
Prediction-based control for nonlinear systems
with stochastic input delay

SiJia KONG, Delphine BRESCH-PIETRI

Abstract This chapter focuses on nonlinear systems with a stochastic input delay,
which can arise from communication lags for instance. For input-delay systems, the
use of prediction-based control methods is quite standard. This method was first used
for constant delays before being extended to time-varying delays. Yet, the design of
a prediction-based controller to handle stochastic delays is still an open problem.

In this chapter, we propose to describe the stochastic input delay as a continuous-
time Markov process with a finite number of values. This random delay is then
robustly compensated through a constant-horizon state prediction. Applying the
method of backstepping, we obtain that exponential stabilization of the closed-loop
system is achieved, under a sufficient condition. This condition bears on the range
of the possible values of the time lag, which should be sufficiently small and close
enough to the prediction horizon.

1 Introduction

Time delays have always represented an important research topic, due to their fre-
quent appearance and the performance limitation they often induce for control sys-
tems [29]. In the case where the delay affects the input of a dynamical system, active
control techniques generically referred to as Smith Predictor [28, 32] have been
developed to counteract these limitations. Grounding on a prediction of the system
state, this so-called Finite Spectrum Assignment [21, 24] aims at compensating the
input delay in the closed-loop dynamics and recovering the nominal delay-free per-
formances. This technique, originally designed for constant delays, has gradually
been extended to time-varying ones [3, 27] or more intricate cases such as state-
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dependent delays [1, 2], multiple delays [5] or additive disturbances [22]. In these
cases, the prediction time horizon has to be carefully computed to account for future
delay variations or implicit dependencies.

Recently, the rise of communication technologies has intensified the need to cope
with transmission lags [11, 30, 31]. They result for instance from congestion in the
transmission path(s) or changes in the routing algorithm and are usually modeled as
stochastic variables to account for their sudden and random variations [6, 10, 26, 34].

However, while in recent years many monographs have studied Stochastic Delay
Equations (SDEs), such as [12, 15, 25], the case where the delay is itself a random
variable has been seldomly studied. Up to the authors’ knowledge, one of the few
examples to do so are [16, 17, 23, 33].While [33] studies a piecewise constant process
and [23] analyzes a deterministic delay termmultiplied by a randomvariable, [16, 17]
consider stochastic state delays modeled as a Markov process with a finite number of
states. The authors then consider each delay value separately, following the so-called
technique of probabilistic delay averaging. This constant delay reasoning inspired
the core of the analysis methodology proposed in this chapter.

In this paper, we investigate the problem of prediction-based control design for
nonlinear systems subject to stochastic input delay and extend the scope of our
previous work [18] focusing on linear systems. We model the random input delay
as a Markov process with a finite number of values. In lieu of computing a state
prediction exactly compensating for the input delay (which cannot be achieved as
future delay values are random and thus unknown), we propose to use a constant
prediction horizon. Similarly to [18], we prove that such a controller achieves expo-
nential stabilization of the origin, provided that the range of possible delay values is
sufficiently narrow and that the prediction horizon is chosen close enough to these
values.

This chapter is organized as follows. In Section 2, the problem statement and
the main stabilization result are given. We then propose a PDE representation of
the stochastic delay and a backstepping reformulation of the closed-loop system in
Section 3, in view of Lyapunov stability analysis in Section 4.

Notations. In the following sections, for a signal E : (G, C) ∈ [0, 1] × R ↦→
E(G, C) ∈ R, we denote ‖E(C)‖ its spatial L2-norm

‖E(C)‖ =

√∫ 1

0
E(G, C)23G (1)

and ‖E‖∞ its L∞-norm for a measurable essentially bounded signal as

‖E(C)‖∞ = inf {� ≥ 0 | |E(G, C) | ≤ � f.a.a. G ∈ [0, 1]} = lim
?→∞
‖E(C)‖ ? (2)

Additionally, for a real matrix �, |�| denotes its Euclidean norm
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|�| =
√
<0G(_(�) �)) (3)

in which _ represents the eigenvalues of the matrix, and �) denotes the transpose
of �.
E(G) denotes the expectation of a random variable G. For a random signal G(C)

(C ∈ T ⊂ R), the conditional expectation of G(C) at the instant C knowing that
G(B) = G0 at the instant B < C is denoted E[B,G0 ] (G(C)).

Finally, 48 ∈ RA (A ∈ N+ and 8 ∈ {1, ..., A}) denotes the unit vector, that is,
41 =

(
1 0 · · · 0

)) , 42 = (
0 1 · · · 0

)) , ..., 4A = (
0 0 · · · 1

)
. Besides, for (G1, G2) ∈

RA×RA , we denote the Hadamard product of G1 and G2 as G1 •G2 = (G18G28)1≤8≤A ∈ RA .

2 Problem statement and control design

We consider the following controllable nonlinear dynamics

¤- (C) = 5 (- (C),* (C − �)) (4)

in which - ∈ R= and * ∈ R are the state and control input, respectively. 5 is a
nonlinear function of class C1 such that 5 (0, 0) = 0. The stochastic delay � is a
Markov process with the following properties:

(1) � (C) ∈ {�8 , 8 ∈ {1, ..., A}}, A ∈ N with 0 < � ≤ �1 < �2 < ... < �A ≤ �.
(2) The transition probabilities %8 9 (C1, C2), which quantify the probability to switch

from �8 at time C1 to � 9 at time C2 ((8, 9) ∈ {1, ..., A}2, C2 ≥ C1 ≥ 0), are
differentiable functions %8 9 : R2 → [0, 1] satisfying

A∑
9=1

%8 9 (C1, C2) = 1, (0 ≤ C1 ≤ C2) (5)

(3)The realizations of � are continuous from the right.

The control objective is to stabilize plant (4) following a prediction-based ap-
proach, despite the random nature of the input delay. This will be achieved by a
robust delay compensation approach. Before detailing our control design, we first
further characterize the delay-free characteristics of the plant under consideration.

Assumption 1 There exists a feedback law ^ of class C1 such that, the plant

¤- = 5 (-, ^(-)) (6)

is exponentially stable with basin of attraction A ⊂ R=, i.e. there exists a positive
definite function, : R= → R+ such that, for all compact� ⊂ A, there exist positive
constants _, �1, �2 and �3 such that, for all G ∈ �,

3,

3-
(-) 5 (-, ^(-)) ≤ −_ |- |2 (7)
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�1 |- |2 ≤ , (-) ≤ �2 |- |2 (8)����3,3- (-)���� ≤ �3 |- | (9)

Assuming exponential stability of the delay-free closed-loop dynamics in lieu
of asymptotic stability is not restrictive, in the sense that some dynamical systems
for which the origin is only asymptotically stable can have a zero-delay robustness
property. This prohibits us from using a robust compensation controller as the one
we aim at designing.

We now detail two additional technical assumptions.

Assumption 2 The function 5 (-,*) is globally Lipschitz, i.e. there exists �! > 0
such that for ∀(D1, D2) ∈ R2 and ∀(-1, -2) ∈ (R=)2

| 5 (-1, D1) − 5 (-2, D2) | ≤ �! | (-1, D1) − (-2, D2) | (10)

Assumption 3 The feedback law ^ defined in Assumption 1 is such that ^(0) = 0
and there exists a positive constant �4 such that���� 3^3- ���� ≤ �4 (11)

Contrary to Assumption 1, these last two assumptions are more restrictive and
more technical. They aim at simplifying the stability analysis detailed in the follow-
ing, but should be relaxed in future works.

Note that Assumption 2 jointly with the fact that 5 (0, 0) = 0 guarantee that the
plant does not escape in finite time, which is a necessary condition for stabilization
to be achieved for any delay values. Therefore, we do not need to assume strong
forward completeness here, as usually done for prediction-based control for nonlinear
dynamics [3], but, in all likelihood, future works will have to replace Assumption 2
by this property.

The control law is chosen here as

* (C) = ^(%̂(C)) (12)

in which the predictor %̂ is defined for \ ∈ [C − �0, C] as

%̂(\, C) = - (C) +
∫ \

C−�0
5 (%̂(B, C),* (B))3B, C − �0 ≤ \ ≤ C (13)

To exactly compensate for the input delay, one would need the function q : C →
C − � (C) to be invertible in order to define the predictor. However, the stochastic
nature of the delay makes the computation of the inverse function q−1 (C) (if it exists)
impossible as it depends on future delay variations and is therefore not causal.

For this reason, we hence propose to use a constant time horizon prediction in
the controller (12)–(13). Note that, if the time lag � were constant and equal to �0,
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the control law would then involve the exact prediction of the state - over a time
window of �0 units of time. Consistently, we now formulate the main result of the
paper which states that robust compensation is achieved if the time delay remains
sufficiently close to �0.
Theorem 1 Consider the closed-loop system consisting of the system (4) satisfying
Assumptions 1–3 and the control law (12). Let � be a compact set of A containing
the origin. Then, there exist positive constants n★ and d★ such that, if

|�0 − � 9 | ≤ n★, 9 ∈ {1, ..., A} (14)

and if
Υ(0) ≤ d★ (15)

there exist positive constants ' and W (independent of the initial condition) such that

E[0, (Υ(0) ,� (0)) ] (Υ(C)) ≤ 'Υ(0)4−WC (16)

with
Υ(C) = |- (C) |2 +

∫ C

C−�−�0
* (B)23B (17)

Condition (14) guarantees that the prediction performed in (13) remains suf-
ficiently accurate in the case of a stochastic delay. In details, (14) requires the
sequence of the random delay D =

(
�1 · · · �8 · · · �A

)) to be limited in a vicinity
n★ of the constant �0.

Note that this result is consistent with the delay-robustness results obtained in the
deterministic delay case. Indeed, [4, 19] provide a similar robust compensation result
for a time-differentiable delay function, under the assumptions that both the range of
variation of the delay and its variation rate are sufficiently limited. A similar result
was obtained in [13] but through a small-gain approach enabling to avoid restricting
the delay rate. Hence, Theorem 1 falls within this framework and extends it to the
stochastic context.

We now provide the proof of this theorem in the following sections.

3 PDE Representation of the Delay and Backstepping
Transformation

First, to represent the control input which is subject to a stochastic delay, we define a
distributed actuator vector as, for G ∈ [0, 1],v(G, C) =

(
E1 (G, C) · · · E: (G, C) · · · EA (G, C)

))
with E: (G, C) = * (C + �: (G − 1)). This enables to rewrite (4) as

¤- (C) = 5 (- (C), X(C)) v(0, C))
Λ�vC (G, C) = vG (G, C)

v(1, C) = * (C)1
(18)
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in which Λ� = 3806(�1, ..., �A ), 1 is a A-by-1 all-ones vector and X ∈ RA is such
that, if � (C) = � 9 , then X(C) = 4 9 , that is,

X8 (C) =
{
1 if 8 = 9
0 otherwise

(19)

Hence, X is a random process with the same transition probabilities as the stochastic
process �, but with the finite number of states (48) instead of (�8). In the sequel, X
and � will thus be equivalently used.

Now, we introduce Ê(G, C) to represent the control input * (C) within the interval
[C − �0, C], and the corresponding input estimation error ṽ(G, C) defined as{

Ê(G, C) = * (C + �0 (G − 1))
ṽ(G, C) = v(G, C) − Ê(G, C)1

(20)

Then, we define `(G, C) = * (C −�0 +� (G − 1)) to represent the controller within
the interval [C − �0 − �, C − �0]. The extended state (- (C), Ê(G, C), ṽ(G, C), `(G, C))
satisfies 

¤- (C) = 5 (- (C), Ê(0, C) + X(C)) ṽ(0, C))
�0ÊC (G, C) = ÊG (G, C)

Ê(1, C) = * (C)
Λ� ṽC (G, C) = ṽG − Σ� ÊG

ṽ(1, C) = 0

�`C (G, C) = `G (G, C)
`(1, C) = Ê(0, C)

(21)

in which Σ� =
(
�1−�0
�0

· · · �A−�0
�0

))
and 0 is a A-by-1 all-zeros vector.

In view of stability analysis, we introduce the backstepping transformation (see
[20])

F(G, C) = Ê(G, C) − ^( ?̂(G, C)) , 0 ≤ G ≤ 1 (22)

in which the distributed predictor ?̂ is defined as

?̂(G, C) = - (C) + �0
∫ G

0
5 ( ?̂(H, C), Ê(H, C))3H , 0 ≤ G ≤ 1 (23)

Notice that this backstepping transformation is similar to the one used in the
deterministic context (see [20]) but applied here to our estimated distributed input Ê.

Lemma 1 The backstepping transformation (22), jointly with the control law (12)–
(13), transform the plant (21) into the target system (-, F, ṽ, `)
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¤- (C) = 5 (- (C), ^(- (C)) + F(0, C) + X(C)) ṽ(0, C))
�0FC (G, C) = FG (G, C) + AF (G, C)

F(1, C) = 0
Λ� ṽC (G, C) = ṽG − Σ�ℎ(C + �0 (G − 1))

ṽ(1, C) = 0

�`C (G, C) = `G (G, C)
`(1, C) = ^(- (C)) + F(0, C)

(24)

in which AF is defined for G ∈ [0, 1] as

AF (G, C) = −�0
3^

3-
( ?̂(G, C))Φ(G, 0, C) 5̃ (C) (25)

with

5̃ (C) = 5 (- (C), ^(- (C)) +F(0, C) + X(C)) ṽ(0, C)) − 5 (- (C), ^(- (C)) +F(0, C)) (26)

Φ is the state-transition matrix associated with the equation

AG (G, C) = �0
m 5

m-

(
?̂(G, C), F(G, C) + ^( ?̂(G, C))

)
A (G, C) (27)

and ℎ is defined for C ≥ 0 as

ℎ(C) = �0
3^

3-
( ?̂(1, C)) 5 ( ?̂(1, C), F(0, C) + ^(- (C)) + X(C)) ṽ(0, C)) (28)

with ?̂(G, C) defined in (23) a function of - (C) andF(H, C) for H ∈ [0, G] and G ∈ [0, 1].

Proof Define @(G, C) = �0 ?̂C (G, C) − ?̂G (G, C). Taking time- and space-derivatives of
?̂ defined in (23), one obtains

@(G, C)

=�0

[
5 (- (C), Ê(0, C) + X(C)) ṽ(0, C)) +

∫ G

0

m 5

m-
( ?̂(H, C), Ê(H, C))�0 ?̂C3H

+
∫ G

0

m 5

m*
( ?̂(H, C), Ê(H, C))ÊG3H − 5 (- (C), Ê(0, C))

−
∫ G

0

m 5

m-
( ?̂(H, C), Ê(H, C)) ?̂G3H −

∫ G

0

m 5

m*
( ?̂(H, C), Ê(H, C))ÊG3H

]
=�0

∫ G

0

m 5

m-
( ?̂(H, C), Ê(H, C))@(H, C)3H + �0 5̃ (C)

(29)

with 5̃ (C) defined in (26). This integral equation can be rewritten under the differential
form



8 SiJia KONG, Delphine BRESCH-PIETRI
@G (G, C) =�0

m 5

m-
( ?̂(G, C), Ê(G, C))@(G, C)

@(0, C) =�0 5̃ (C)
(30)

Thus, introducing the state-transition matrix Φ associated with (30), it follows that

@(G, C) = �0Φ(G, 0, C) 5̃ (C) (31)

As the time-derivative of the backstepping transformation (22) is given as

FC (G, C) = ÊC (G, C) −
3^

3-
( ?̂(G, C)) ?̂C (G, C) (32)

and its space-derivative as

FG (G, C) = ÊG (G, C) −
3^

3-
( ?̂(G, C)) ?̂G (G, C) (33)

the dynamics of the backstepping variable F then follows.
In addition, the expression of ℎ(C) for C ≥ 0 is obtained by taking a time derivative

of (12)

ℎ(C + �0 (G − 1)) = ÊG (G, C) = �0 ¤* (C + �0 (G − 1)) = �0
3^

3-
( ?̂(1, C)) ¤̂%(C) (34)

We are now ready to analyze the closed-loop system stablization.

4 Stability analysis of the closed-loop system

Let us define the state of the target system (24) as Ψ = (-, F, ṽ, `) ∈ R= ×
L∞ ( [0, 1],R) × L∞ ( [0, 1],RA × L∞ ( [0, 1],R) , DΨ. Note that (24) was refor-
mulated as a dynamical system involving a random parameter, as studied in [14] or
[7]. We now formulate a well-posedness result for this system.

Following [14], by aweak solution to the closed-loop system (4) and (12)–(13), we
refer to aR=×L∞ ( [−�, 0],R)×R-valued randomvariable (- (-0, C),*C (*0, ·), � (C)),
the realizations of which satisfy an integral form of (4) and (12)–(13).

Similarly, by a weak solution to (24), we refer to a DΨ × R-valued random
variable (- (-0, C), F(F0, ·, C), ṽ(ṽ0, ·, C), `(`0, ·, C), � (C)), the realizations of which
are a weak solution of (24), that is, in the standard weak solution sense of [8] for the
transport PDEs and under an integral form for the ODE.

Lemma 2 For every initial condition (-0,*0) ∈ R= × L∞ ( [−�, 0],R), the closed-
loop system consisting of the plant (4) satisfying Assumptions 1–2 and the control
law defined in (12)–(13) has a unique weak solution.

Consequently, for each initial condition in DΨ, the target system (24) also has a
unique weak solution.
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Proof The proof is omitted due to space limitation. �

From Lemma 2, (Ψ, X) thus defines a continuous-time Markov process and we
can therefore introduce the following elements for stability analysis.

In the sequel, we consider the following Lyapunov functional candidate

+ (Ψ) =, (-) + 1�0
∫ 1

0
(1 + G)F(G)23G + 2

A∑
;=1

∫ 1

0
(1 + G) (4; • D)) ṽ(G)23G

+ 3�
∫ 1

0
(1 + G)`(G)23G (35)

with 1, 2, 3 > 0, and D =
(
�1 · · · �8 · · · �A

)) and where • denotes the Hadamard
multiplication and the square in ṽ(G)2 should be understood component-wise.

As the functional + is not differentiable with respect to time C when evaluated at
Ψ(C), we introduce the infinitesimal generator ! (see [15] and [17]) as

!+ (Ψ) = lim sup
ΔC→0+

1
ΔC

(
E[C , (Ψ, X) ] (+ (Ψ(C + ΔC))) −+ (Ψ)

)
(36)

We also define ! 9 , the infinitesimal generator of the Markov process Ψ obtained
by fixing the value X(C) = 4 9 , as

! 9+ (Ψ) =
3+

3Ψ
(Ψ)�9 (Ψ) (37)

in which �9 denotes the operator corresponding to the dynamics of the target system
(24) with the fixed value X(C) = 4 9 , that is, for Ψ = (-, F, ṽ, `),

�9 (Ψ) (G) =
©«
5 (- (C), ^(- (C)) + 4)

9
ṽ(0) + F(0))

1
�0

[
FG (G) + AF (G)

]
Λ−1
�

[
ṽG (G) − Σ�ℎ(• + �0 (G − 1))

]
1
�
`G (G)

ª®®®®¬
(38)

For the sake of conciseness, in the sequel, we denote + (C), !+ (C) and ! 9+ (C), for
short, instead of + (Ψ(C), X(C)), !+ (Ψ(C), X(C)) and ! 9+ (Ψ(C), C) respectively.

It is worth noticing that, due to the fact that + does not depend explicitly on X,
the infinitesimal generators are related as follows

!+ (C) =
A∑
9=1

%8 9 (0, C)
3+

3Ψ
(Ψ(C))�9 (Ψ(C)) +

A∑
9=1

m%8 9

mC
(0, C)+ (Ψ(C))

=

A∑
9=1

%8 9 (0, C)! 9+ (C)
(39)
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Therefore, in view of stability analysis, as a first step, one can focus on the
derivative of the Lyapunov functional evaluated for a dynamic with a fixed delay,
that is, ! 9+ . This is the approach we follow in the sequel.

4.1 Lyapunov analysis

Before detailing the Lyapunov analysis, we provide a technical lemma, useful in the
following computations.

Lemma 3 Consider the function ℎ defined in (28). There exists " > 0 such that

‖ℎ(C + �0 (• − 1))‖2 ≤ "+ (C), C ≥ �0 (40)

Proof From the definition of the control law (12)–(13), (34) and Assumptions 2–3,
then

|ℎ(C) |2 =�20
(
3^

3-
( ?̂(1, C)) ?̂C (1, C)

)2
≤�24 | 5 ( ?̂(1, C), Ê(1, C)) +Φ(1, 0, C) 5̃ (C) |

2

≤�24
(
| 5 ( ?̂(1, C), Ê(1, C)) | + 4�0�! | 5̃ (C) |

)2 (41)

Hence, using (26) and Assumption 2, one obtains

‖ℎ(C + �0 (• − 1))‖2 =
∫ 1

0
ℎ(C + �0 (G − 1))23G

≤2�24
( ∫ 1

0

�� 5 ( ?̂(1, C + �0 (G − 1)), Ê(1, C + �0 (G − 1))) ��2 3G
+ 42�0�!

∫ 1

0
| 5̃ (C + �0 (G − 1)) |23G

)
≤2�24

(
�2!

∫ 1

0

(
|%̂(C + �0 (G − 1)) | + |* (C + �0 (G − 1)) |

)2
3G

+ 2�2!42�0�!

∫ 1

0
* (C + �0 (G − 2))23G

+ 2�2!42�0�!

∫ 1

0
* (C + �0 (G − 1) − � (C + �0 (G − 1)))23G

)

(42)

Besides, from (13) and Assumption 2, for \ ∈ [C − �0, C],
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|%̂(\) | ≤|- (C) | + �!
∫ \

C−�0
( |%̂(B) | + |* (B) |)3B

≤
(
|- (C) | + �!

∫ \

C−�0
|* (B) |3B

)
+ �!

∫ \

C−�0
|%̂(B) |3B

(43)

Using Grönwall’s inequality, it follows that

|%̂(\) | ≤|- (C) | + �!
∫ \

C−�0
|* (B) |3B

+ �!
∫ \

C−�0

(
|- (C) | +

∫ B

C−�0
|* (b) |3b

)
4�! (\−B)3B

=4�! (\−C+�0) |- (C) | + �!
∫ \

C−�0
4�! (\−B) |* (B) |3B

(44)

Replacing (44) into (42), one has

‖ℎ(C + �0 (• − 1))‖2 ≤ 2�2!�20�
2
4

∫ 1

0

(
4�!�0G |- (C) | + |* (C + �0 (G − 1)) |

+ �!
∫ C+�0 (G−1)

C−�0
4�! (C+�0 (G−1)−B) |* (B) |3B

)2
3G

+ 4�2!�20�
2
44
2�0�!

( ∫ 1

0
* (C + �0 (G − 2))23G

+
∫ 1

0
* (C + �0 (G − 1) − � (C + �0 (G − 1)))23G

)
(45)

Now, define the inverse of the backstepping transformation of (22), which is given
as

Ê(G, C) = F(G, C) + ^( d̂(G, C)) (46)

where d̂ satisfies

d̂(G, C) = - (C) + �0
∫ G

0
5 ( d̂(H, C), F(H, C) + ^( d̂(H, C)))3H (47)

Similarly, using Assumption 2 and Grönwall’s inequality, one can also bound d̂(G, C)
as

d̂(G, C) ≤ 4�0�! (1+�4)G |- (C) | + �0�!
∫ G

0
4�0�! (1+�4) (G−H) |F(H, C) |3H (48)

Then, from (46), one obtains

‖Ê(C)‖2 ≤ 3�244
2�0�! (1+�4) |- (C) |2 + 3

(
�24�

2
0�
2
!4
2�0�! (1+�4) + 1

)
‖F(C)‖2 (49)

Hence, observing that
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0
* (C + �0 (G − 1) − � (C + �0 (G − 1)))23G ≤

A∑
9=1

∫ 1

0
* (C + �0 (G − 1) − � 9 )23G

≤ 2A
(
‖Ê(C)‖2 + ‖`(C)‖2

)
(50)

and using (49) in (45), it follows that

‖ℎ(C + �0 (• − 1))‖2 ≤ "- |- (C) |2 + "F ‖F(C)‖2 + "` ‖`(C)‖2 (51)

in which ("- , "F , "`) are positive constants defined as follows


"- =6�2!�

2
�24

(
42�!� + �244

2�!� (1+�4) (3 + 3�2!42�!� + 2(1 + 2A)42�!�)
)

"F =6�2!�
2
�24

(
�24�

2
�2!4

2��! (1+�4) + 1
)
(3 + 3�2!42�!� + 2(1 + 2A)42�!�)

"` =4(1 + 2A)�2!�
2
�244

2�!�

(52)
Consequently, from the definition of the Lyapunov functional + in (35), one finally
gets the desired result with " = �

2max
{

"-

min(_(%)) ,
"F

1�
,
"`

3�

}
. �

With this last ingredient, we are now ready to develop the Lyapunov analysis.

Lemma 4 Consider the closed-loop system consisting of (4) and the control law
(12)–(13) satisfying Assumptions 1–3. Let � be a compact set of A containing the
origin. Assume there exists a positive constant n such that

|�0 − � 9 | ≤ n, 9 ∈ {1, ..., A} (53)

and that - (C) ∈ � for a certain C ≥ �, then, there exist 1, 2, 3 ∈ R∗+3 which are
independent of n such that the Lyapunov functional + defined in (35) satisfies

!+ (C) ≤ −([ − 6(n))+ (C) (54)

with [ > 0 independent of n and the function 6 : R+ → R+ satisfying limn→0 6(n) =
0.

Proof Applying integrations by parts and Young’s inequality, one obtains
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3+

3Ψ
(Ψ)�9 (Ψ) ≤

3,

3-
5 (- (C), ^(- (C)) + F(0, C) + Ẽ 9 (0, C))

− 1
(
1 − 2W1

)
‖F(C)‖2 − 1F(0, C)2 + 21 1

W1
‖AF (G, C)‖2

− 2
A∑
;=1

(
1 − 2

����1 − �;�0
���� W2) ‖Ẽ; (C)‖2 − 2 A∑

;=1
Ẽ; (0, C)2

+ 22
A∑
;=1

����1 − � 9

�0

���� 1W2 ‖ℎ(C + �0 (• − 1))‖2
− 3`(0, C)2 − 3‖`(C)‖2 + 23`(1, C)2

(55)

From the definition of 5̃ in (26) with X(C) = 4 9 and Assumptions 2–3, it holds

‖AF (G, C)‖2 = �20�
2
44
2�0�!�2! Ẽ 9 (0, C)2 (56)

Then, with Assumption 2, we obtain the following inequality

3+

3Ψ
(Ψ)�9 (Ψ) ≤

3,

3-

(
5 (- (C), ^(- (C)) + �! |F(0, C) + Ẽ 9 (0, C) |

)
− 1

(
1 − 2W1

)
‖F(C)‖2 − 1F(0, C)2

+ 21 1
W1
�20�

2
!�
2
44
2�0�! Ẽ 9 (0, C)2

− 2
A∑
;=1

(
1 − 2

����1 − �;�0
���� W2) ‖Ẽ; (C)‖2 − 2 A∑

;=1
Ẽ; (0, C)2

+ 22
A∑
;=1

����1 − �;�0
���� 1W2 ‖ℎ(C + �0 (• − 1))‖2

− 3`(0, C)2 − 3‖`(C)‖2 + 23`(1, C)2

(57)

Therefore, applying Assumptions 2–3, Lemma 3 and Young’s inequality, !+ (C)
satisfies

!+ (C) =
A∑
9=1

%8 9 (0, C)
3+

3Ψ
(Ψ)�9 (Ψ)

≤ −
(
_

2
− 43�24

)
|- (C) |2 − 1

(
1 − 2W1

)
‖F(C)‖2

− 2
A∑
;=1

(
1 − 2

����1 − �;�0
���� W2) ‖Ẽ; (C)‖2 − 3‖`(C)‖2 − (

1 − 43 −
�23�

2
!

_

)
F(0, C)2

−
(
2 − 21 1

W1
�204

2�0�!�24�
2
! −

�23�
2
!

_

)
A∑
9=1

%8 9 (0, C)Ẽ 9 (0, C)2
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− 2
A∑
9=1

%8 9 (0, C)
∑
;≠ 9

Ẽ; (0, C)2 − 3`(0, C)2 +
22An
�0

1
W2
"+ (C) (58)

in which " is a positive constant which does not depend on n and is defined in
Lemma 3.

Observing that �0 ∈ [�, �], let us choose (1, 2, 3, W1, W2) ∈ (R∗+)5 as follows

(a)3 < _

8�24

(b)1 ≥ 43 + �
2
3�
2
!

_
,

(c)W1 ≤ 14 ,
(d)W2 ≤ 14 min

{
(1 − �1

�
)−1, ( �A

�
− 1)−1

}
,

(e)2 ≥ 21 1
W1
�
2
42��!�24�

2
!
+ �

2
3�
2
!

_
. �

From (58), one then obtains (54) with the well-defined positive constant [ =
min

{
_−83�24
2�2 , 1

4�

}
, and the function

6(n) = 22An
�0

1
W2
" (59)

which satisfies limn→0 6(n) = 0.

The proof of Theorem 1 now follows.

4.2 Proof of Theorem 1

Firstly, as limn→0 6(n) = 0, there exists n★ > 0 such that [ − 6(n) = W > 0
for n < n★. Therefore, according to Dynkin’s formula [9, Theorem 5.1, p. 133],
assuming temporally that - (C) ∈ � for all C ≥ �, from (54), one obtains for n < n★

E[�, (Ψ,�) (�) ] (4
WC+ (C)) − 4W�+ (�)

≤ E[�, (Ψ,�) (�) ]
(∫ C

�

[W4WB+ (B) + 4WB!+ (B)] 3B
)
= 0

(60)

from which, using standard conditional expectation properties, one deduces

E[0, (Ψ,�) (0) ] (4WC+ (C)) ≤E[0, (Ψ,�) (0) ] (4W�+ (�)) (61)

Consequently, applying Gronwall’s inequality to (60) (see [16])

E[0, (Ψ,�) (0) ] (+ (C)) ≤ E[0, (Ψ,�) (0) ] (+ (�))4−W (C−�) (62)

Similarly to [19, Lemma 4], by applying Young’s and Gronwall’s inequalities
to the backstepping transformation (22) and its inverse (46), there exist positive
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constants @1 and @2 such that for ∀C ≥ 0, @1+ (C) ≤ Υ(C) ≤ @2+ (C). It thus follows
that E[0, (Υ(0) ,� (0)) ] (Υ(C)) ≤ @2

@1
E[0, (Υ(0) ,� (0)) ] (Υ(�))4−W (C−�) . To relate Υ(�) to

Υ(0), we formulate the following lemma.

Lemma 5 Consider the dynamics (4) satisfying Assumptions 1–3. There exists a
constant '0 such that the function Υ defined in (17) satisfies

Υ(C) ≤ '0Υ(0), C ∈ [0, �] (63)

Proof Firstly, with Assumption 2, notice that

|- (C) | ≤4�! C |- (0) | + �!
∫ C

0
4�! (C−B) |* (B − � (B)) |3B

≤4�! C |- (0) | + �!
A∑
9=1

∫ C

0
4�! (C−B) |* (B − � 9 ) |3B (64)

For C ∈ [0, �], with* (C) = *0 (C) for C ≤ 0, (64) then gives

|- (C) |2 ≤ #1 |- (0) |2 + #2
∫ min{C−�,0}

−�
*0 (B)23B + #2

∫ C−�

min{C−�,0}
* (B)23B (65)

with #1 = 242�!� and #2 = A�2!#1. Besides, using Assumption 3 and (44), the
prediction-based control law satisfies the inequality

|* (C) | = |^(%̂(C)) | ≤ �4
(
4�!�0 |- (C) | + �!

∫ C

C−�0
4�! (C−B) |* (B) |3B

)
(66)

from which one obtains

* (C)2 ≤ #3 |- (C) |2 + #4
∫ C

C−�0
* (B)23B (67)

with #3 = 2�244
2�!�0 and #4 = �2!#3.

Replacing (67) into (65) and using again (65), one obtains

|- (C) |2 ≤#1 |- (0) |2 + #2
∫ min{C−�,0}

−�
*0 (B)23B + #2#3

∫ C−�

min{C−�,0}
- (B)2

+ #2#4�0
∫ C−�

min{C−�,0}−�0
* (B)23B (68)

≤#5 |- (0) |2 + #6
∫ C−�

−�
* (B)23B (69)

with
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#5 =#1

(
1 + #2#3 (� − �)

)
(70)

#6 =#2

(
1 + #2#3 (� − �) + #4�0

)
(71)

Hence, with (67), it follows that

* (C)2 ≤ #3#5 |- (0) |2 + (#3#6 + #4)
∫ C

−�
* (B)23B (72)

and, applying Gronwall’s lemma, that

* (C)2 ≤ #7 |- (0) |2 + #8
∫ C

−�
*0 (B)23B (73)

with #7 = #3#54 (#3#6+#4)� and #8 = (#3#6 + #4)4 (#3#6+#4)� . Consequently, it
also holds

- (C)2 ≤ #9 |- (0) |2 + #10
∫ C

−�
*0 (B)23B (74)

with #9 = #5 + #6 (� − �)#7 and #10 = #6 (1 + (� − �)#8). Therefore, as from
(17), it holds

Υ(C) = |- (C) |2 +
∫ 0

C−�−�0
*0 (B)23B +

∫ C

0
* (B)23B (75)

the conclusion follows from (73) and (68). �

With Lemma 5, we can now conclude the proof of Theorem 1. Indeed, the function
Υ thus satisfies E[0, (Ψ,�) (0) ] (Υ(C)) ≤ @2

@1
'0Υ(0)4−W (C−�) , if - (C) ∈ � for all C ≥ �.

Finally, let us denote
√
d★0 such that �(0,

√
d★0 ) ⊂ � and observe that |- (C) |2 ≤

Υ(C) for all C ≥ 0. Consequently, a sufficient condition for - (C) belonging to � is
Υ(C) ≤ d★0 and the result follows with d★ = @1

@2'0
d★0 and ' = @2

@1
'04

W� . Theorem 1
is then proved.

5 Conclusion

In this chapter, we extended our previous work [18] to the case of nonlinear systems,
using a controller based on a constant time horizon prediction to robustly compensate
for stochastic input delays. A first direction of improvement of this work will be to
relax the technical assumptions made in this chapter on the dynamics, in particular
on the global lipschitzness of the vector field.

Besides, the sufficient condition we obtain for closed-loop stabilization bears on
the range of the possible delay values, which should be small enough, and on the
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prediction horizon which should be close enough to this range. Hence, this condition
does not distinguish between the delay probability distributions. It is thus likely to
be somehow conservative. Relaxing this condition to involve the delay distribution
into the stability analysis is an important direction of future work.

Similarly, to increase the closed-loop performances, other prediction horizons
could be considered in the future, such as the current expected value of the delay.

Finally, our analysis methodology grounds on the probabilistic delay averaging
approach [16], modeling the input delay as a Markov process with a finite number
of states. Another important direction of future works is to extend this analysis
methodology to the case where the delay takes values in a continuum.
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