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a b s t r a c t

In this paper, the problem of input reconstruction for the general case of periodic linear systems driven
by periodic inputs ẋ = A(t)x + A0(t)w(t), y = C(t)x is addressed where x(t) ∈ Rn and A(t), A0(t),
and C(t) are T0-periodic matrices and w is a periodic signal containing an infinite number of harmonics.
The contribution of this paper is the design of a real-time observer of the periodic excitation w(t) using
only partial measurement. The employed technique estimates the (infinite) Fourier decomposition of the
signal. Although the overall system is infinite dimensional, convergence of the observer is proven using
a standard Lyapunov approach along with classic mathematical tools such as Cauchy series, Parseval
equality, and compact embeddings of Hilbert spaces. This observer design relies on a simple asymptotic
formula that is useful for tuning finite-dimensional filters. The presented result extends recent works
where full-state measurement was assumed. Here, only partial measurement, through the matrix C(t), is
considered.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As has been discussed by numerous authors (see Bittanti
and Colaneri (2009) and references therein), linear time-varying
systems driven by periodic input signals are ubiquitous in control
systems : from natural sciences to engineering, economics, physics
and the life science. For various reasons, including disturbance
rejection or output regulation (see Ichikawa & Katayama, 2006;
Shim, Kim, Kim, & Black, 2010; Zhang & Serrani, 2006) and
diagnosis by analysis of the trajectories, estimation of their input
signals is often desirable. In the present paper, a general method to
address such problems is proposed.

Consider a T0-periodic input signal denoted w. This period
T0 is assumed to be perfectly known. As exposed in Chauvin,
Corde, Petit, and Rouchon (2007) and Chauvin and Petit (2010),
an easily understandable idea is to aim at reconstructing it by
estimating its Fourier expansion coefficients. Previously, the case
of signals w that could be written as a sum of a finite number of
harmonics was considered in Chauvin et al. (2007). In this context,
a finite-dimensional linear time-varying observer was proposed.
As a natural extension, Chauvin and Petit (2010) has proposed

✩ The material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Andrea Serrani
under the direction of Editor Miroslav Krstic.

E-mail addresses: jonathan.chauvin@ifpen.fr (J. Chauvin),
nicolas.petit@mines-paristech.fr (N. Petit).
1 Tel.: +33 1 47 52 74 17; fax: +33 1 1 47 52 70 12.

an infinite-dimensional observer to reconstruct signals possessing
an infinite Fourier expansion. Besides its improved generality and
global convergence, this extension provides a simple asymptotic
formula that, when truncated, serves as a tuning methodology
for finite-dimensional filters. A first step was reached in Chauvin
and Petit (2010) where an infinite-dimensional observer was
proposed in the full-state measurement case. Here, the general
case of partially measured systems, which is of importance for
applications, is addressed.

Generally, these contributions are related to several research
works found in the literature (e.g. Ding, 2001, 2006; Ichikawa
& Katayama, 2006; Shim et al., 2010; Xi & Ding, 2007; Zhang &
Serrani, 2006). In particular, online estimation of the frequencies
of a signal being the sum of a finite number of sinusoids
with unknown magnitudes, frequencies, and phases has been
widely addressed earlier by numerous authors (one can refer to
e.g. Hsu, Ortega, and Damn (1999), Marino and Tomei (2000) and
Xia (2002)). However, the problem under consideration here is
different. The signal we wish to estimate, and which is assumed
to admit an infinite-dimensional Fourier decomposition, is not
directly measured. It is filtered through a linear time-varying
system. The filtered signal is the only available information.
Secondly (and very importantly), its period is precisely known.
This assumption is motivated by the examples we have put
our attention on: automotive engines (see Heywood, 1988;
Rizzoni, 1989; Stotsky & Kolmanovsky, 2002), and oscillating
water columns (see Brook, 2003; Laitone & Wehausen, 1960;
Pitt & Tucker, 2001), among other possible applications. Our
method consists of reconstructing the Fourier expansion of the
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input signal. The main difficulty lies in determining a simple
and mathematically consistent method to select the gains of
the infinite number of adaptation laws. The proof of this result
blends arguments of Chauvin et al. (2007) (change of variables)
and (Chauvin & Petit, 2010) (Rellich–Kondrachov theorem on
compact imbedding for the study of LaSalle’s invariant set in an
infinite-dimensional case), and a new formulation of the observer.

The paper is organized as follows. In Section 2, the problem
statement is exposed and the observer structure presented.
Explicit computations of the observation gains are detailed. The
observer convergence proof is given in Section 3. The main result
is Theorem 1.
Notations. In the following, n andm are strictly positive integers, T0
is a strictly positive real parameter, ∥ · · · ∥n refers to the Euclidean
norm of Cn, and ∥ · · · ∥nm refers to the Euclidean norm of Mn,m
the set of n × m matrices. The symbol Ď indicates the Hermitian
transpose. One defines
ℓ2n ,


{xk}k∈Z ∈ (Cn)Z


k∈Z

∥xk∥2
n < +∞



ω1,2
n ,


{xk}k∈Z ∈ (Cn)Z


k∈Z

(1 + k2)∥xk∥2
n < +∞


.

Both ℓ2n and ω1,2
n are Hilbert spaces with the inner product

⟨x, y⟩ℓ2n =


k∈Z ∥xĎkyk∥n, and ⟨x, y⟩
ω
1,2
n

=


k∈Z(1 + k2)∥xĎkyk∥n,
respectively.2By the same way, one defines for matrices
ℓ2nm ,


{Xk}k∈Z ∈ (Mnm)

Z


k∈Z

∥Xk∥
2
nm < +∞



ω1,2
nm ,


{Xk}k∈Z ∈ (Mnm)

Z


k∈Z

(1 + k2) ∥Xk∥
2
nm < +∞


.

Wealso consider the following functional spaces (Adams, 1975, pp.
23, 60):

L2n[0, T0] ,

{[0, T0] ∋ t → x(t) ∈ Rn

}

measurable over [0, T0] such that T0

0
∥x(t)∥2

ndt < +∞


W 1,2

n [0, T0] , {{[0, T0] ∋ t → x(t) ∈ Rn
} ∈ L2n[0, T0]

such that Dx ∈ L2n[0, T0]},

where Dx is the weak derivative of x.3 We consider the space E ,
Rn

× ω1,2
m and note its elements X = (x, c). The considered norm

on E is ∥X∥
2
E = ∥x∥2

n + ∥c∥2
ω
1,2
m

.

2. Problem statement and observer design

Consider the following linear time-varying system driven by an
unknown periodic input signalw(t)

ẋ = A(t)x + A0(t)w(t), y = C(t)x

where the state x(t) belongs to Rn and A, A0, C are T0-periodic
matrices in Mn,n, Mn,m and Mp,n with real entries, respectively.
T0 is assumed to be perfectly known, and the goal is to estimate

2 These inner products implicitly define the norms ∥x∥ℓ2n =


⟨x, x⟩ℓ2n , and

∥x∥
ω
1,2
n

=


⟨x, x⟩

ω
1,2
n

.
3 Again, by the same way, we define the same functional spaces for matrices in

Mnm noted L2nm[0, T0] andW 1,2
nm [0, T0] respectively.

the T0-periodic input signal t → w(t) ∈ Rm, with m , dim(w),
p , dim(y), and n , dim(x), through its Fourier decomposition

w(t) ,

k∈Z

ckeikω0t , ω0 =
2π
T0
.

It is assumed that t → w(t) is continuous and that its derivative
is piecewise continuous: w is thus KC1. In the last expression,
each vector ck admits m complex entries. The state of this model
is X = (x, c) ∈ E. Because w is real valued, for any k ∈ Z,
c−k = cĎk . Because w is KC1, its Fourier coefficients decay rapidly.
More precisely, c , {ck}k∈Z belongs to ω1,2

m as implied by Parseval
equality. A simple rewriting yieldsẋ = A(t)x + A0(t)


k∈Z

ckeikω0t


ċk = 0, ∀k ∈ Z

, y = C(t)x. (1)

All through the paper, the two following hypothesis (referred to
H 1 and H 2, respectively, in the rest of the paper) are assumed to
hold.

Hypothesis 1 (Matrices Properties). The matrices A, A0, C are
continuous and their derivatives are piecewise continuous.

This hypothesis leads to the existence of a strictly positive real ρM
such that for any time t ,AT (t)A(t) ≤ ρ2

M In
AT
0(t)A0(t) ≤ ρ2

M Im
C(t)CT (t) ≤ ρ2

M Ip.

Hypothesis 2 (Zero Observability). The only solution t → (x(t),
ck(t)) of Eq. (1) for which the output y(t) = C(t)x(t) is identically
zero on [0, T0], is the zero solution (x ≡ 0, and ck ≡ 0 for all k ∈ Z).

Notice that H 2 is a relaxed version of the injectivity property
assumed in Chauvin and Petit (2010), which also appears
in Chauvin et al. (2007). It simply formulates an observability
property of the system.

2.1. Observer structure

Corresponding to state-space model (1), one defines a time-
varying Luenberger type observer

˙̂x = A(t)x̂ + A0(t)


k∈Z

ĉkeıkω0t


− (Ls(t)+ Lper(t))(C(t)x̂ − y)

˙̂ck = −Lk(t)(C(t)x̂ − y(t)), ∀k ∈ N, ĉ−k = ĉĎk
(x̂(0), ĉ(0) , {ĉk(0)}k∈Z) ∈ E. (2)

The gain matrices Ls(t), Lper(t) and {Lk(t)}k∈Z are T0-periodic
functions defined in the following sub-section. In (2), the roles
of these tuning parameters appear distinctly. On the one hand,
Ls controls the convergence rate of the error state (x − x̂), i.e. Ls
solves the estimation problem of x from y when w ≡ 0. The
{Lk}k∈Z impact on the convergence rate of the Fourier coefficient
estimates. Finally, Lper serves to coordinate the two dynamics. Its
role is underlined in the convergence analysis of the observer (2).
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2.2. Gains design

2.2.1. Design of Ls
The zero observability hypothesis (H 2) implies that the

observability Gramian of (1) on [0, T0] is definite positive.
Therefore, there exists a T0-periodic gain matrix Ls(t) such that
P(t) , A(t) − Ls(t)C(t) is exponentially stable (see Anderson
and Moore (1971) Section 14.2 and Ikeda, Maeda, and Kodama
(1975), for example). A constructive choice is given, for example,
by the Kalman filter. Then, we have at our disposal a continuous
T0-periodic gain Ls(t) (with real entries) such as the time-periodic
system ξ̇ = P(t)ξ is exponentially stable. This means that using
the gain Ls solves the real-time estimation of x from ywhenw ≡ 0.

2.2.2. Design of {Lk}k∈Z and Lper
For k ∈ Z, note Wk(t) a n × m matrix with complex entries, a

solution of the continuous T0-periodic differential equation
Ẇk(t) = P(t)Wk(t)+ eıkω0tA0(t)
Wk(0) = Wk(T0).

(3)

In fact, the {Wk}k∈Z are unique. They can be defined explicitly4 and
belong to ℓ2nm (i.e. ∃ρW > 0, ∥Wk∥

2
ℓ2nm

≤ ρ2
W ). Now, set

∀k ∈ Z, Lk(t) ,
α

k2 + 1
(C(t)Wk(t))Ď (4)

where α is a strictly positive number. Then, for all t ,
k∈Z

(1 + k2)∥Lk(t)∥2
mp ≤ ρ2

L , α2ρ2
Mρ

2
W . (5)

This shows that {Lk}k∈Z belongs to ω1,2
mp . Finally, let

Lper(t) ,

k∈Z

Wk(t)Lk(t)

=


k∈Z

α

k2 + 1
Wk(t)(C(t)Wk(t))Ď. (6)

From the previous inequalities, the matrix Lper (with real entries)
is well defined.

2.3. Main result

One can now state the main contribution of this paper.

Theorem 1. Consider (1) under hypothesisH 1 andH 2. Consider the
observer (2) with gains Ls, Lper and Lk chosen as follows: Ls(t) is a
T0-periodic gain stabilizing the pair (A, C), Lper is given by (3)–(6),
and Lk is given by (3)–(4). Then, the error dynamics between (1) and
(2) asymptotically converges to zero.

3. Convergence proof

As a preliminary result, following the arguments in Chauvin and
Petit (2010), one can easily prove existence and uniqueness of the

4 Direct computations show that their expressions are
Wk(t) =

 t

0
ΦP (t, τ )eıkω0τA0(τ )dτ

+ΦP (t, 0)(I − ΦP (T0, 0))−1
 T0

0
ΦP (T0, τ )eıkω0τA0(τ )dτ

where ΦP (t, τ ) denotes the state-transition matrix associated with P(t). This
formula is obtained by a lifting technique (Khargonekar, Poolla, & Tannenbaum,
1985; Yamamoto, 1994; Yamamoto & Araki, 1994) in continuous time, thanks to
the fact that the input of (3) has the same period as the filter dynamics P(t).

trajectories of (1) and (2), along with the uniform continuity of the
solutions. In details, one gets the following conclusion.

Proposition 1. Consider system (2) with initial condition X̂(0) =

X̂0 ∈ E. This Cauchy problem admits a unique solution over [0,+∞[

in E. Moreover, the solution is uniformly continuous.

The following convergence proof consists of three parts. First of all,
a change of variables is made. Its purpose is to make a triangular
structure appear. The resulting triangular dynamics consists in a
linear periodic dynamics in Rn and a T0-periodic operator in ω1,2

m ,
as is established using the decay rate of Fourier coefficients of
the considered input signal. Then, in a second part, focus is put
on the dynamics of the periodic operator. Finally, convergence
of the whole dynamics is proven using Input-to-State Stability
(ISS Sontag, 1989)-like arguments. The convergence proof scheme
is detailed in Fig. 1.

3.1. Changes of variables for the error dynamics

The error dynamics between (1) and (2) is, with z , x − x̂,
zk , ck − ĉk,
ż = P(t)z − Lper(t)C(t)z +


k∈Z

eıkω0tA0(t)zk

żk = −Lk(t)C(t)z, ∀k ∈ N.
(7)

Following Javid (1980, 1982), a series expansion w.r.t. zk on (7)
is performed. Let z̄ , z −


k∈Z Wk(t)zk. In detail,


k∈Z Wk(t)zk

corresponds to the solution of z in (7) for α = 0 (i.e. zk are
constants). One gets

˙̄z = ż −


k∈Z

d(Wk(t))
dt

zk −


k∈Z

Wk(t)żk

= P(t)z − Lper(t)C(t)z +


k∈Z

eıkω0tA0(t)zk

−


k∈Z

d(Wk(t))
dt

zk +


k∈Z

Wk(t)Lk(t)C(t)z

= P(t)z̄.

One can notice here themain role of the Lper matrix gain. It leads to
a triangularization of the system, and yields a simple z̄-dynamics,
independent of the zk-dynamics.

Then, in the (z̄, {zk}k∈N) coordinates, system (7) is rewritten,
using (4),

˙̄z = P(t)z̄
żk = −

α

k2 + 1


l∈Z

PĎ
k (t)Pl(t)zl −

α

k2 + 1
PĎ
k (t)C(t)z̄, ∀k (8)

where Pk(t) , C(t)Wk(t). Notice that P (t) , {Pk(t)}k∈Z belongs
to ℓ2nm. This change of coordinates stresses the first part of the
dynamics (8) as an exponentially stable system by the design of
the matrix Ls. Establishing the stability of the second part of (8)
requires further investigations. Gathering zk for k in Z into φ(t) =

{zk(t)}k∈Z ∈ ω1,2
m , z−k = zĎk one finally rewrites system (8) under

the form
˙̄z = P(t)z̄
φ̇ = −E(t)φ − Ez̄(t)z̄

(9)

where t → E(t) and t → Ez̄(t) are linear periodic bounded
operators. For all (k1, k2) ∈ Z2, their components are written

Ek1,k2(t) ,
α

k21 + 1
Pk1(t)

ĎPk2(t)

Ez̄,k1(t) ,
α

k21 + 1
PĎ
k1
(t)C(t).

(10)
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Fig. 1. Scheme of the convergence proof.

It is easy to show that E is a bounded operator, because, for all
φ ∈ ω1,2

m

∥E(t)∥φ2
ω
1,2
m

=


k∈Z

(1 + k2)


l∈Z

Ek,l(t)φl


2

m

=


k∈Z

α2

k2 + 1


l∈Z

Pk(t)ĎPl(t)Ďφl


2

m

≤ (αρ2
Mρ

2
W )

2
∥φ∥

2
ω
1,2
m
.

The second equation of (9) can then be seen as a periodic linear
system driven by an exponentially decaying input. To prove the
convergence of φ, its behavior when there is no extraneous input,
i.e. when z̄ ≡ 0, is firstly studied. Then, we prove that the
convergence is not impacted when the exponentially decaying
extraneous input is present.

3.2. Stability of φ̇ = −E(t)φ

3.2.1. Lyapunov function candidate.
Let us pose

V (φ) ,
1
2α

∥φ∥
2
ω
1,2
m
. (11)

Then, by derivation w.r.t. time,

V̇ = −


(k,l)∈Z2

(Pk(t)φk)
Ď(Pl(t)φl).

Let ψ(t, φ(t)) ,


k∈Z Pk(t)φk(t). Thus, the previous expression
can be regrouped under the following form

V̇ = −∥ψ(t, φ(t))∥2
m. (12)

Then, the following properties hold: (i) V (φ) > 0 for φ ∈ ω1,2
m \{0}

and V (0) = 0, (ii) V is radially unbounded, and (iii) V̇ (φ) ≤ 0 for
φ ∈ ω1,2

m .
Further, V is decreasing and lower-bounded by 0. Therefore, it

has a limit as t goes to +∞. As V is decreasing, for all t ∈ R+,
the state φ is then bounded. Moreover, as shown in Proposition 1,
φ is uniformly continuous (because φ̇ is bounded). Furthermore,
the operator t → P (t) = {Pk(t)}k∈Z is a continuous T0-periodic
operator in ℓ2nm. This yields the uniform continuity of ψ and thus
the uniform continuity of V̇ on [0,+∞[. Finally, and classically, by
Barbalat’s lemma (see e.g. Popov, 1973)

− lim
t→∞

V̇ (t) = lim
t→∞

∥ψ(t, φ(t))∥2
m = 0.

Further, since t

0
∥ψ(τ, φ(τ))∥2

mdτ = V (φ(0))− V (φ(t)) ≤ V (φ(0))

for t ≥ 0, the mapping t → ψ(t, φ(t)) is square integrable. This
result will be important in the following discussion. Let us note
Ω+ , {φ̄ ∈ ℓ2m/∃(tl)l∈N with tl → +∞ as l → +∞ s.t. ∥φ(tl) −

φ̄∥ℓ2m
→ 0 as l → +∞} the positive limit set of φ. We now

establish that φ(t) converges to Ω+ when t → +∞. Then, we
prove that this set is reduced to 0ℓ2m .

3.2.2. φ(t) converges toΩ+ when t → +∞

A fundamental property of the considered functional spaces
is that W 1,2

n [0, T0] is compactly imbedded into L2n[0, T0]. This is
a consequence of the Rellich–Kondrachov theorem (see Adams
(1975, page 168)). This property can be transposed to the sequence
spaces ω1,2

n and ℓ2n. Indeed, ω
1,2
n is compactly imbedded into ℓ2n.

Non-emptiness and convergence towardΩ+ is detailed in Chauvin
and Petit (2010) using a contradiction argument.

3.2.3. The setΩ+ equals 0ℓ2m
To prove that Ω+

= 0ℓ2m , we take an element φ̄ ∈ Ω+ and
prove that it can only be 0ℓ2m .

For all φ̄ ∈ Ω+, there exists, by definition, a sequence (tl)l∈N
with tl → +∞ as l → +∞ such that ∥φ(tl) − φ̄∥ℓ2m

→ 0 as
l → +∞. We thus define the functions5
ψ(t) ,


k∈Z

Pk(t)φk(t),

ψl(t) ,

k∈Z

Pk(t)φk(tl), for all l ∈ N

ψ̄(t) ,

k∈Z

Pk(t)φ̄k.

(13)

Step 1. liml→+∞ ∥ψ(tl)− ψ̄∥L2m[0,T0]
= 0. The difference ψ̄ − ψl is

written

ψ̄(t)− ψl(t) =


k∈Z

Pk(t)(φ̄k − φk(tl)).

Thus,

∥ψ̄(t)− ψl(t)∥2
m =


k∈Z

Pk(t)(φ̄k − φk(tl))


2

m

≤


k∈Z

∥Pk(t)∥2
pmdt


(∥φ̄ − φ(tl)∥2

ℓ2m
).

Using (5), one has


k∈Z ∥Pk(t)∥2
pm < ρ2

Wρ
2
M . Thus, the following

lemma holds.

5 These functions are similar to inverse Fourier transforms of the sequences
{φk(tl)} and φ̄k respectively.
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Lemma 1. Consider the functions ψl and ψ̄ as defined in (13); then,
for any sequence (tl)l∈N with tl → +∞ as l → +∞, one has
∥ψ̄ − ψ(tl)∥L2m[0,T0]

→ 0 as l → +∞.

Step 2. liml→+∞

 tl+T0
tl

∥ψl(t)∥2
mdt = 0. First, for all l ∈ N, one has tl+T0

tl
∥ψl(t)∥2

mdt ≤ 2
 tl+T0

tl
∥ψ(t)∥2

mdt

+ 2
 tl+T0

tl
∥ψ(t)− ψl(t)∥2

mdt.

Now, let us focus on the second term
ψ(t)− ψl(t) =


k∈Z

Pk(t)(φk(t)− φk(tl))

= −


k∈Z

α

k2 + 1
Pk(t)

 t

tl
PĎ
k (u)ψ(u)du.

By majoration, for all t in [tl, tl + T0],

∥ψ(t)− ψl(t)∥2
m ≤


k∈Z

α2
∥Pk(t)∥2

pm



×


k∈Z

 t

tl
PĎ
k(u)ψ(u)du

2
m


.

Then, by integration, tl+T0

tl
∥ψ(t)− ψl(t)∥2

mdt ≤ ρ2
ψ

 tl+T0

tl
∥ψ(t)∥2

mdt

with ρψ ,
√
T0αρ2

Wρ
2
M . Moreover, the square integrability of ψ

implies that
 tl+T0
tl

∥ψ(t)∥2
mdt converges to 0 when l goes to ∞.

Then, it follows that

lim
l→+∞

 tl+T0

tl
∥ψl(t)∥2

mdt = 0. (14)

Step 3. ∥ψ̄(t)∥L2m[0,T0]
= 0. Secondly, tl+T0

tl
∥ψ̄(t)∥2

mdt ≤ 2
 tl+T0

tl
∥ψ̄(t)− ψl(t)∥2

mdt

+ 2
 tl+T0

tl
∥ψl(t)∥2

mdt.

Therefore, from the previous majoration and Lemma 1, one has

lim
l→+∞

 tl+T0

tl
∥ψ̄(t)∥2

mdt = 0.

As ψ̄ is independent of l, one has
 T0
0 ∥ψ̄(t)∥2

mdt = 0.

Step 4. φ̄ = 0ℓ2m . By continuity of the integrand, one deduces from
the preceding limit that, for all t ∈ [0, T0],

k∈Z

α

k2 + 1
Pk(t)φ̄k

 = 0.

It follows that φ̄ = 0ℓ2m . Yet, necessarily, otherwise H 2 would be
violated, for any Γ̄ solution of ∥


k∈Z

α

k2+1
Pk(t)Γ̄k∥ = 0 for all

t ∈ [0, T0], x =


k∈Z Wk(t) α

k2+1
Γ̄k and ck =

α

k2+1
Γ̄k,6 is a solution

of (1) with y = Cx ≡ 0 and the following lemma holds.

Lemma 2. The dynamics φ̇ = −E(t)φ uniformly asymptotically
converges toward 0ℓ2m .

6 As Γ̄ is a solution in ℓ2m , {
α

k2+1
Γ̄k}k∈Z is in ω1,2

m .

3.3. Exponential stability of φ̇ = −E(t)φ − Ez̄(t)z̄(t)

The solution of (9) is written

φ(t) = Γ (t, 0)φ(0)−

 t

0
Γ (t, τ )Ez̄(τ )z̄(τ )dτ

whereΓ (t, τ ) is the transition operator of the system φ̇ = −E(t)φ
between τ and t . Because the system is linear and periodic, its
uniform asymptotic convergence, which is established in Lemma 2
is equivalent to its exponential convergence. Therefore ∃(k1, k2) >
0, ∀(t, τ ) ≥ 0, ∀φ0 ∈ ℓ2m∥Γ (t, τ )φ0∥ℓ2m

≤ k1e−k2(t−τ)∥φ0∥ℓ2m
. This

allows us to use the same proof technique as usually employed
in Input-to-State Stability (ISS) (Sontag, 1989). It leads to the
convergence of ∥φ(t)∥ℓ2m towards 0 when t goes to +∞. All the
changes of coordinates are linear, time-periodic and smooth, and
thus uniformly continuous; therefore Theorem 1 is proven.
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