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Abstract: This paper exposes a method to estimate the rotation of a satellite by means of simple
Sun sensors located on its surface. It is shown that a minimal setup of 4 sensors is sufficient
to estimate the 3D rotation of the rigid body under some mild assumptions bearing on the
inertia parameters of the body and the direction of the Sun. The method is a 3D generalization
of an approach originally proposed, using the same setup of sensors, for a rotation restricted
to take place about a single axis. Taking into consideration the 3D rotation, the estimation
problem is geometrically recast into a simple sources separation problem for the measurement
equation. This problem is shown to be feasible through a careful investigation of the free motion
dynamics using Jacobi elliptic functions which guarantees sufficient frequency difference between
the sources.
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1. INTRODUCTION

This paper generalizes a recently introduced method to
reconstruct the rotation of a rigid body using cheap
illumination sensors mounted on its surface (Magnis and
Petit [2013]). Originally, this method was limited to cases
of rotation about a constant axis, so that the problem
could be formulated in 2D. The scope of applicability of
this method, which can be considered as an alternative
to several well established estimation principles, is here
extended to cases of nonzero nutations (tilting of the axis).

In its simplest form, the problem under consideration
can be exemplified as follows. Consider a satellite orbit-
ing around the Earth, one desires to estimate the atti-
tude of from Sun sensors. This is a classic question for
aerospace applications (see Bruninga [2007]). Typically
envisioned cases of application range from deployment of
micro-satellite from the ISS (International Space Station)
to attitude monitoring of spin or dual-spin satellite and
early detection and diagnosis of attitude instability. While
several estimation techniques have been considered earlier,
including video processing, inertial navigation, magnetom-
etry attitude determination (see e.g. Bak [1999]), it is
generally considered that the data produced with these
techniques have to be consolidated using another source
of information. Sun sensors, which are commonly available
(Hall and Harris [1970]), seem like a promising solution.
Indeed, these sensors are considered as dependable and
using them does not require any further investments.

To employ Sun sensors for estimating rotations, one has
to understand their functioning. The energy deposited in
a photocell being proportional to the cosine of the angle
of incidence of solar radiation, the output signal of a Sun
sensor is, roughly speaking, a cosine function of this angle.
Thus, using several sensors distributed onto the rigid body,
one can obtain an estimation of the Sun vector expressed

in a body frame. This property can be used to estimate the
planar rotation of a satellite with four Sun sensors alone
(Magnis and Petit [2013]). To generalize this approach to
the case of a 3D rotation, we employ the same setup of
sensors. Actually, investigations conducted in this article
show that a full 3D rotation motion can be estimated.

The set of sensors generate a signal which is impacted by
the nutation, the precession and the spin. In this paper,
we establish conditions guaranteeing that this impact can
be exploited to estimate the full attitude of the rigid body
under consideration.

The outcome of this article can seem surprising at first,
as it is generally considered that one vector measurement
is not enough to determine a 3D orientation (this fact is
formulated in the classic Wahba’s problem, see Wahba
[1965], Choukroun et al. [2006]). From this viewpoint,
Sun sensors are often used in combination with another
vector measurement device, such as a magnetometer for
low earth-orbit (Theil et al. [2003], Schimdt et al. [2008]).
However, this paper deals with another way of exploiting
Sun vector measurements. As we will show it in this con-
tribution, the spectral content of the Sun sensor measure-
ment generated by the rotation motion has the potential
to allow one to recover several interesting informations on
the 3D rotation. This is particularly true in free-motion,
i.e. when no torques are exerted on the rigid body.

The paper is organized as follows. In Section 2 we intro-
duce notations and define the rotation estimation problem.
Introducing a convenient representation of the rotation by
means of Euler angles, we compute the measurement equa-
tion (i.e. the signal produced by the Sun sensors during
the body rotation). The obtained formula contains several
terms where the role of each Euler angle is highlighted. In
Section 3, we analyze the spectral content of the measure-
ments. We show that, provided the various factors of the
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measurement equation satisfy some frequency separation
properties, one can separately estimate the angles. From
this simple data analysis, the nature of the error is de-
tailed. In Section 4, we invoke the theory of free-motion
and use it to establish analytic formulas involving Jacobian
elliptic functions describing the angles histories. These
formulas can be used to establish sufficient conditions
guaranteeing that the frequency separation properties are
satisfied. These conditions bear on the moments of inertia
of the rigid body, its initial nutation and its angular
momentum. In Section 5 we propose simulation results.
They stress the relevance of the method, and illustrate
typical estimation errors on the various components of the
rotation estimate. Finally, in Section 6 we give perspectives
for future works.

2. NOTATIONS AND PROBLEM STATEMENT

We consider a satellite equipped with four Sun sensors
pointing coplanar pairwise orthogonal directions

n1, n2, n3 = −n1, n4 = −n2
as shown in Figure 1. Note I1 ≥ I2 > I3 the inertial mo-
ments of the satellite. We consider two frames of reference:
the body-attached frame

(n1, n2, n1 × n2)

and an inertial frame (e1, e2, e3).

With such a sensor setup, at all times exactly two sensors
produce a nonzero signal generated by the perceived
sunlight represented by the vector S, the other two sensors
being in the shadow of the satellite. The (normalized)
output signal of sensor i is:

yi = max(S · ni, 0)

where S is the unit vector pointing the direction of the
Sun and · designates the scalar product. As n3 = −n1 and
n4 = −n2, we have

y1 − y3 = S · n1 , y2 − y4 = S · n2
Note R the rotation between the body frame and the
inertial frame. By definition

n1 = Re1 , n2 = Re2 , n1 × n2 = Re3

Thus,

y1 − y3 = S ·Re1 , y2 − y4 = S ·Re2

Fig. 1. Satellite equipped with 4 Sun sensors

Gathering the measurements in a complex number, we
define

y , y1 − y3 + i(y2 − y4) = S · (Re1 + iRe2) (2.1)

Introduce ϕ, θ, ψ the ZXZ Euler angles of R as in Landau
and Lifchitz [1982]. The rotation matrix writes

R =

(
cϕ cψ − sϕ sψ cθ −cϕ sψ − sϕ cψ cθ sϕ sθ
sϕ cψ + cϕ sψ cθ −sϕ sψ + cϕ cψc θ −cϕ sθ

sψ sθ cψ sθ cθ

)
where

• ϕ ∈ [0, 2π) is the precession angle
• θ ∈ (0, π) is the nutation angle
• ψ ∈ [0, 2π) is the spin angle
• c,s designate cos, sin respectively

Note (s1, s2, s3) the (constant) coordinates of the Sun
vector in the inertial frame. The following result holds

Proposition 1. The coplanar Sun sensors generate a
complex-valued measurement y of the form

y =
s1 + is2

2
(1 + cos θ)e−i(ϕ+ψ)

+ is3 sin θe−iψ

+
s1 − is2

2
(1− cos θ)ei(ϕ−ψ) (2.2)

Proof According to the expression of R, we have

y = s1 (cϕ cψ − sϕ sψ cθ − i(cϕ sψ + sϕ cψ cθ))

+ s2 (sϕ cψ + cϕ sψ cθ + i(−sϕ sψ + cϕ cψ cθ))

+ s3(sψ sθ + icψ sθ)

= s1 (c(ϕ+ ψ)− i s(ϕ+ ψ) + (1− cθ)(sϕ sψ + i sϕ cψ))

+ s2 (s(ϕ+ ψ) + i c(ϕ+ ψ)− (1− cθ)(cϕ sψ + i cϕ cψ))

+ i s3 sθ (cψ − i sψ)

= s1e
−i(ϕ+ψ) + i s1(1− cθ)sϕe−iψ

+ i s2e
−i(ϕ+ψ) − i s2(1− cθ)cϕe−iψ + i s3 sθe−iψ

= (s1 + is2)e−i(ϕ+ψ)

+
1− cθ

2
e−iψ(s1e

iϕ − s1e−iϕ − i s2eiϕ − is2e−iϕ)

+ i s3 sθe−iψ

which gives the conclusion.

Mathematically, we can now formulate our estimation
problem as follows

Problem 1. (rotation estimation from Sun sensors).
From measurements of the form (2.2) where ϕ,ψ, θ are
the respective precession, spin and nutation angle of a
rigid body and s1, s2, s3 are known constant values, find

estimates ϕ̂, ψ̂, θ̂ of the Euler angles.

Remark 1. One can make several choices to define the
inertial frame of reference, depending on the analysis
one wishes to perform. For example, one can exhibit
the non-observability of the rotation angle around the
Sun vector as follows. If the inertial frame was cho-
sen so that the Sun vector is aligned with e3, then
s1 = s2 = 0, s3 = 1. The measurement equation (2.2)
would reduce to y = i sin θe−iψ. Under this form, it is clear
that angles ψ and θ are observable and that ϕ is not, as
it does not implact the measurement. Thus, Problem 1
does not have a satisfying solution in the general case.
Typically, troubles will arise if the rigid body is animated
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with precession around the Sun vector. In Section 4 we will
make a different choice, handy for free-rotation analysis.

In the following, we invoke arguments of frequency sep-
aration in signal processing to explain how the sought-
after information on the angles can be obtained from the
measurements, under careful assumptions.

3. FREQUENCY ANALYSIS OF THE
MEASUREMENT EQUATION

We rewrite the measurement equation (2.2) as

y(t) = a1(t) eiφ1(t) + a2(t) eiφ2(t) + a3(t) eiφ3(t) (3.1)

with

φ1 , −ϕ− ψ a1 , (s1 + is2)
1 + cos θ

2
φ2 , −ψ a2 , is3 sin θ

φ3 , ϕ− ψ a3 , (s1 − is2)
1− cos θ

2

Under this form, the measurement is the sum of three
terms with phase φi and modulated amplitude ai. Inter-
estingly, if the φi, ai and their derivatives satisfy some
desirable properties, one can recover the instantaneous
frequencies dφi

dt by mean of windowed Fourier transforms
(see Mallat [1998] Chapter 4.4) as we will explain below.
This is a solution for this source separation problem.

For clarity of the exposition, we assume

θ � |s3|√
s21 + s22

, 1

wich implies |a3| � |a1|, |a2|. Thus, we consider measure-
ments of the form

y = a1(t)eiφ1(t) + a2(t)eiφ2(t)

Though we apparently lose generality, one should bear in
mind that the following analysis could, with additional te-
dious but relatively easy calculations, extend to the general
case (3.1) (practical implementation remains simple).

Let g be a window function (even, positive, with finite
support in [−0.5, 0.5] and unit L2 norm)∫ 1/2

−1/2
g2(t)dt = 1

By definition, its Fourier transform G satisfies

G(0) ≥ G(ν), ∀ν
and decays rapidly to 0 when ν grows. This decay is
characterized by (among other) the bandwidth ∆ν defined
as

|G(
∆ν

2
)| = |G(0)|√

2

In general, we have

G(ν)� G(0), ∀|ν| ≥ 2∆ν

Take a scaling factor τ > 0 and define the windowed
Fourier transform (a.k.a. spectogram Mallat [1998]) of the
signal y at time u and frequency ξ using g as window scaled
by τ as

Sy(u, ξ) =
1

τ

∫ τ/2

−τ/2
y(u+ t)g(

t

τ
)e−iξ(u+t)dt

=
1

τ

∫ τ/2

−τ/2
a1(u+ t)g(

t

τ
)ei[φ1(u+t)−ξ(u+t)]dt

+
1

τ

∫ τ/2

−τ/2
a2(u+ t)g(

t

τ
)ei[φ2(u+t)−ξ(u+t)]dt

, S1(u, ξ) + S2(u, ξ)

The spectogram satisfies the following property (adapted
from Mallat [1998], theorem 4.5).

Proposition 2. For j = 1, 2 we have

Sj(u, ξ) = aj(u)ei(φj(u)−ξu)G
(
τ(ξ − φ̇j(u))

)
+ εj(u, ξ)

with

|εj(u, ξ)| ≤
τ

2
√

3
|ȧj(u)|+ τ2

8
√

5
|äj |u + |aj(u)| τ

2

8
√

5
|φ̈j |u

(3.2)
where |·|u designates the supremum over [u− τ/2, u+ τ/2]

Before proving this result, let us interpret it. Assuming the
error terms εj are small, the spectrogram reduces to two
main terms

Sy(u, ξ) ' a1(u)ei(φ1(u)−ξu)G
(
τ(ξ − φ̇1(u))

)
+ a2(u)ei(φ2(u)−ξu)G

(
τ(ξ − φ̇2(u))

)
Thus, if the instantaneous frequencies are separated
enough with respect to the bandwidth of G, namely if they
satisfy

τ |φ̇1 − φ̇2| ≥ 2∆ν (3.3)

then |S(u, ·)| has two main lobes for

ξj , φ̇j(u), j = 1, 2

More precisely, we have

Sy(u, φ̇j(u)) ' aj(u)ei[φj(u)−uφ̇j(u)]G(0)

Hence, one can recover the instantaneous frequencies φ̇j(u)
by detecting the peaks of the spectrogram. Further, the
corresponding amplitude of the lobe gives us aj(u). As will
appear, these informations are instrumental in estimating
the three Euler angles.

Proof of Proposition 2. For a fixed value (u, ξ) and
t ∈ [u− τ

2 , u+ τ
2 ], note

aj(u+ t) = aj(u) + tȧj(u) +
t2

2
αj(t)

φj(u+ t) = φj(u) + tφ̇j(u) +
t2

2
βj(t)

with

|αj(t)| ≤ |äj |u , |βj(t)| ≤ |φ̈j |u
For brevity, we omit the bounds ± τ2 of the integrals below.
For j = 1, 2 we have
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Sj(u, ξ) = aj(u)
ei[φj(u)−ξu]

τ

∫
g(
t

τ
)e−it(ξ−φ̇j(u))dt

+ aj(u)
ei[φj(u)−ξu]

τ

∫
g(
t

τ
)e−it(ξ−φ̇j(u))(ei

t2

2 βj(t) − 1)dt

+ ȧj(u)
1

τ

∫
tg(

t

τ
)ei[φj(u+t)−ξ(u+t)]dt

+
1

2τ

∫
t2αj(t)g(

t

τ
)ei[φj(u+t)−ξ(u+t)]dt

= aj(u)ei[φj(u)−ξu]G
(
τ(ξ − φ̇j(u))

)
+ εj(u, ξ)

where

|εj(u, ξ)| ≤ |aj(u)|
∫
g(
t

τ
)|ei t

2

2 βj(t) − 1|dt
τ

+ |ȧj(u)|
∫
|t|g(

t

τ
)
dt

τ

+
|äj |u

2

∫
t2g(

t

τ
)
dt

τ

To conclude, we use the following two technical points.

(1) For any x ∈ R, we have

|eix − 1|2 = (cosx− 1)2 + sin2 x

= 2(1− cosx)

= 2
∑
n≥1

(−1)n−1
x2n

(2n)!
≤ x2

Thus, for all t

|ei t
2

2 βj(t) − 1| ≤ t2

2
|βj(t)| ≤

t2

2
|φ̈j |u

(2) For any n ∈ N, we have∫ τ/2

−τ/2
|tn|g(

t

τ
)
dt

τ
= τn

∫ 1/2

−1/2
|t|ng(t)dt

≤ τn
√∫ 1/2

−1/2
t2ndt

√∫ 1/2

−1/2
g(t)2dt

=
τn

2n
√

2n+ 1

Using the latter point for n = 1, 2 ends the proof.

If the separating condition (3.3) is met, the decay of G
isolates the contributions of S1(u, φ̇1(u)) and S2(u, φ̇2(u))
in the frequency domain. To safely consider that the
spectogram peaks detection will give satisfactory result,
one should verify that none of the 6 terms of (3.2) for
j = 1, 2 perturbates the location of any of the peaks
ξ = φ̇1(u), φ̇2(u). Gathering these requirements, the fol-
lowing set of conditions guarantees reliability of the peaks
detection

τ |φ̇1 − φ̇2| ≥ 2∆ν

τ |ȧj | � 2
√

3G(0)|aj |
τ2|äj |u � 8

√
5G(0)|aj(u)|, ∀u

τ2|φ̈j | � 8
√

5G(0)

Noting

c1 = 2
√

3G(0) , c2 = 8
√

5G(0),

converting these conditions in terms of Euler angles yields

τ |ϕ̇| ≥ 2∆ν

τ |(cos θ)′| � c1(1 + cos θ)

τ |(sin θ)′| � c1| sin θ|
τ2|(cos θ)|u � c2(1 + cos θ(u)), ∀u
τ2|(sin θ)|u � c2| sin θ(u)|, ∀u

τ2|ψ̈|, τ2|ϕ̈+ ψ̈| � c2


(3.4)

When g is e.g. a normalized Hann window, we have

∆ν ' 9.05 [rad], c1 ' 2.83, c2 ' 14.61

If the conditions (3.4) are satisfied, then the study of the
local maxima (their arguments and value) of Sy will give
a convenient and reliable solution to the stated problem.
In detail, we use the following algorithm (solution to the
stated Problem 1).

Algorithm [under assumptions (3.4)]

Inputs :

• sampled data y[k], sampling time t[k]
• window function g
• window size τ

Steps for each t[k]

• calculate the spectogram Sy(t[k], ·) (e.g. by mean of
a fast Fourier Transform)

• find the two main lobes of |Sy(t[k], ·)| corresponding
to frequencies ξ1, ξ2 with |ξ1| > |ξ2| and amplitudes
m1,m2 (e.g. by an exhaustive search of local maxima)

• compute estimates

d̂ψ

dt
[k] = −ξ2

d̂ϕ

dt
[k] = ξ2 − ξ1

• estimate φ[k], ψ[k] by cumulative numerical integra-
tion of the estimates of their respective derivative
defined above

• estimate θ[k] from

̂cos θ[k] =
2m1√

s21 + s22 G(0)
− 1

ŝin θ[k] =
m2

|s3|G(0)

Remark 2.

• The algorithm provides average values (over a time

window of size τ) of ϕ̇, ψ̇ and θ . Thus, it does not
allow to observe high-frequency variations (compared
to 1

τ ) of these quantities.
• The algorithm needs initial values of φ and ψ to

estimate the full rotation.
• The computation of Sy(t[k], ·) requires the values of
y over [t[k]− τ/2, t[k] + τ/2].

In the next section, we determine sufficient conditions such
that (3.4) hold in the case of a free rotation.

4. ROTATION ANALYSIS IN FREE-MOTION

We consider that the motion of our satellite satisfy the
equations of (torque) free-motion. We establish sufficient
conditions bearing on the system parameters (inertia)
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and the initial condition guaranteeing practicability of the
previously described technique of estimation.

We refer to the notations of Landau and Lifchitz [1982]
(the following derivation could also be found in a more
modern formulation in Abraham and Marsden [1978] or
Murray et al. [1994]). Note Ω and M the angular veloc-
ity, respectively angular momentum, of the satellite, and
(Ω1,Ω2,Ω3), (M1,M2,M3) their coordinates in the body
frame. We have

Mi = IiΩi, i = 1, 2, 3

The angular velocity and the Euler angles are related by

Ω1 = ϕ̇ sinψ sin θ + θ̇ cosψ (4.1)

Ω2 = ϕ̇ cosψ sin θ − θ̇ sinψ (4.2)

Ω3 = ϕ̇ cos θ + ψ̇

In this section we consider the particular case of a free
rotation (i.e: no torque). This assumption implies that M
is constant over time, and that the Ωi satisfy the free Euler
equations

I1Ω̇1 + (I3 − I2)Ω2Ω3 = 0

I2Ω̇2 + (I1 − I3)Ω3Ω1 = 0

I3Ω̇3 + (I2 − I1)Ω1Ω2 = 0

An adequate choice of the inertial frame allows one to
compute explicit expression of the Euler angles depending
on two parameters only, the norm of the angular momen-
tum M , |M| and the initial nutation θ0. For clarity, we
introduce two scaling parameters, ε and λ, as follows

I1 , I2(1 + ε)

I1 , I3(1 + λ)

ε scales the symmetry of the satellite around the I3 axis
(ε = 0 correspond to a symmetric satellite), while λ scales
the elongation of the satellite along this axis. We have the
following equivalence

I1 ≥ I2 > I3 ⇔ 0 ≤ ε < λ

4.1 Angular velocities

Conveniently, we choose the inertial frame so that M is
aligned with the vertical vector e3. Then, we have

I1Ω1 = M sinψ sin θ (4.3)

I2Ω2 = M cosψ sin θ (4.4)

I3Ω3 = M cos θ (4.5)

Further, we choose the inertial frame so that

ψ(0) =
π

2
, θ(0) = θ0

or equivalently

Ω1(0) =
M

I1
sin θ0, Ω2(0) = 0, Ω3(0) =

M

I3
cos θ0

The motions under consideration in this study are such
that

ε

λ
< cos2 θ0 < 1 (4.6)

This condition will later guarantee that the oscillations of
θ have magnitude smaller than π

2 . Note

α ,
ε

λ− ε
k ,
√
α tan θ0

w ,
√
λ(λ− ε)M

I1
cos θ0

A1 ,
M

I1
sin θ0 = Ω1(0)

A2 , (1 + ε)

√
λ

λ− εA1

A3 ,
M

I3
cos θ0 = Ω3(0)

ωi ,
Ωi
Ai
, i = 1, 2, 3

Condition (4.6) guarantees that k ∈ (0, 1). The Euler
equations become

dω1

d(wt)
= ω2ω3 ω1(0) = 1

dω2

d(wt)
= −ω3ω1 ω2(0) = 0

dω3

d(wt)
= k2ω1ω2 ω3(0) = 1

Thus, see Abramowitz and Stegun [1964] page 574,
(ω1,−ω2, ω3) satisfy the differential equation of the Ja-
cobian elliptic functions cn, sn,dn of parameter k2. As a
result, we have

Ω1(t) = A1 cn(wt)

Ω2(t) = −A2 sn(wt)

Ω3(t) = A3 dn(wt)

Note

T =
4

w

∫ 1

0

dx√
1− x2

√
1− k2x2

By construction, Ω1 and Ω2 are T -periodic, Ω3 is T
2 -

periodic.

4.2 Euler angles

In our problem, the nutation angle is characterized by its
cosine value. From (4.5) we have

cos θ(t) =
I3
M

Ω3(t)

= cos θ0 dn(wt)

= cos θ0
√

1− k2sn2(wt) (4.7)

Thus, we have

d

dt
cos θ(t) = cos θ0w (dn(wt))′

= −k2w cos θ0 sn(wt) cn(wt)

d2

dt2
cos θ(t) = k2w2 cos θ0 dn(wt)

(
sn2(wt)− cn2(wt)

)
sin θ(t) = sin θ0

√
1 + α sn2(wt)

d

dt
sin θ(t) = α sin θ0

sn(wt) cn(wt) dn(wt)√
1 + α sn2(wt)

w

Hence, using (4.7) and the preceding relations
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cos θ ≥ cos θ0
√

1− k2

=

√
λ cos2 θ0 − ε

λ− ε

|(cos θ)′| ≤ ε
√

λ

λ− ε
sin2 θ0

2

M

I1

|(cos θ)′′| ≤ ελ sin2 θ0 cos θ0

(
M

I1

)2

sin θ ≥ sin θ0

|(sin θ)′| ≤ αw sin θ0
2

= ε

√
λ

λ− ε
sin θ0

2

M

I1
cos θ0

|(sin θ)′′| ≤ (1 + α)αw2 sin θ0

=
ελ2

λ− ε

(
M

I1

)2

cos2 θ0 sin θ0

The spin angle is recovered via the value of its tangent
from (4.3),(4.4)

tanψ(t) =
I1
I2

Ω1(t)

Ω2(t)

= −
√
λ− ε
λ

cn (wt)

sn (wt)

After some calculations, ones has

ψ̇(t) =
λ(λ− ε)dn(wt)

λ− ε+ εsn2(wt)

M

I1
cos θ0 > 0

ψ̈(t) =
−λε(λ− ε) cos θ0

(λ− ε+ ε sn2(wt))2
M

I1
w

(
dn2(t) +

1

cos2 θ0

)
(4.8)

Equations (4.1) and (4.2) give the derivatives of the
precession angle

ϕ̇(t) =
Ω1(t) sinψ(t) + Ω2(t) cosψ(t)

sin θ(t)

=
I1Ω2

1(t) + I2Ω2
2(t)

I21Ω2
1(t) + I22Ω2

2(t)
M

=
λ− ε+ (1 + λ)ε sn2(wt)

λ− ε+ ε sn2(wt)

M

I1
> 0 (4.9)

ϕ̈(t) =
λε(λ− ε)

(λ− ε+ ε sn2(wt))2
M

I1
w × 2dn(wt) (4.10)

Note that, from (4.7), θ oscillates between θ0 and

arccos(θ0
√

1− k2) < π
2 , whereas ϕ and ψ are strictly in-

creasing. From (4.9), (4.10) and (4.8) one has

M

I1
≤ ϕ̇ ≤ M

I1
(1 + ε)

|ψ̈| ≤ ελ
√

λ

λ− ε
1 + cos2 θ0

2

(
M

I1

)2

|ϕ̈+ ψ̈| ≤ 1

2
ελ

√
λ

λ− ε

(
M

I1

)2

4.3 Conditions to guarantee frequency separation

Considering the analytic expressions derived above for
the Euler angles and their derivatives, one can formulate
conditions bearing only on M

I1
, λ, ε and the initial nutation

θ0 to guarantee that (3.4) holds.

τ
M

I1
≥ 2∆ν

τ
M

I1
ε

√
λ

λ− ε � 2c1(
τ
M

I1

)2

ε
λ2

λ− ε � c2

One can regroup and simplify these conditions in the case
of a nearly symmetric satellite, which gives the following
result.

Proposition 3. If ε satisfies

ε� λ

then the following conditions guarantee that (3.4) hold

τ
M

I1
≥ 2∆ν

τ
M

I1
ε� 2c1(

τ
M

I1

)2

ελ� c2

Remark 3. These assumptions rule out rotation move-
ments with strong precession around the Sun vector (see
Remark 1).

5. SIMULATION RESULTS

For illustration we simulate a satellite as a homogeneous el-
lipsoid with semi-axes 0.5m, 0.75m, 1m and mass 200 kg.
We use parameters

M = 1500 [kg.m2/s]

θ0 = 0.3 [rad]

s1 = s2 = s3 =
1√
3

which gives

M

I1
= 6 [rad/s]

λ = 0.92

ε = 0.25

Ω1(0) = 1.77 [rad/s]

Ω2(0) = 0

Ω3(0) = 11.0 [rad/s]

T = 1.31 [s]

For the windowed Fourier transforms we use

g(t) = 2

√
2

3
cos2 πt (Hann window)

τ = 6[s]

The differential equations for the angular velocity and
Euler angles were solved using explicit computation of the
Jacobian elliptic functions for Ωi, θ, ψ, ϕ̇. The correspond-
ing motion is reported in Figure 2. θ(t) is T

2 periodic. ψ and
ϕ grow in an almost affine fashion, up to a bounded term.
This last term (hardly visible in Figure 2) is T -periodic for
ψ and aperiodic for ϕ. Therefore, the satellite never goes
back to its initial attitude (see Landau and Lifchitz [1982]
page 182).
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Fig. 3. Measurements corrupted by noise

The considered measurements are of the form (2.1) with
complex additive Gaussian white noise of covariance
0.15× I2×2. They are represented in Figure 3.

The estimating errors of the angles are given in Figure 5
over 10 s. Reconstruction of ϕ and ψ is very satisfactory.
The reconstruction error remains bounded at all times
while these quantities steadily grow. On the other hand,
reconstruction of the (at-all times bounded) nutation
is less accurate. The estimator catches the mean value
of θ but, as expected (see Remark 2) the oscillations
remain undamped. However, this is already satisfactory
especially with respect to the relatively little importance
of this variable on the problem of estimating the satellite
orientation. To confirm this, we report the Frobenius norm
of the error of the estimation of the rotation matrix in
Figure 5. This absolute error is below 6%. To highlight
the importance of the scaling factor τ , we compute the
spectogram |Sy| for the set of parameters of the example
with τ = 6s and for the same set of parameters with a
different τ = 4s in Figures 6 and 7. In both figures, one
can clearly see the two main lobes of the spectogram and
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Fig. 4. Euler angles estimation error
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Fig. 5. Rotation matrix error in Frobenius norm

the peaks corresponding to frequencies−ψ and−ϕ−ψ. For
τ = 4 s, the peaks corresponding to −ψ are perturbated by
side oscillations of the main lobe. The estimation becomes
less accurate.

6. CONCLUSION

In this paper, we have demonstrated that the 3D rotation
of a satellite in free motion can be estimated by means
of embedded Sun sensors (illumination sensors) mounted
on its surface. Some assumptions guaranteeing the non
ambiguity of the measurements have been established by a
careful study of the solutions of the free rotation dynamics
and have been formulated in terms of its inertia parame-
ters, its angular momentum, and its initial nutation.

The problem under study in this contribution is relatively
general. Specific studies could be conducted in a similar
manner for other governing dynamics: for spinning missiles
or ammunitions in atmospheric flight, or other sorts of
projectiles. Interestingly, one could draw some parallel
between our application and some recent works. In a
completely different area, Kitani et al. [2012] consider
a camera being embedded in an American football, in

19th IFAC World Congress
Cape Town, South Africa. August 24-29, 2014

10010



Fig. 6. Spectogram for τ = 6 s

Fig. 7. Spectogram for τ = 4 s

order to provide the spectator of the game a third-person
point-of-view (the ball’s viewpoint). In this application,
estimating the camera rotation is a prerequisite to cancel
the extreme spinning motion of the camera during flight,
in view of aligning the frames in the video by subsampling
of the recorded sequence. Our approach could probably be
used to provide a continuous estimate of the rotation, in
3D, for improved video reconstruction.

Other paths for future research could also concern a dual
problem where the sensors are not embedded but remote
and fixed (Hewgill [1992]). The cameras would then be
used to reconstruct the 3D rotation of the rigid body.
This problem is of importance in numerous autonomous
robotics applications. For example, in the aerospace area,
it is often desired to grasp a tumbling object, or a satel-
lite. The tumbling motion is usually generated by a mal-
functioning of the satellite attitude control system, which
eventually gives rise to a free rotation motion. Capturing
of such object has been in the scope of numerous on-orbit
servicing project (see e.g. Landzettel et al. [2006]) where
rotation estimation is a critical issue. We believe that
illumination sensors employed with an algorithm similar

to the one presented in this article could be a relevant
technique in this context.
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