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Abstract— We address the problem of position estimation for
a rigid body using an inertial measurement unit (IMU). In this
paper, we present a Kalman filtering technique which takes ad-
vantage of the magnetic disturbances usually observed indoors.
This is an important topic for military operations in urban
areas where GPS is often unavailable. This approach yields
significant improvements in estimation accuracy. We illustrate
our technique with several experimental results obtained with
a low cost IMU.

INTRODUCTION

Numerous military and civilian control applications re-
quire high accuracy position, speed and attitude estima-
tions of a solid body. Examples range from Unmanned
Air Vehicles (UAV), Unmanned Ground Vehicles (UGV),
full-sized submarines, sub-sea civil engineering positioning
devices [11], to name a few. A widely considered solution
is to use embedded Inertial Measurement Units (IMU).
Accelerometers, gyroscopes (and possibly magnetometers)
signals can be used to derive position information through
a double integration process [5], [4]. Because of sensors
drifts, this approach requires very high precision IMUs
such as those found in certain full-sized aircrafts, military
submarines, and missiles. When cost, space, and weight
constraints become stringent, other solutions need to be used.
Two prime examples are sensors fusion on ground vehicles
equipped with odometers and GPS (for outdoor and non mil-
itary critical applications as considered in [8]), and computer
vision through cameras for indoor robotics. It is interesting
to get an idea of prices and obtained performance. Typically,
a ground navigator based on IMU measurements used for
petroleum research costs more than 20,000 USD, while its
position estimates drift by 3 Nautic miles per hour (when
the navigation system is used only during maneuvers and
manually forced to a zero update around steady points, the
drift in position can be reduced to 100 m for a 3 Nautic miles
trip). A recent trend has been to heavily rely on the well
known Global Positioning system (GPS) technology. In facts,
this technology is very appealing for low weight, low cost,
and low size applications (see e.g. [7]). Yet, it suffers from
major drawbacks. It has a limited availability (especially in
the context of military operations), its accuracy is (roughly
speaking) of 10 m of error, and the GPS signal is quite weak.
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Fig. 1. A typical platoon of soldiers in action as envisioned in the BOA
projet. c©L.Chabane-BD Médias for Délégation Générale pour l’Armement
(DGA). A team leader keeps track of his soldiers thanks to real-time position
information reported on his arm portable display.

GPS is very poorly useable between buildings or in forests.
Very importantly, it is not available indoors. Alternative
solutions are under development. Most of them rely on
computer vision using cameras or lasers (see e.g. [13]), e.g
to match partial information from maps or to progressively
construct a map of the neighborhood.

Yet, cameras and other optical devices are often to be
discarded. In numerous missions (e.g. soldiers or policemen
taking control of a building or firemen rescuing people in
smoky rooms), lighting conditions, smoke, or high temper-
ature totally prevent camera from being used. The recent
progress in very low cost (less than 1,500 USD), low weight
(less than 100 g) and low size (less than 3 cm2) IMUs have
spurred a broad interest in the development of IMU-based
positioning technologies. These Micro-Electro-Mechanical
Systems (MEMS) IMUs appear to have quickly increasing
capabilities. Several manufacturers are announcing new mod-
els under 5,000 USD capable of less than 20 deg/hr.

So far, there does not exists any reported experiment
proposing to estimate the position from such a low cost
IMU. In the literature, these IMUs are only used for attitude
estimation (see e.g. [3], [9] or [2] for an application to the
control of mini-UAVs in closed loop). Some tentative work
(using higher-end IMUs) address the problem of velocities
estimation. In these cases, the speed information is obtained
from a GPS receiver using the Doppler effect (see [5] for
details on the quality of the obtained measurements infor-
mation) or from odometers (in the case of ground vehicles).
For ground vehicles, position is usually primarily derived
from GPS data complemented with higher frequency mea-
surements from IMU and magnetometer (see e.g. [12]). Our
focus in on indoor missions involving humans. It is desired to
remotely estimate their positions. During preliminary tests,

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

WeA09.2

ISBN: 978-960-89028-5-5 2853



0 200 400 600 800 1000 1200 1400 1600
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

time (s)

Fig. 2. Variation of the magnetic field norm during a 2.4 m horizontal
displacement inside a business building office.

it quickly appeared to us that, given a poorly known models
of the dynamics, it is impossible to get a position error
below 50 m after a few minutes of experiments from a low
cost IMU (e.g. a 3DMGX1 from Microstrainr). High-end
IMUs are usually much too heavy for human-oriented appli-
cations. Further, while the GPS signal is unavailable indoor,
experimental measurements have shown that the magnetic
field in a typical business building is strongly disturbed
(by the building structure, electrical equipments, computers,
and cell-phones among others). For sake of illustration, we
report the variations of the magnetic field norm inside a
business building office in Figure 2. Consequently, classic
estimation algorithms based on heading measurements are
very inefficient in such a context.

Our claim is that these disturbances (which are assumed
to be constant) can actually be used to improve the position
estimation. Our work is related to the approach advocated
in [6] for gravimetry aided navigation. Very importantly, our
approach does not rely on any a-priori magnetic map. It
simply uses Maxwell’s equation. In words, we note that, in
a disturbed magnetic field, it is possible to determine when
a solid body equipped with a magnetometer is moving. If it
moves, then the sensed magnetic field must change according
to Maxwell’s law. If the magnetic measurements do not
change significantly, then the solid body is not moving.
This permits to rule out velocity drifts in our estimation.
Eventually, this improves the position information obtained
by integrating the velocity estimate. Experimental results we
present on a preliminary simple testbed, using a very low cost
inertial unit lead us to believe it is possible to estimate the
position of a man bearing a low cost IMU who is investing a
building. This objective fits in the network centric warfare (as
defined in [10]) context “Bulle Opérationnelle Aéroterrestre”
(BOA), led by the Délégation Générale pour l’Armement
(DGA) for the French Department of Defense. A typical
mission in the BOA environment is depicted in Figure 1.

The article is organized as follows. In Section I, we
define the position estimation problem. Required notations
are presented. In Section II, we expose our use of magnetic
disturbances. In particular, we focus on eliminating bias in
velocity estimates. In Section III, we present experimental

results and give implementation details. In Section IV, we
conclude and suggest several directions of improvement.

I. PROBLEM STATEMENT

In this paper, we do not describe in details the dynamics
sensed by the IMU. Our primary goal is to stress the
information from the magnetic sensor that can be exploited.
When actually implementing the estimation filter, we often
include numerous terms in the dynamics model for sake of
accuracy, but very good estimates can be recovered from the
basic equations we present here.

A. Coordinate frames, system of equations, notations

We consider the motion of an IMU (viewed as a material
point) located at the center of gravity of a moving body we
wish to estimate the position of. The system can simulta-
neously rotate and translate. It has six degrees of freedom.
A body reference fixed frame with origin at the center of
gravity of the IMU can be considered. In that case, the x, y
and z axis are the IMU axis (i.e. are consistent with the inner
sensors orientations). In the following, subscript b refers to
this body frame.

As inertial reference frame, we consider the NED frame:
North-East-Down, the X axis is tangent to the geoid and is
pointing to the north, the Z axis is pointing to the center
of the earth, and the Y axis is tangent to the geoid and is
pointing to the East. Subscript i refers to this inertial frame.

The IMU delivers a 9 parameters vector Y =
[YV YΩ YM ]T obtained from a 3-axis accelerometer, a
3-axis gyros and a 3-axis magnetometer. Measurements are
noisy and biased. Classically, we consider that the accelerom-
eter signal YV has a bias BV (independently on each axis)
and suffers from additive white noise µv , that both the
magnetometer signal YM and the gyros signal YΩ have
additive white noises µM and µΩ, respectively. Finally, there
is a drift BΩ on YΩ. It is possible to consider unknown
scale factors to increase filtering accuracy, but these are not
necessary in a first approach. We denote by BV the drift off
the accelerometer and by BΩ the drift off the gyros. Noting F
the external forces (other than gravitational) acting on the
IMU, and R the rotation matrix from the inertial frame to
the body frame, we can write the measurement equations

YV = F −R~g +BV + µV

YΩ = Ω +BΩ + µΩ

YM = M + µM











(1)

where ~g stands for the gravity, and M is the magnetic field
in the body frame. For the bias vector B = [BV BΩ]T ,
several models can be considered depending on accuracy
requirements. A second order damped oscillator driven by a
white noise is a good choice. Classically, in filter equations,
bias will be added in an extended state.

From a dynamical system point of view, the state of the
rigid body is described by the 12 following independent
variables

• X = [x y z]
T is the position of the center of gravity

of the IMU in the inertial frame
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• V = [u v w]
T is the vector velocity of the center of

gravity of the IMU in the body frame
• Q = [φ θ ψ]

T The Euler angles, i.e. the angles
between the inertial frame and the body.

• Ω = [p q r]
T it the angular rate of turn in the body

frame

The input vector of the dynamics are the forces F =
[Fu Fv Fw]

T and torques Γ = [Γu Γv Γw]
T . We call

R the rotation matrix between the inertial and the body
reference.

Remark: To avoid the well known singularities when
angles cross π

2
, quaternions can be used to represent the Euler

angles. For sake of simplicity, we do not present quaternions
equations but they certainly are handy in this situation.

B. Equations of motion

The matrix of inertia of the system is unknown. It is
approximated by the identity matrix. Models for the unknown
forces F and torques Γ may be chosen. A basic choice to
model them as the output of a first order stable system driven
by white noises. Indirectly, the variance of the white noise is
used to specify the manoeuvring capabilities of our system.

Ḟ = −
F

τF
+ νF

Γ̇ = −
Γ

τΓ
+ νΓ

(3)

where τF ,τΓ are positive constant. In summary, using the
matrix R defined in equation (2), we get the following system
dynamics

Ẋ = RTV

V̇ = −Ω × V + F

Q̇ = G(Ω, Q)

Ω̇ = Γ























(4)

with

G(Ω, Q) =





p+ (q sin(φ) + r cos(φ)) tan(θ)
q cos(φ) − r sin(φ)

(q sin(φ) + r cos(φ))cos(θ)
−1





II. USING MAGNETIC FIELD DISTURBANCES TO

INCREASE OBSERVABILITY

The measurements obtained from the IMU are expressed
in the body coordinates frame and are related to a vector in
the inertial frame by the matrix R through the relation

M = RMi (5)

The usual way to take the magnetic measurements into
account is to consider it gives a direct reading on the attitude,
namely a direct measure of magnetic heading vector. This
is a quite valid assumption except when there are magnetic
disturbances. This approach gives very good results, provided

magnetic disturbances are negligible. Yet, as can be seen in
Figure 2 and Figure 3, these disturbances are not negligible
indoor, e.g. in typical business offices or houses. One can
notice the important variations of magnetic heading when

  0.2

  0.4

  0.9

30

60120

0

Fig. 3. Variation of (projected) magnetic field during during a 2.4 m hor-
izontal displacement inside a business building office. Heading information
is strongly altered.

making a simple (slow) 2.4 m horizontal displacement in
such a environment, and also remark the large variations
of the magnetic field norm during the same horizontal
displacement.

Using the inertial frame, we use Maxwell’s equations [1]
to derive the following three properties

• The magnetic field is stationary. According to Faraday’s
law of induction in the absence of electrical sources
∂Mi

∂t
= 0. In other words, the magnetic field is a

function of the position only. We note it Mi(X).
• The magnetic field is a potential field. According to

Ampère’s law, in the absence of electric and magnetic
sources, curl(Mi) = 0. Therefore, there exists a scalar
function h(X) such that Mi = ∇h.

• The divergence of the magnetic field is zero: div(Mi) =
0. Thanks to the previous property, this implies ∆h =
hxx + hyy + hzz = 0

In the body frame, one can differentiate (5) to get the
following differential equation thanks to a chain rule

Ṁ = −Ω ×M +R∇2hRTV (6)

To estimate the gradient of M , we perform an estimation in
the inertial frame. We extend the state by adding the magnetic
field M and the independent gradients H . Due to the three
properties presented above, there are only five independent
gradients to look for. These are, in the inertial frame H ,
[hxx hxy hxz hyz hzz]

T
∈ R

5.
A first approach (given for its tutorial value) to this

estimation problem can be to assume that the gradient of
the magnetic field satisfy some first order dynamics driven
by white noises νH . In other words, we can assume that

Ḣ = −
H

τH
+ νH (7)

where τH is a positive constant. In practice, this model is not
really sufficient to capture the richness of the magnetic field
gradients dynamics. Typical (from experiment) variations of
one such gradient is reported in Figure 4. Depicted slopes
suggest second derivatives are not neglectable. For sake of
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R =





cos (ψ) cos (θ) sin (ψ) cos (θ) − sin (θ)
− cos (φ) sin (ψ) + sin (φ) sin (θ) cos (ψ) cos (φ) cos (ψ) + sin (φ) sin (ψ) sin (θ) cos (θ) sin (φ)
sin (φ) sin (ψ) + cos (φ) sin (θ) cos (ψ) − sin (φ) cos (ψ) + cos (φ) sin (ψ) sin (θ) cos (θ) cos (φ)



 (2)
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Fig. 4. Histories of hzx the partial derivative of the z component of the
magnetic field in the x inertial direction during a 2.1 m move at constant
speed along a wood (therefore non-magnetic) rail.

performance, it is recommended to use sophisticated higher
order dynamics instead of (7) (angles, and velocities estimate
can actually be used in the definition of this dynamics).
Finally, with this approach, the extended state we consider
has 20 scalar variables. We will use an extended Kalman
filter to estimate it. Equation (6) plays a key role in this
observation problem. It is the only one giving absolute
information on V .

III. FILTER DESIGN AND EXPERIMENTAL RESULTS

A. Filter design

The state of our filter is composed of the 12 (independent)
configuration states for our 6 DOF IMU, 6 states used to
model the torques and forces (with can be optionally com-
plemented by 6 extra state to complete model the dynamic on
F and Γ with second order dynamics for example), 6 states
to model the sensor error (which can become 12 with a
second order modelling approach), 3 to model the magnetic
field M , 5 for its independent derivatives H (7 more can be
considered using second order models). The state vector used
to obtained the experimental results presented in this paper is
composed of 38 variables. The filter equations are presented
below. In implementation, the covariance matrices can be
initialized with values consistent with the ranges of dynamics
under consideration (accelerations, speeds...) of our system.
The filter updates are synchronized with the 75 Hz IMU
measurements. Classically, discrete update equations are con-
sidered. A special attention is paid to maintain the covariance
matrices positive. Note Pp the 38× 38 covariance matrix of
the state used for prediction, Pe the 38×38 covariance matrix
of the state used for estimation, Q the 38 × 38 covariance
matrix used in the noise dynamics, R the 9 × 9 covariance
matrix considered in the sensor noise definition, Xp the 38
dimensional predicted state, Xe the 38 dimensional estimated

state, A the 38 × 38 matrix of the system obtained by
linearizing dynamics (4)-(6)-(7), C the 9×38 matrix obtained
by linearizing the measurement equation (1), Ẋ = F (X),
and T the sample time (between measurements updates). We
first do a prediction from time k to k+ 1, obtaining Xp and
Pp , and then estimate the state through the measurements
to obtain Xe and Pe. The updates are computed as follows

Xp = Xe + F (Xe, U)T

Pp = (I +AT )Pe(I +AT )T +QT + (AQ+QAT )
T 2

2

+AQAT T
3

3
Yp = [F −R~g +BV ; Ω +BΩ;M ]T

K = PpC
T (R+ CPpC

T )−1

Xe = Xp +K(Y − Yp)

Pe = (I −KC)Pp(I −KC)T +KRKT

B. Experimental testbed

Our experimental testbed is designed to illustrate the
relevance of exploiting the potential field nature of the
magnetic field observed in usual buildings. So far, this
(simple) testbed only permits one dimensional movements
in a vertical plane. The magnetic field is unknown and has
3-dimensional variation. This enables us to precisely measure
displacements.

An inertial measurement unit is fixed on a trolley which
can roll along a 2.5 m wood rail. No a priori information
about this motion was taken into account. We use equally
valued parameters for the x and z axis in the covariance
matrices Pe and Q. The (3DMGX1 from Microstrainr)
IMU provides measurements at a 75 Hz rate. The experiment
has been used in different rooms in our building. Observed
results are very similar.

Tests are conducted as follows. We push (in no particular
way) the trolley along the rail from one displacement mark
to the next one. This way, we do 3 go-stop-back and then
let the IMU to rest. First, we place our test bed outdoor in
a non magnetic-perturbed area. It is easily verified that our
filter gives similar results wether the gradient of the magnetic
field was used or not (i.e. omitting equations (6) and (7) or
not). Then, we move our test bed inside a building. For sake
of illustration, we also try another experiment by using a
15 degrees inclination for the rail. There is no noticeable
difference in the observation accuracy.

Finally, it is important to mention that when using our
test bed, we restrict ourselves to a 2-D problem by zeroing
the velocity along the y-axis by assuming ẏ = v = 0 and
p = r = 0. A complete three-dimensional experiment is
currently in development.
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Fig. 5. When no magnetic disturbances are present, the position estimates
(slowly) diverge over time.
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Fig. 6. When no magnetic disturbances are present, the velocities estimates
do not remain close to zero. This is a major problem for position estimation.

C. Experimental results

For each conducted experiment, we present speed and
position estimates histories. The z-axis of our sensor is
pointing down, perpendicular to the rail, the x-axis is aligned
with the rail. (blue plots refer to the z-axis, red ones refer
to the x-axis). A unique set of tuning parameters is used
throughout the tests. We give a position reference in black.

1) Outdoor experiment: We choose a non magnetic per-
turbed area. Due to the lack of magnetic disturbances there is
no significant improvement over a classic IMU Kalman filter.
Figure 5 and Figure 6 present the obtained results. The posi-
tion errors diverge over time. Without magnetic disturbances,
the filter can not get rid of errors in velocities. The situation
is very different indoors, as will be demonstrated next.
Interestingly, it can be noted that magnetic perturbations
bring sufficient information when the experiment is located
within a 5 m disc around a light-pole.

2) Indoor horizontal experiment: First, a short distance
displacement is performed. As can be seen in Figure 7, the
(non overshooting) ramps transients are well estimated as
long as they are reasonably fast. When the transients are too
quick, position bias and overshoots appear. The actual accel-
erations are in fact way out of the range of expected values
(which standard deviation was defined as 0.5m.s−2). In both
cases, the velocities are well estimated. Asymptotically, these
estimates remain close to zero, which could not be achieved
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Fig. 7. Short range displacements. Position along the horizontal rail
estimate is reported. A bias appears when the transients become too fast.
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Fig. 8. Short range displacements. Velocities estimates are reported. At
rest, they remain close to zero.

without taking advantage of the magnetic disturbances (one
can compare Figure 8 and Figure 6). Precise measurements
on our experiment reveal that the position error is below 5 cm
over 150 s of tests.

3) Indoor long time horizontal experiment: A standard
benchmark for IMU consists in measuring long-term errors
during quasi-static transients. Such an experiment stresses
the quality of low-frequency noises rejection. It is critical
because of the already discussed integration process. We
performed a 30 minutes experiment corresponding to a
2 m displacement. Results are summarized in Figure 9.
Noticeably, the observed 90 cm position error is very low.
This experiment was also used to derive the magnetic field
gradient estimates presented in Figure 4. Velocities estimates
reported in Figure 10 have a not surprisingly low mean value
of 3e− 5ms−1.

4) Indoor 15 deg experiment: The experimental test bed
was oriented to be pointing down with an angle of 15 deg.
Thanks to this, we could also get information from the
gradient of the magnetic field with respect to the z-direction.
Progressively, we moved the IMU forward by 1.8 m (two
30 cm steps followed by three 15 cm steps, a 30 cm step
and eventually one 15 cm step and one 30 cm step). Then we
moved it back at the starting point and performed two large
steps (1.5 m forward and back). One can easily recognize this
motion in Figure 11. Again velocities, reported in Figure 12,
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Fig. 9. Long-term low distance displacement. Reference positions are
straight lines. Position estimates feature a low long-term error.
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Fig. 10. Long-term low distance displacement. Velocities estimates.

remain close to zero when the IMU is at rest.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

On our current simple testbed, we obtained some pre-
liminary results that stress the relevance of using magnetic
disturbances to improve the position estimation accuracy
of IMU signals filtering. We are currently building a more
advanced setup for extensive three dimensional testing. In-
strumentation, especially position and velocities measure-
ments, is a key issue that remain to be addressed in this
3D configuration. On the performance improvement side,
we believe there is room for refinements in the sensors
modeling using higher order filters. It can be also expected
that different filtering techniques can be used, since our
approach merely relies on physics (Maxwell’s equation). At
last, we would like to mention that we plan to use these
position estimators for the control of mobile wheeled robots
that are asked to move both indoor and outdoor.

REFERENCES

[1] R. Abraham, J. E. Marsden, and T. Ratiu. Manifolds, Tensor Analysis,

and Applications. Springer, second edition, 1988.
[2] P. Castillo, A. Dzul, and R. Lozano. Real-time stabilization and

tracking of a four rotor mini rotorcraft. IEEE Trans. Control Systems

Technology, 12(4):510–516, 2004.
[3] S. Changey, D. Beauvois, and V. Fleck. A mixed extended-unscented

filter for attitude estimation with magnetometer sensor. In Proc. of the

2006 American Control Conference, 2006.

0 50 100 150 200 250 300 350 400
−1

−0.5

0

0.5

1

1.5

2

time (s)

x position (m)

z position (m)

Fig. 11. Succession of steps when the experimental testbed is pointing
down with a 15 deg angle. Position estimates.

0 50 100 150 200 250 300 350 400
0. 8

0. 6

0. 4

0. 2

0

0.2

0.4

0.6

time (s)

 
u

0 50 100 150 200 250 300 350 400
0.02

0.015

0.01

0.005

0

0.005

0.01

0.015

time (s)

 
w

Fig. 12. Succession of steps when the experimental testbed is pointing
down with a 15 deg angle. Velocities estimates.

[4] P. Faurre. Navigation inertielle et filtrage stochastique. Méthodes
mathématiques de l’informatique. Dunod, 1971.

[5] M. S. Grewal, L. R. Weill, and A. P. Andrews. Global positioning

systems, inertial navigation, and integration. Wiley Inter-science,
2001.

[6] C. Jekeli. Precision free-inertial navigation with gravity compensation
by an onboard gradiometer. J. Guidance, Control and Dynamics,
29(3):704–713, 2006.

[7] D. Jung, E. J. Levy, D. Zhou, R. Fink, J. Moshe, A. Earl, and
P. Tsiotras. Design and development of a low-cost test-bed for
undergraduate education in UAVs. In Proc. of the 44th IEEE Conf.

on Decision and Control, and the European Control Conference 2005,
2005.

[8] S. Kehl, W.-D. Pölsler, and M. Zeitz. Vehicle path-following with
a GPS-aided inertial navigation system. In T. Meurer, K. Graichen,
and E.D. Gilles, editors, Control and Observer Design for Nonlinear

Finite- and Infinite-Dimensional Systems, LNCIS, pages 285–300.
Springer, Berlin, 2005.

[9] R. Mahony, T. Hamel, and J.-M. Pflimlin. Complementary filter design
on the special orthogonal group SO(3). In Proc. of the 44th IEEE Conf.

on Decision and Control, and the European Control Conference 2005,
2005.

[10] Department of Defense. Network centric warfare. Technical report,
Report to Congress, 2001.

[11] R. Sabri, C. Putot, F. Biolley, C. Le Cunff, Y. Creff, and J. Lévine.
Automatic control methods for positioning the lower end of a filiform
structure, notably an oil pipe, at sea. U.S. Patent 7,066,686, Institut
Francais du Pétrole, 2006.

[12] Y. Yang and J.A. Farrell. Magnetometer and differential carrier phase
GPS-aided INS for advanced vehicle control. IEEE Trans. Robotics

Automation, 19(2):269–282, 2003.
[13] H. Zhao and R. Shibasaki. A vehicle-borne urban 3-d acquisition

system using single-row laser range scanners. IEEE Trans. on Systems,

Man and Cybernetics, Part B, 33(4):658–666, 2003.

WeA09.2

2858


