degree n, in the  delay  operator 

sup I C(eiU)-1 I < - . 
E(w(t) I Y“-’,u‘-~) = 0, E(w2(t) I yt-,,ut-’) = u2, 
sypE( I w( t )  I z+SIyt-l,~t-l) <+m for  some S>O. 

q-’, with C(O)-l. 
1 

0 m 
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(v)  There  exist  polynomials S, R and Q of degrees ns, nR and 

S(q-')A(q-') + q-dR(q-') = C(q-')B(q-') 
d-1,  respectively,  such  that 

and 
S(q-') = Q(q-')B(q-'). 

(vi)  The  vector 

eo := (so ,.., s,,,r0, . . . , rnR,-cl, . . . , -cnc) , 

where s,, ri and  ci  are  the coefficients of q-' in  the  polyno- 
mials  S(q-'), R(q-') and  C(q-'),  respectively,  satisfies, 

11eo-ecII G K , 

so 2 ac). 

and 

Then,  the  time  average of the  square of the  tracking  error is, 

limT l T  z(y(t)-y"(t))2 = u2 qi2 
d-1 

._ .-I i=O 

where  qi is the coefficient of q-' in  Q(q-'). 
0 

Our next  result  shows  that  the  adaptive  controller con- 
tinues  to  provide  mean-square  stability  whenever  the  true 
system is merely  in a certain graph-topological  neighborhood 
of the  class of all "ideal" systems. 

Theorem 3. Assume  that  the  true  system  satisfies  the  fol- 
lowing  conditions: 

A(q)y(t) = B(qh(t- l )+d(t) .  
A and B are  proper  rational  functions  whose poles are in 
the open unit  disk,  and  such  that  their  norms, defined by 
llAll= sup I A(q) I ,  are  bounded. 

is a proper  rational  function. 
Iql,1 

A 
A(w)  = 1. 
The  disturbance  d(t) satisfies, 

where  V<+w. 

Let  B(q) = Chiq-'  and  assume  that  both  D(q)  and 

are  proper  rational  functions  with  bounded  norm,  where 
D(q)  is defined as. 

m 1 
i=O -DT;ir 

D(q) := zhi+d-lq-l . 
m 

i=O 

Then,  there  exists  an open neighborhood 0 (which can be 
explicity specified, but  which  we  omit  here), of the  set of ideal 
systems  satisfying  Theorem 2, such  that if the  true  system - B 

A 
lies  within 0, then  the  inputs  and  outputs  satisfy, 

Our  last  result  shows  that if the  adaptation gain is prevented 
from going to zero, so that  the  parameter  estimates  are  ever- 
changing  and open to  "adaptation"  always,  then  the  adaptive 
controller  still  provides  robust  stability,  appropriately 
defined. 

Theorem 4. Choose O<p<l and  modify  the  adaptive con- 
troller defined in Section I1 by redefining the  normalizing 
sequence  p(t)  as, 

p(t) = ,u2p(t-l)+  max(p,]ldt-d)l12) . 

Also  suppose  that  the  disturbance  d(t)  in  (i) of Theorem 3 
satisfies, 

sup I d ( t )  I < L' , 

where V <+w. Finally, replace the  phrase,  "proper  rational 
function"  by  the  phrase  "proper  rational  function  with poles 
in the open disk of radius p," and  the definition of norm  by 
llAll= sup  A(q).  Then  the  result of Theorem 3 is sharpened 

to, 
I q  I ,/l 

V. COKCLUDING REMARKS 
It is an open question  whether  standard unmodified adap- 

tive  controllers possess good performance  and  robustness pro- 
perties. However,  at  the  present  time it is not  even  known 
whether  an  adaptive  controller  with a least  squares  parameter 
estimator  followed by a certainty  equivalent  control (Le., the 
original  self-tuning  regulator of Astrijm and  Wittenmark 
1131) is stable,  let  alone  optimal. An answer t o  this  question 
still  remaines  elusive. 
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