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Abstract

A direct scheme is proposed for discrete-time
control of a very rapidly sampled continuous-time
system. Knowledge of the relative degree and of an
upper bound of the order of the continuous-time system
proves to be sufficient a priort knowledge for the
derivation of the scheme. Convergence to zero of the
tracking error is established for the sampled system.

1. Introduction

The subject we want to address in this paper is
that of the existence of & discrete-time, model-
reference adaptive controller for a very rapidly
sampled continuous-time system. We assume that the
given system is minimum phase and that an upper bound
of its order and its relative degree are known. With
very fast sampling, the corresponding discrete time
system is nonminimum phase if the relative degree is
larger than 1 (see Astrom, et al. [1]). A very rich
literature has been devoted to the problem of adaptive
control of nonminimum phase systems (see the survey
given by M'Saad, Ortega, and Landau [2]). The dif-
ficulty which arises in this setting is that the
tracking transfer function must retain unstable zeros.
As a consequence, the controller cannot be obtained
by a linear estimation scheme. One way to circumvent
this problem and to linearize the estimation scheme is
to incorporate some a priori knowledge about the system
(see [3] for another type of solution). As very often
conjectured, Johansson in [4] has established that the
minimum @ priori knowledge required for model matching
is that of the positions of the unstable zeros.
Explicit use of a priori knowledge in an indirect
scheme has been proposed by Clary and Franklin in [5].
They have not solved, however, the problem created by
singularity of the Diophantine equation.

in this paper, we shall derive a direct scheme
which uses the a priori information given for very
fast sampling of continuous time systems by Astrom, et
al. [1]. They have established that if n is the
number of poles and m is the number of zeros of the
continuous time system, then:

i) the sampled-date representation of the system
will have n-1 zeros and n poles; and, furthermore,
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ii) as the sampling period tends to zero, m zeros
tend to | and are stable. The remaining n-m-1 zeros
tend to known values which depend upon only the rela-
tive degree n-m, and if they are unstable, they are
real and lie on the interval (-=,-1].

In Section 2 we present our algorithm. Section 3

is devoted to a convergence analysis in an ideal case.
Finally our conclusion is given in Section 4.

2. A Direct Adaptive Scheme

Under the aforementioned circumstances, we shall
make the following assumptions.

Al: The sampled-data system may be represented by

Ju(t) (1)

where A{q ]), B(q ]), and Bu(q 1) are polynomials
in the backward shift operator q~!; A(q~1) is
monic and A(q'l) and Bu(q'l) are relatively prime;
the zeros of B(q™') are stable and the sign of
B(0) is known (say, positive); {y(t)} and {u{t)}
are the output and input seguences, respectively,
of the sampled system.

A2: integers n and m are known such that

n > deg A(q—1) and m2 deg B(q-]).

A3: B,(q 1) is known, and has degree d. |Its zeros are
denoted by z,; where i=1 to d. |[If the system has
delays, some of them are infinite. For the pur-
poses of this paper, we shall assume that all z
are real,

ui

Now let C(q-1) and T(q_l) of degree N-m and N,
respectively, be chosen polynomials with

N = max{n,m+d}.

The relative primeness of A(q:1) and B (q-]) implies
that there exist polynomials 3(g” 1) and R(g™1) of
degree N-m and N-1, respectively, such that
“1yz, -1 -1 -1 -1 -1
A(q )S(q ) +B,(a g Rlg ) =2Cle )T(q ). (2)
Let us denote S(q-1) as the following polynomial of
degree N and with leading coefficient by strictly posi-

tive: -1 - -1
S(g ') =5S{g )B(qg ).
Examjnation of (2) will show that, if C(q-1)T(q_])
and Bu(q'1) are relatively prime, then S{(g”') and

Bu(q-]) are relatively prime. This implies that s{qg™ly
and Bu(q'l) are prime. This fact motivates our next
assumption.
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Ab: A convex set CEIRN is known such that

i) the vector of coefficients of S(q-1) belong
to €, and

"g 1) corresponding to

ii) for any polynomial §
any vector in €,

-1

‘S.(Zui)i > g, 1<iscd
and
. i -1, b
bims'(z ) = b | > e
Z->2

Later we will see that S(q ]) is the denominator
of our controller. Since this controller is a sampled-
data version of a continuous time controller, we know
that, as the sampling period goes to zero, the poles
of this controller tend to 1; moreover, in general the
zeros of the system z,;, are in [-=,-1]. The convex
set € of assumption (AL) therefore, can be described by
the following inequalities (using by > €):

-1

s'(zui)ZE, Tsicd
. { ‘1 |
lims'(z ') =b ze¢.
2 o

System Reparameterization: With these assumptions, we
can now rederive the parametric model given by
Johansson in Chapter 5 of [4] (see also Astrom [6]).
Applying (2) to y(t) yields

-1

S RICED I CRPMISE (3)

Define a regression vector §(t) by

Tla Joelt) =[ult) ... u(t-N}y(t-1) ... y(t=N)]. (4)
Define a parameter vector 5 ty (with 5= bo):

3 = [so... S Ty rN] (5)

where s, (i=0 to N) are the coefficients of S(q_]) and

rj (j=1lto N) are the coefficients of R(g™!).

Then, if the roots of T(q-1) are stable and all
initial conditions are at zero, we have the equation

Cla y(e) = 8'8 (o )e(n). (6)
or equivalently,
cla Dyt =8 (a7 s e (0). %)

Equation (6) can be used to estimate the vector 3.

Control Law: Let C(q-1) and T(q—l) have stable roots,
our contrcl objective is to match, with r(t), a
reference input

Jy(t) =8 ta (o). (8)

In view of (7) this can be achieved by choosing
the following (implicit) control law

r(t) = 5'e(t). (9)

Adaptive Controller: From (6) and (9) we can propose
the following adaptive controller.

Let g(t) be an estimate of 5 and define Y(t) as

P(t) =8 (q )a(t). (10)

u

The algorithm is

g(t) = Pc(é(t-l) + P(§--1) () (cla Myl
1+ (t) P(t-1) (t)
“5e-nT ) (1)

where P is the projection on € proposed by Goodwin
and Sin; p. 92 of [7];

T
P(t) = P(t‘l)'P(t-]) (;_) (t) P(t'” , (12)
T+ (1) P(e-1) (1)
P{0) > 0;
2 T
r{t) = s(t) ¢ft). (13)

The use of the projection P _ guarantees that the poly-
nomial S(g™',t) obtained froém 5(t) satisfies the con-
dition that

1sisd

and

where §O(t) is the leading coefficient of §(z—1,t).

Remark: From our simulations it seems that inm most
cases it is not necessary to implement the projection
PC'

3. Convergence of the Algorithm

The following theorem gives the properties of our
algorithm.

Theorem: Under the assumptions Al through Ak, the
algorithm described by (11), (12), and (13) has the
properties that:

i) é(t) is bounded,
ii) u(t) and y(t) are bounded for bounded r(t), and

R LTER NS e

Proof: We shall use the techniques of proof introduced
by Goodwin, Ramadge, and Caines [8]. The presence of
Bu(q'7), however, will impose some additicnal diffi-
culties. We shall first state some technical lemmas.

LEMMA 1 (see Lemma 3.3.6 of [7]):
Under our aforementioned assumptions,
for all t;

) in et y(e) - 20 Tplo) | = 0;
Tii) limis(t) - &(t-1)i = 0.

oo

>
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LEMMA 2 (see Lemma 4.3.2 of [7]):

Let P(q ],t) and Q(g ],t) be polynomials with
degree n_,, n_, respectively, and with tlme varying
coefficients'p; (t) (i=0 to n_ ) and q.(t) (j=0 to n)
such that pi(tj and qj( t) are bounded and satisfy

—qj(t—l)\ = 0.

limiq, (t)
e J
For any sequence v(t), let F(P;Q,v,t) be the
sequence defined by

F(P’Q,V’t’) = P(q
SO Iv(t), (14)

where the first term on t?e right-hand side implies

P(q ,t) operates on Q{q ,t)u(t), while the second
term implies that the product [P(qg-1,t)a(q” ],t)]
operates on u{t). Then for any e>0, there exists T(e)
such that, for all t>7

sup | v(t=4) (15)

O<gsn _+n
P g

F(P,Q,V,t,)’; < €Tn (n '1)“1

where

LEMMA 3: If

(2
\S(Zui’
then there exist time-varying polynomials a(q_ ,t) and
8(q”1,t) such that

@086 L ol+ 608 (@ h =1

and the coefficients of a(q-],t) and B(q-],t) are

bounded.

Proof: The hypothesis on S(q_],t) implies that

S(q",t) anc B (ar
Existence of a%q
Bezout identity; moreover,
and Bu(q‘l) is (see Kailath, Ex.

) are relatlvely prime for any t.
,t) and B(q ,t) follows from the
the Bezoutian of §(g”1,t)
1.4-17, p. 159, [91)

d s -

1 5(z

ERICHERE

which is uniformly bounded from below by ad. This
implies the boundedness of the coefficients of alqg~t,t)
and 8(q-1,t).

Before proceeding further, let us note that there
is no finite escape time, since the mapping from t to
t+] has no singularity. In particular, the projection
operation in the control algorithm implies that no
division by zero will occur. The proof of the theorem
will now be done using the small gain theorem:

Forward Path: u(t)>y(t):

Let n{t) be defined by
=cq My -0 Ts (@ e(t). (16)

Adding and subtracting Bu(q'l)r(t) to (16) and using
the definition of the control law (13) yields

M0

)y(2) = n(e) +8 (" )r(e) + 18() (8, (a o (1))

-8 (a )80 Ts (011, (17)

u

We remark that n(t) is given by Lemma 1 and that,
with Lemma 1, we can apply Lemma 2 to the last term of
{(17). Hence, since there is no finite escape time for
any ¢, there exists To(e) such that

in(t)] < e for all taT_ (18)

and

sup ﬁc(q-])y(t)fﬁi +_sup !‘Bu(q-l)r(t)l

Ttz Tzt2T
o )
+ aKZ sup lHo(t)ll+ KB(e) (19)
T>t2T
o
for some constants K, and K3(e).
The exponential stability of C(q-1) and T(q-])
then implies that
sup [y (t)| s eK, sup fu(t)j+ ey sup [y (t-1)]
T2t2T T>t2T T>t>T
o ) )
+Kg (), (20)
for some constants K“, KS’ and Ke(e). Hence we have
obtained
EKQ
sup_ |y (8) | sqmm sup_ fule) [+ K, () (21)
thzTO 5 T>t>T
for some K7(a).
Feedback path: y(t)~ u(t):
Let a(q_1, ) and 8(q t) be time varying poly-
nomials. Ap?ly|ng 3{q ], ) to (1) and applying
a(q” !, )B(g™)T(g™!) to (13) result in the following

two equatlons

Bla !, 0ala D v(e) = (8(a,t)8(q )8 (g7 ) Tu(t) (22)
ala™,)8(a )T(q DIr(t) = lalg™ ,t)B(g )T(q "]
5(2) o (t) (23)
Let ﬁ(q_],t) and 5(q -1,t) be defined as those

polynomials whose respective coefficients are those
coefficients in 6(t). Equation (23) may be rewritten

as
(e, 08 DT NIr(t) = lale” L, t)Blq 15", 1)
u(t) +R(g7 0y (-1 +lalq” , t)Bla ™)1
TR BT -8T T D11, (24)
Now, if a(q_1,t), B(q-],t) are as given by Lemma

3, summing respective sides of (22) and (24) yields the
equality

0)B(q )T ) Ir(t)
a Hly(©-lalg™!
,tyy(e-1)1
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Tolu(t)

s uo].

(25)

From Lemmas 1, 2, 3 and since there is no finite
escape time, there exists Tyie) such that

sup  [B(a” Jult)] sKgle) + Ky sup ty (t) i+
TZtZT] TZCET]
+eKyy sup JT(q-])¢(t)w+ KH sup uft)
el T>t2T,
(26)
for some constants Ks(s), K9, K10, and K11.
- -1, -1,-1
Exponential stapility of Bla ) , T{(q )
yields
sup Iu(t)l5K12(a)+K)3 sup | y(t), + SK}Q sup  jult)
Tzt2T thzT1 T>t2T]
(27)

for some constants K]z(s), KIB’ and K1“. Equation (27)
implies that

jult) | =

sup (28)

TZtZT‘

for some constant K, . ().

15
Closing the loop:

The boundedness of u(t) and y(t) follows from
application of the Small Gain Theorem to (21) and (28),

with a choice of ¢ such that
EKA K]3 )
— T (29)
=y "My
We may now conclude from (17) that
Vim [ele” Dy (t) - B )r(0)] = o. (30)

Tt

Conclusion

in this paper, we have presented a discrete-time
model reference adaptive controller for a discrete time
system with known unstable zeros. Convergence to zero
of the tracking error has been established under the
assumption of known order. This research was motivated
by the problem of controlling a minimum phase
continuous-time plant with very fast sampling.

case, the sampled system has unstable zeros.

In this
The

knowledge of only the relative degree of the continuous-

time plant is sufficient for obtaining approximations
of these zeros. The subjects of future work will be

to study the robustness of our scheme with respect to
small perturbations of the unstable zeros, and to relax
the assumption of known order of the plant.

M1
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