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Abstract

We detail in this article the development of a delay-robust stabilizing state feedback control law for an underactuated network
of two subsystems of heterodirectional linear first-order hyperbolic Partial Differential Equations interconnected through their
boundaries. Only one of the two subsystems is actuated. The proposed approach is based on the backstepping methodology.
A backstepping transform allows us to construct a first feedback to tackle in-domain couplings present in the actuated PDE
subsystem. Then, we introduce a predictive tracking controller to stabilize the second PDE subsystem. The stabilization of
this subsystem implies the stabilization of the whole network. Finally, the proposed control law is combined with a low-pass
filter to become robust with respect to small delays in the control signal and uncertainties on the system parameters.
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1 Introduction

The ability to manipulate flow properties (concentra-
tion, temperature, density, etc.) is a question of major
technological importance. Such a situation occurs for
flow regulation in mining [43] or hydraulic networks [19],
for control of after-treatment devices in exhaust lines [20]
and for blending in liquid or solid networks [14], to name
a few. Remarkably, in all these examples, transportation
of matter occurs across space, and propagation phenom-
ena have to be taken into account to adequately rep-
resent their dynamical behavior [19,23,38]. One natural
mathematical representation of these transport phenom-
ena is through hyperbolic Partial Differential Equations
(PDEs).

The control and estimation of coupled hyperbolic PDEs
is an active research topic [2,16,22,31,39,44]. Unlike re-
sults for linear Ordinary Differential Equations (ODEs),
constructive control designs, even for linear hyperbolic
PDEs, are harder to find and often require specific con-
trollability results [17], or many independent actuators
to be available [41].

In this paper, we explore the design of a stabilizing
state feedback control law for an underactuated net-
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work. More precisely, we consider a network of two sub-
systems of n+m heterodirectional linear first-order hy-
perbolic PDEs interconnected through their boundaries,
with only one actuated system. This kind of intercon-
nected systems may appear when considering oil pro-
duction systems made of networks of pipes (whose prin-
cipal line is known as the manifold), each pipe being
subject to torsional and axial oscillations [38]. Similar
kind of interconnections can also appear when model-
ing traffic network systems with different types of vehi-
cles [13], ventilation in buildings [43], density-flow sys-
tems [27], open canals [19], communication networks [24]
or the case of the Rijke tube [18] (even if, in this case
an ODE is sandwiched between two PDEs systems).
Among the different possible approaches to deal with
these networks, PI boundary controllers have been con-
sidered in [9,27] for fully actuated networks (i.e., with
one control per set of heterodirectional PDEs). The au-
thors obtained explicit stability conditions using appro-
priate quadratic Lyapunov functions. In [29], the authors
consider a flatness-based design of a feedforward control
of tree-like transmission networks. Similar cases of inter-
connected problems have been considered in [40], with
a velocity recirculation in a wave equation. The exact
boundary controllability of nodal profile for quasilinear
hyperbolic systems with interface conditions in a tree-
like networks has been assessed in [42] using the method
of characteristics. However, even if the proposed method
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is straightforward to implement, it may require solving a
set of PDEs online, which is computationally expensive.
Underactuated PDEs have been the source of several
contributions during these last years. Recently in [39],
the authors have considered the output feedback control
of series interconnections of 2× 2 semilinear hyperbolic
system using the dynamics on the characteristic lines.
Regarding networks of ODEs and PDEs, some results
have been obtained recently using the backstepping ap-
proach [1,21]. Interestingly, in [25], the author proposes
a systematic design for the stabilization of ODE-PDE-
ODE based on successive backstepping transformations.
Finally, the backstepping approach has been used in [4]
to design a robust stabilizing output feedback control law
for an underactuated cascade network of n systems of
two heterodirectional linear first-order hyperbolic PDEs
interconnected through their boundaries.

In this paper, to construct a stabilizing controller, in-
spired by [8,7], we propose to use backstepping tech-
niques to reformulate the system at stake under the form
of difference equations that are more suitable for control
design. We follow a two-steps procedure. First, we con-
sider a virtual input acting on the non-actuated PDE
subsystem and design a novel prediction-based control
law [3,10,12] for difference equations, which guarantees
the stabilization of this subsystem. Then, we focus on
the actuated PDE subsystem and guarantee the tracking
of the previously designed virtual law by constructing
a backstepping transformation tackling the in-domain
couplings of this PDE subsystem. This two-steps proce-
dure can be performed under an invertibility assumption
on the boundary matrix between the two subsystems.
As a final ingredient, we propose an adequate low-pass
filter that can be added to the control design and ren-
ders the final control law strictly proper and thus robust
to delays in the loop as studied in [5,11]. The resulting
feedback law guarantees robust stabilization of the en-
tire network. This is the main contribution of the paper.

The paper is organized as follows. In Section 2, we
present the problem under consideration and the control
approach. Then, Section 3 focuses on the stabilization
of the first PDE subsystem reformulated as time-delay
difference equations (comparison system) and the de-
sign of a prediction-based control law, while Section 4
presents a backstepping procedure for the second PDE
subsystem. After presenting in Section 5 the resulting
stabilizing control law for the PDE network, Section 6
details the design of a low-pass filter guaranteeing delay-
robust stabilization. Finally, the merits of our design
are illustrated in numerical simulations in Section 7.

2 Problem Formulation

2.1 Definitions and notations

In this section we detail the notations used through this
paper. For any distinct real numbers a and b, we denote
L2([a, b],R) the space of real-valued square-integrable
functions defined on [a, b] with the standard L2 norm,

i.e., for any f ∈ L2([a, b],R), ||f ||2L2([a,b]) =
∫ b
a
f2(x)dx.

The letters np, nd,mp,md designate non-zero in-
tegers. For two functions u1 in L2([a1, b1],R), u2

in L2([a2, b2],R) (where a1 6= b1 and a2 6= b2 are real
numbers), we use the following notation

||(u1, u2)||2L2 = ||u1||2L2([a1,b1]) + ||u2||2L2([a2,b2]).

It represents the sum of the square of the L2-norm
of each function. This notation can be straightfor-
wardly generalized to an arbitrary finite number of
L2-functions. The set L∞([0, 1],R) denotes the space
of bounded real-valued functions defined on [0, 1] with
the standard L∞ norm, i.e., for any f ∈ L∞([0, 1],R),
||f ||L∞ = ess sup

x∈[0,1]

|f(x)|. The sets Tb and U are defined as

Tb = {(x, ξ) ∈ [0, 1]2 s.t. ξ ≤ x}, (1)

U = {(x, ξ) ∈ [0, 1]× [−1, 0]}, (2)

The first domain corresponds to the lower triangular
part of the unit square. The second domain corresponds
to a square. The space L∞(Tb) (resp. L∞(U)) stands for
the space of real-valued L∞ functions on Tb (resp. U).
For any integer m > 0 and any real delay τ > 0, we
denote L2([−τ, 0],Rm) the Banach space of L2 functions
mapping the interval [−τ, 0] into Rm. For a function φ :
[−τ,∞) 7→ Rm, we define its partial trajectory φ[t] by
φ[t] : φ(t + θ), −τ ≤ θ ≤ 0. This maximum delay τ will
be related to the transport velocities of the considered
PDE system. The associated norm is given by

||φ[t]|| =
(∫ 0

−τ
φT (t+ s)φ(t+ s)ds

) 1
2

. (3)

For every τ > r > 0, we define

||φ[t]||r =

(∫ 0

−r
φT (t+ θ)φ(t+ θ)dθ

) 1
2

. (4)

The variable s denotes the Laplace variable. The space
C+ corresponds to the complex right half plane: C+ =
{s ∈ C, Re(s) ≥ 0}, where Re denotes the real part of
a complex number. Provided it is defined, the Laplace

transform of a function f will be denoted f̂ . For all p ∈
N, we denote Idp the identity matrix of dimension p
(or Id if no confusion arises). Finally, for any proper
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and stable transfer matrix G(s), we denote σ̄(G(s)) the
largest singular value of G(s) (s ∈ C+) and σ(G(s)) its
lowest singular value.

2.2 System under consideration

In this paper, we consider a system composed of two
independent subsystems coupled through their bound-
aries, as schematically represented in Fig. 1. Each sub-
system is composed of an arbitrary number of linear hy-
perbolic PDEs. Only one subsystem is actuated at its
boundary. The first subsystem is defined by the follow-
ing set of PDEs

∂tu
p(t, x) + Λ+

p ∂xu
p(t, x) = Σ++

p (x)up(t, x)

+ Σ+−
p (x)vp(t, x), (5)

∂tv
p(t, x)− Λ−p ∂xv

p(t, x) = Σ−+
p (x)up(t, x)

+ Σ−−p (x)vp(t, x), (6)

evolving in {(t, x) s.t. t > 0, x ∈ [0, 1]}, where up =(
up1 . . . u

p
np

)T
and vp =

(
vp1 . . . vpmp

)T
are the PDE

states. The matrices Λ+
p and Λ−p are diagonal (Λ+

p =

diag (λpi ), Λ−p = diag (µpi )) and their coefficients satisfy

−µpmp ≤ · · · ≤ −µ
p
1 < 0 < λp1 ≤ · · · ≤ λpnp .

The spatially-varying inside domain coupling matrices
are defined as follows

Σ++
p (x) = {(σ++

p )ij(x)}1≤i,j≤np ,
Σ+−
p (x) = {(σ+−

p )ij(x)}1≤i≤np,1≤j≤mp ,
Σ−+
p (x) = {(σ−+

p )ij(x)}1≤i≤mp,1≤j≤np ,
Σ−−p (x) = {(σ−−p )ij(x)}1≤i,j≤mp .

Their coefficients are assumed to be continuous func-
tions. We assume that the diagonal terms of the ma-
trices Σ++

p and Σ−−p are equal to zero (such coupling
terms can be removed using exponential change of coor-
dinates).The subsystem (5)-(6) will be called the proxi-
mal subsystem since it will be the one actuated. The sec-
ond subsystem will be called the distal subsystem since
it will not be directly actuated. It satisfies a similar set
of equations

∂tu
d(t, x) + Λ+

d ∂xu
d(t, x) = Σ++

d (x)ud(t, x)

+ Σ+−
d (x)vd(t, x), (7)

∂tv
d(t, x)− Λ−d ∂xv

d(t, x) = Σ−+
d (x)ud(t, x)

+ Σ−−d (x)vd(t, x), (8)

evolving in {(t, x) s.t. t > 0, x ∈ [−1, 0]}, where ud =(
ud1 . . . u

d
nd

)T
and vd =

(
vd1 . . . vdmd

)T
are the PDE

states. The matrices Λ+
d and Λ−d are diagonal (Λ+

d =

diag (λdi ), Λ−d = diag (µdi ) ) and their coefficients satisfy

−µdmd ≤ · · · ≤ −µ
d
1 < 0 < λd1 ≤ · · · ≤ λdnd . (9)

The spatially-varying inside domain coupling matrices
are defined as follows

Σ++
d (x) = {(σ++

d )ij(x)}1≤i,j≤nd ,
Σ+−
d (x) = {(σ+−

d )ij(x)}1≤i≤nd,1≤j≤md ,
Σ−+
d (x) = {(σ−+

d )ij(x)}1≤i≤md,1≤j≤nd ,
Σ−−d (x) = {(σ−−d )ij(x)}1≤i,j≤md .

Their coefficients are assumed to be continuous func-
tions. The two, somehow independent, subsystems are
coupled through their boundaries. More precisely, the
boundary conditions of (5)-(6) and (7)-(8) verify

ud(t,−1) = Rdv
d(t,−1), (10)

vd(t, 0) = Qdpv
p(t, 0) +Qddu

d(t, 0), (11)

up(t, 0) = Qppv
p(t, 0) +Qpdu

d(t, 0), (12)

vp(t, 1) = Rpu
p(t, 1) + V (t), (13)

where the matrices Rp, Rd, Qpp, Qdd, Qdp, Qpd are con-
stant matrices of appropriate dimensions. The func-
tion V is a vector input function (control law with mp

components) that takes real values. The initial con-
ditions of the systems (5)-(6) and (7)-(8) are given
as up0(·) = up(0, ·), vp0(·) = vp(0, ·) , ud0(·) = ud(0, ·)
and vd0(·) = vd(0, ·). These initial conditions are L2 func-
tions. The interconnected system (5)-(13) is depicted in
Figure 1.

Finally, we denote τp the maximum transport delay for
the proximal system, τd the maximum transport delay
for the distal system and τ = τp + τd:

τp = sup
1≤j≤mp
1≤i≤np

(
1

λpi
+

1

µpj
), τd = sup

1≤j≤md
1≤i≤nd

(
1

λdi
+

1

µdj
). (14)

Remark 1 The velocity matrices Λ+
· , and Λ−· are as-

sumed to be constant but the presented results can be ex-
tended to the case of velocities which are C1([0, 1],R)-
functions.

Note that, as we consider weak solutions, the system (5)-
(13) is well-posed. This can be shown using [9, Theorem
A.6, page 254] and a reformulation of the system under
consideration.

Indeed, in details, the interconnected system (5)-(13)
can be rewritten in a more condensed form as a general
n + m hyperbolic system (with n = md + np and m =
nd +mp) by performing the change of variables x̄ = −x
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ud(t, x) Qpd up(t, x)

vd(t, x) Qdp vp(t, x)

Σ−+
d Σ+−

d
Σ−+
p Σ+−

p RpRd QppQdd

V (t)

-1 0 +1 x

Fig. 1. Schematic representation of the interconnected system (5)-(6), (7)-(8) with the boundary conditions (10)-(13).

on the distal subsystem. This change of variables has
sometimes been referred to as folding. More precisely,
let us consider the concatenated states u(t, x) and v(t, x)
defined on for all t > 0 and all x ∈ [0, 1] by

u(t, x) =

(
up(t, x)

vd(t,−x)

)
, v(t, x) =

(
vp(t, x)

ud(t,−x)

)
. (15)

The states u and v satisfy the following hyperbolic sys-
tem

∂tu(t, x) + Λ+∂xu(t, x) = Σ++(x)u(t, x)

+ Σ+−(x)v(t, x), (16)

∂tv(t, x)− Λ−∂xv(t, x) = Σ−+(x)u(t, x)

+ Σ−−(x)v(t, x), (17)

with the boundary conditions

u(t, 0) = Qv(t, 0), v(t, 1) = Ru(t, 1) +AV (t), (18)

where

Λ+ =

(
Λ+
p 0

0 Λ−d

)
, Λ− =

(
Λ−p 0

0 Λ+
d

)
,

Σ++(x) = diag(Σ++
p (x),Σ−−d (−x)),

Σ+−(x) = diag(Σ+−
p (x),Σ−+

d (−x)),

Σ−+(x) = diag(Σ−+
p (x),Σ+−

d (−x)),

Σ−−(x) = diag(Σ−−p (x),Σ++
d (−x)),

Q =

(
Qpp Qpd

Qdp Qdd

)
, R =

(
Rp 0

0 Rd

)
, A =

(
Idmp

0nd,mp ,

)

The diagonal components of the matrix Λ+ are denoted
λi (1 ≤ i ≤ np + md) while the ones of the matrix Λ−

are denoted µi (1 ≤ i ≤ nd + mp). System (16)-(18)
is under-actuated as, due to the matrix A, only a part
of the boundary x = 1 is actuated. Although several
stabilization results can be found in the literature for
the stabilization of (n+m) hyperbolic system fully ac-
tuated at one boundary (see for instance [16,28]), only
few results exist about underactuated hyperbolic sys-
tems [7,15]. However, we must be aware that (16)-(18) is

a specific case of underactuated PDE system since it has
a cascade structure due to the sparsity of the in-domain
matrices Σ··. This cascade structure naturally appears
when considering equations (5)-(13). Thus, to design a
stabilizing control law, it seems relevant to consider this
form rather than the condensed form (16)-(18). How-
ever, the form (16)-(18) will be helpful for the robustness
analysis.

2.3 Problem formulation

In order to design a control law that stabilizes the in-
terconnected system (5)-(13), we make the following as-
sumption.

Assumption 1 Let us consider z ∈ L2([−τ, 0],Rmp+nd)
(where τ = τp + τd is defined in (14)) that satisfies the
difference system defined for all 1 ≤ i ≤ mp + nd by

zi(t) =
∑

1≤l≤mp+nd
1≤k≤np+md

RikQklzl

(
t− 1

λk
− 1

µl

)
, (19)

We assume that (19) is exponentially stable in the sense
of the norm (3).

It has been shown in [32] that a necessary condition to
guarantee the existence of robustness margins for an ar-
bitrary closed-loop system is that the open-loop transfer
function must have a finite number of poles on the closed
right half-plane. For the system (16)-(18) (and conse-
quently (5)-(13)), [8, Theorem 4] proved that this im-
plies that the open-loop system without in-domain cou-
plings must be exponentially stable. Using the method
of the characteristics, it is straightforward to show that
this open-loop system without in-domain couplings has
equivalent stability properties to those of the difference
system (19) (with z(t) ≡ v(t, 1), see [8] for details).
Therefore, Assumption 1 constitutes a reasonable as-
sumption as it is necessary for the existence of robust-
ness margins for the closed-loop system. In other terms,
if Assumption 1 is not fulfilled, then, for any feedback
law, the introduction of any arbitrarily small delay in
the actuation will destabilize the closed-loop system [32].
However, this condition is always satisfied for physical
applications, due to the presence of damping terms in the
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PDE system (or neglected dynamics involving diffusion
terms) since these terms slightly modify equation (19).
Note that equation (19) can be expressed in a condensed

vector form as z(t) =
∑N
p Cpz(t − ηp), where N , the

matrices Cp and the delays ηp are obtained from (19).
In [26], it is proved that, if the delays are rationally in-
dependent 1 , this equation is exponentially stable if and
only if

sup
θp∈[0,2π]N

Sp (

N∑
p

Cp exp(iθp)) < 1, (20)

where Sp denotes the spectral radius. As condition (20)
may be computationally expensive to check, alterna-
tively, some numerically tractable sufficient conditions
have been proposed using Lyapunov-Krasovskii the-
ory [33,36].

To stabilize the distal subsystem through the proximal
subsystem, we make the following assumption.

Assumption 2 The rank of the matrix Qdp is equal to
md.

This assumption means that the matrix Qdp admits a
right inverse. A possible choice is given by the Moore-
Penrose right inverse: QTdp(QdpQ

T
dp)
−1. This assumption

will be used to design a virtual actuation for the distal
subsystem. However, one must be aware that it is a con-
servative assumption 2 but, to the best of our knowledge,
only specific results ([7] for instance) currently exist in
the literature for the stabilization of underactuated sys-
tems that do not have any specific cascade structure.

Remark 2 Assumption 2 implies that md ≤ mp.

A controller ensuring a PDE system’s exponential sta-
bility may exhibit poor closed-loop behavior and even
instability in practice due to vanishing delay margins.
For this reason, several concepts of robust stability have
been introduced to ensure that the stability holds even
in the presence of (possibly small) uncertainties on the
delays. We recall here several definitions relevant to our
control problem.

Definition 3 (Delay-robust stabilization [32])
Consider a plant transfer function G and a feedback
controller K such that GK is regular 3 and K sta-

1 Extending the variable z, it is always possible to rewrite
the system in a situation where the delays are rationally
independent.
2 Less restrictive conditions could be obtained if controlla-
bility conditions were available for underactuated PDEs sys-
tems. This is a direction of future works.
3 i.e. GK is bounded on some Right-Half plane and
limλ→∞G(λ)K(λ) exists (where λ is real), see [32, Section
2] for details.

bilizes G. The closed-loop system is robustly stable
with respect to delays if and only if there exists ε0
such that, for all ε ∈ [0, ε0] the closed-loop trans-
fer function in the presence of a delay ε in the ac-

tuation (i.e. GK (I + e−εsGK)
−1

) is stable. Let us
denote H = GK and PH the (discrete) set of its
poles in C1 = {s ∈ C | Re(s) > 0}. Let us de-
fine γ = lim

|s|→∞
s∈C1\PH

Sp(H(s)), where Sp stands for the

spectral radius. If γ < 1, then the closed-loop system is
robustly stable with respect to delays. If γ > 1, then the
closed-loop system is not robustly stable with respect to
delays.

The more general concept of w-stability proves more use-
ful in this context.

Definition 4 (w-stability [17]) Consider a plant
transfer function G and a feedback controller K such
that GK is regular. The closed-loop system is w-stable if
and only if for any approximate identity Iδ, the closed-
loop transfer function GK (I + IδGK)

−1
is stable. An

approximate identity is a family of transfer functions Iδ
such that

(1) ‖Iδ‖∞ < 1, I0 = I;
(2) On every compact set of the open Right-Half Plane,

Iδ converges to I when δ goes to zero.

Suppose that (G,K) is input-output stable. Then (G,K)
is w-stable if there exists a ρ > 0 such that

lim
{s∈ C̄+| |s|>ρ}

||G(s)K(s)|| < 1. (21)

Approximate identities may include more general trans-
fer functions than the ones stemming from uncertain-
ties on the delays. Thus, w-stability implies delay-robust
stability. Moreover it is easy to show that the condi-
tion γ < 1 implies (21). Hence the conditions for delay-
robustness and w-stability are the same for input-output
stable systems, possibly except for the case γ = 1.

In this paper, we show that if Assumption 1 and As-
sumption 2 are satisfied, then it is possible to explicitly
design a state feedback control law V that robustly
stabilizes the system (5)-(13), i.e.:

• the state (up, vp, ud, vd) of the resulting feedback
system (5)-(13) exponentially converges to its zero
equilibrium (stabilization problem), i.e. there
exist κ0 ≥ 1 and ν > 0 such that for any ini-
tial condition (up0, v

p
0 , u

d
0, v

d
0) ∈ (L2[0, 1])mp+np ×

(L2[−1, 0])md+nd

||(up, vp, ud, vd)||L2 ≤ κ0e−νt||(up0, v
p
0 , u

d
0, v

d
0)||L2 .

• the resulting closed-loop system (5)-(13) is w-stable.
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Step 1: stabilization of the distal subsystem

Step 2: Tracking for the proximal subsystem

Study of the distal
subsystem (23)–(26)

via a virtual input (22) Reformulation
as a TDS

(Theorem 5)

Prediction-based
control design
(Theorem 7)

Original interconnection
of PDEs (16)-(18)

Flat output
(Lemma 9)

and
control law for

the original system
(Theorem 10)

Target system (46)–(53)

Backstepping
transformation

Vvirt(t)

Fig. 2. Schematic representation of the different steps of the
control design.

2.4 Control strategy

The distal subsystem can only be controlled through the
proximal subsystem. Due to the hyperbolic structure of
the proximal subsystem, the effect of the actuation on
the distal subsystem will be delayed by the transport
time 1

µp1
but also modified by the different in-domain

couplings that are present in equation (6). Using a back-
stepping transformation, it is however, possible to con-
struct a first feedback that tackles in-domain couplings
present in the proximal subsystem. Then, using the right
invertibility of Qdp (Assumption 2), it becomes possible
to track the state Qdpv

p(t, 0) entering in the distal sub-
system. However, due to the transport time between the
boundaries of the proximal subsystem and to guarantee
a causal control law, we choose to trackQdpv

p(t+ 1
µp1
, 0),

by considering Vvirt(t) = Qdpv
p(t + 1

µp1
, 0) as a virtual

input acting on the distal subsystem. This leads us to
the stabilization of a hyperbolic system with a delayed
actuation. This problem has already been evoked in [6]
for an interconnection between an ODE and a PDE. To
tackle this problem, we design a new kind of predictor.
To summarize, our approach, illustrated in Fig. 2 is de-
scribed as follows.

(1) We consider the distal subsystem with the virtual
actuation Vvirt(t) = Qdpv

p(t+ 1
µp1
, 0). We find a par-

ticular flat output [35,30] for the distal subsystem.
Using a state predictor for this flat-output, we de-
sign a virtual actuation V ref

virt(t) that stabilizes the
distal subsystem. This is done in Section 3

(2) Using a backstepping transformation, we design in
Section 4.1 a first feedback law that tackles in-
domain couplings in the proximal subsystem.

(3) Then, we propose a flatness-based feedforward
tracking control design so that the output of the
proximal subsystem tracks the function V ref

virt(t).
This allows the stabilization of the distal subsys-

tem. Note that the use of the backstepping trans-
formation considerably simplifies this feedforward
controller design. This is the purpose of Section 4.2.

(4) Finally, we show in Section 5 that the proposed
control law stabilizes the global system (5)-(13).

The approach we develop in this paper corresponds to
a first step towards a recursive interconnected dynamics
framework. Such a framework is natural to design an ex-
plicit state-feedback control law that stabilizes a network
of interconnected linear hyperbolic systems (potentially
coupled with other classes of systems). Roughly speak-
ing, the proposed control law is recursively obtained by
considering stabilizing virtual inputs for the last subsys-
tem and ensuring the proximal subsystem’s output con-
verges to this desired virtual inputs. This approach can
be extended to a higher number of subsystems. The con-
trol design becomes more straightforward and is based
on simple assumptions that can be independently veri-
fied for each subsystem. This new framework allows for
a “plug-and-play”-like approach to control design since
additional subsystems, satisfying similar conditions, can
be added to the network using the same procedure.

Remark 1 Note that we cannot simply adjust the back-
stepping approach derived in [4], where a robust stabiliz-
ing output feedback control law was designed for an under-
actuated cascade network of n systems of two heterodirec-
tional linear first-order hyperbolic PDEs interconnected
through their boundaries. Indeed, contrary to [4], we are
dealing here with non-scalar subsystems. Thus, as it will
appear in the sequel, while performing backstepping trans-
formations, some in-domain coupling terms may remain
in the target system .

3 A preliminary result: stabilization of a de-
layed n+m PDE system

The first step of our control strategy is to find a suit-
able function V ref

virt(t) such that the tracking ofQdpv
p(t+

1
µp1
, 0) to V ref

virt(t) guarantees the stabilization of the distal

subsystem. Let us define the virtual actuation as follows:

Vvirt(t) = Qdpv
p

(
t+

1

µp1
, 0

)
. (22)

Again, we do not choose Vvirt(t) = Qdpv
p(t, 0) to guaran-

tee the causality of the final control law ( 1
µp1

is the largest

transport time between the real actuation and the distal
subsystem). The distal subsystem now rewrites

∂tu
d(t, x) + Λ+

d ∂xu
d(t, x) = Σ++

d (x)ud(t, x)

+ Σ+−
d (x)vd(t, x), (23)

∂tv
d(t, x)− Λ−d ∂xv

d(t, x) = Σ−+
d (x)ud(t, x)
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+ Σ−−d (x)vd(t, x), (24)

with the boundary conditions

ud(t,−1) = Rdv
d(t,−1), (25)

vd(t, 0) = Qddu
d(t, 0) + Vvirt(t−

1

µp1
). (26)

3.1 Time-delay formulation of the PDE system

The system (23)-(26) can be rewritten as a time-delay
system of neutral type (difference system) with dis-
tributed delay terms. This is a straightforward appli-
cation of [8]. More precisely, we have the following
theorem.

Theorem 5 There exist L∞([0, τd],R)-functions Gij
(with i ∈ {1, ..., nd} for j ∈ {1, ...,md}) which only de-
pend on the system parameters such that the stability
properties of the system (23)-(26) are equivalent to those
of the difference system defined for all 1 ≤ i ≤ md by

(zd)i(t) =

nd∑
k=1

md∑
l=1

(Qdd)ik(Rd)kl(zd)l

(
t− 1

λdk
− 1

µdl

)
+

md∑
l=1

∫ τd

0

Gil(ν)(zd)l(t− ν)dν + (Vvirt)i

(
t− 1

µp1

)
,(27)

i.e., there exist two constants C1 > 0 and C2 > 0 and a
constant r > 0 such that for all t > τ ,

C1||zd[t]||r ≤ ||(ud, vd)||L2 ≤ C2||zd[t]||. (28)

Moreover, for all t > τ , the state (zd(t)) can be expressed
as a function of ud(t, ·), vd(t, ·), that is, there exists a
linear operator Fd such that for all t > τ , (zd(t)) =
Fd(ud(t, ·), vd(t, ·)).

PROOF. The proof of this theorem can be found in [8].
It relies on successive backstepping transformations.
2

It is important to mention that the difference system (27)
and the original PDE system (23)-(26) have equivalent
stability properties in the sense of (28). However, they
are not strictly equivalent since (without any additional
assumptions) it may be impossible to reconstruct part
of the PDE states (initial condition for instance) from
the state zd . In that sense, the system (27) can be seen
as a comparison system for the design of a stabilizing
control law for the original PDE system (see, e.g., [36]
and the references therein for some discussions for delay
systems). Indeed, using (28), the exponential stability of
the state zd implies the one of the state (ud, vd) (since the

initial condition of zd can be expressed as a function of
the initial condition of (ud, vd)). Consequently, we now
consider the system (27) for the design of the control law
Vvirt. The resulting feedback law will then be expressed
as a function of (ud, vd) using the operator Fd.

Remark 6 The time-delay equation (27) corresponds to
a typical flatness based parametrization of the distal PDE
system (23)-(26). In that sense, zd can be seen as a partic-
ular flat output of the system. Similar parametrizations
have been used in the literature for flatness-based open-
loop design, controllability analysis, and closed-loop de-
sign (see, e.g., [44] for the case of a scalar second-order
hyperbolic PDE, [37] for the control of a heavy chain).
However, most of the existing literature results have been
developed for PDEs with a low number of states.

3.2 Predictor design

We now design a control law that stabilizes (27). Let us
define V ref

virt as follows:

(V ref
virt)i(t) = −

md∑
l=1

∫ τd

0

Gil(ν)Pl(t, t− ν)dν, (29)

in which, for all 1 ≤ i ≤ md, for t ≥ 0 and s ∈ [t− 1
µp1
−

τd, t], P (t, s) is the state prediction (see [10,12])

Pi(t, s) = (30)

(zd)i(s+
1

µp1
) if s ∈

[
t− τd −

1

µp1
, t− 1

µp1

]
nd∑
k=1

md∑
l=1

(Rd)ik(Qdd)kl(P )l(t, s−
1

λdk
− 1

µdl
)

+

md∑
l=1

∫ τd

0

Gil(ν)(P )l(t, s− ν)dν + Ṽ (s)

otherwise.

Observe that the function 4 P (t, ·) is a 1
µp1

units of time

ahead prediction of the function zd : s ∈ [−τd, 0] 7→
zd(t + s). Though its definition is implicit, through an
integral relation of Volterra type, it is well-defined and
unique, as the solution to the difference equation (27).

Theorem 7 The closed-loop system consisting of the
plant (27) and the control law Vvirt = V ref

virt (where V ref
virt

is defined by (29)) is exponentially stable.

4 We write P as a function of two arguments to emphasize
the fact that the prediction should be computed by incor-
porating measured delayed states available at time t, to im-
prove its robustness in practice.
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PROOF. The proof follows straightforwardly from the
fact that P (t, s) = zd(s+ 1

µp1
) for any s ∈ [t− 1

µp1
− τd, t]

which implies that (V ref
virt)i(t) = −

∑md
l=1

∫ τd
0
Gil(ν)(zd)l(t+

1
µp1
− ν)dν . By plugging this control law back into (27),

we obtain

(zd)i(t) =

nd∑
k=1

md∑
l=1

(Rd)ik(Qdd)kl(zd)l(t−
1

λdk
− 1

µdl
).

(31)

Due to Assumption 1, equation (31) is exponentially sta-
ble. More precisely, equation (31) corresponds to equa-
tion (19) in which all the terms that come from the prox-
imal subsystem are set to zero. Since (19) is exponen-
tially stable, equation (31) is exponentially stable as well
due to the variations of constants formula [26] (consid-
ering the proximal terms in (19) as an input that goes
to zero). This concludes the proof. 2

The control law (29) (and the predictor (30)) can be ex-
pressed as a function of the original distal state (ud, vd)
using the transformation Fd. This is a necessary step in
view of a practical implementation. However, to avoid
long computations (that can be found in [8]) we choose
not to give it. Note that we voluntarily choose not to
cancel the pointwise delay term in the closed-loop dy-
namics to guarantee that the transfer function relating
Ṽ to zd is strictly proper, a characteristic which reveals
necessary for robustness purposes.

4 Tracking of the virtual input V ref
virt(t)

The objective of this section is to design a control
law V (t) such that the virtual input Qdpv

p(t+ 1
µp1
, 0) =

Vvirt converges to V ref
virt. This will guarantee the sta-

bilization of the distal subsystem. To do so, we use a
backstepping transformation that moves most of the
in-domain coupling terms located in equation (6) to the
actuated boundary (only some non-local coupling terms
remain in the target system). Canceling these terms will
guarantee a clear actuation path and make the tracking
of the virtual input easier.

4.1 Backstepping transformation

Let us consider the backstepping transformation defined
by

βp(t, x) = vp(t, x)−
∫ x

0

Ku
p (x, ξ)up(t, ξ)dξ

−
∫ x

0

Kv
p (x, ξ)vp(t, ξ)dξ −

∫ 0

−1

Ku
d (x, ξ)ud(t, ξ)dξ

−
∫ 0

−1

Kv
d (x, ξ)vd(t, ξ)dξ, (32)

where the kernels Ku
p and Kv

p are L∞(Tb)-functions
while the kernels Ku

d and Kv
d are L∞(U)-functions (the

spaces Tb and U being defined in equations (1) and
(2)). They satisfy the following set of PDEs on their
respective domains of definition

Λ−p ∂xK
u
p (x, ξ)− ∂ξKu

p (x, ξ)Λ+
p = Ku

p (x, ξ)Σ++
p (ξ)

+Kv
p (x, ξ)Σ−+

p (ξ), (33)

Λ−p ∂xK
v
p (x, ξ) + ∂ξK

v
p (x, ξ)Λ−p = Ku

p (x, ξ)Σ+−
p (ξ)

+Kv
p (x, ξ)Σ−−p (ξ), (34)

Λ−p ∂xK
u
d (x, ξ)− ∂ξKu

d (x, ξ)Λ+
d = Ku

d (x, ξ)Σ++
d (ξ)

+Kv
d (x, ξ)Σ−+

d (ξ), (35)

Λ−p ∂xK
v
d (x, ξ) + ∂ξK

v
d (x, ξ)Λ−d = Ku

d (x, ξ)Σ+−
d (ξ)

+Kv
d (x, ξ)Σ−−d (ξ), (36)

along with the following set of boundary conditions

Ku
d (x, 0)Λ+

d = Kv
d (x, 0)Λ−d Qdd

+Ku
p (x, 0)Λ+

p Qpd, (37)

Kv
d (x,−1)Λ−d = Ku

d (x,−1)Λ+
d Rd, (38)

Ku
d (0, ξ) = 0, Kv

d (0, ξ) = 0, (39)

Λ−p K
u
p (x, x) +Ku

p (x, x)Λ+
p = −Σ−+

p (x), (40)

Λ−p K
v
p (x, x)−Kv

p (x, x)Λ−p = −Σ−−p (x), (41)

(Kv
p )ij(x, 0)Λ−p = (Ku

p (x, 0)Λ+
p Qpp)ij

+ (Kv
d (x, 0)Λ−d Qdp)ij , if i ≥ j. (42)

To ensure well-posedness of the equations, we add artifi-
cial boundary conditions for (Kv

p )ij(i < j). We have the
following lemma that assesses the well-posedness of the
kernel equations (33)-(42)

Lemma 8 Consider the system (33)-(42). There exists
a unique solution Ku

p and Kv
p in L∞(Tb) and Ku

d and Kv
d

in L∞(U).

PROOF. Let us define the sequence xn (n ∈ N) by

xn = min{n µp1
λdnd

, 1}, where we recall that λdnd is the

largest positive velocity for the distal subsystem, while
µp1 is the smallest negative velocity for the proximal
subsystem. They are defined in equation (9). The se-
quence xn converges in a finite number of iteration to 1.
Let us consider the rectangular domain Rn = {(x, ξ) ∈
[0, 1] × [−1, 0], xn ≤ x ≤ xn+1}. Note the union of Rn
corresponds to U . We will show that the kernels equation
admits a unique solution using an induction argument.
Let us consider the case n = 0. Let us cut the square do-
main R0 in two triangular domains Ru and Rl defined
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by

Ru = {(x, ξ) ∈ [0, 1]× [−1, 0], x ≥ −x1ξ}, (43)

Rb = {(x, ξ) ∈ [0, 1]× [−1, 0], x ≤ −x1ξ}. (44)

The union of Ru and Rb corresponds to R0. On the tri-
angular domainRb, using the kernel PDEs (35)-(36) and
the boundary conditions (38) and (39), we can apply [22,
Theorem 3.2] to prove the existence of the L∞-kernels
Ku
d and Kv

d . This means that the kernels Ku
d and Kv

d are
perfectly defined on the boundary x = −x1ξ of Ru. We
now perform a change of variables in order to express
the kernels Ku

p and Kv
p on the domain Ru. Let us define

the kernels K̄p
u and K̄p

b on Ru by

K̄p
u(x, ξ) = K̄p

u(x,− ξ

x1
), K̄p

v (x, ξ) = K̄p
v (x,− ξ

x1
).

We can rewrite the kernel PDEs (33)-(34) for these new
kernels. The boundary conditions (37) and (42) remain
unchanged. Using these boundary conditions, and the
value of all the kernels on the line x = −x1ξ, it becomes
possible to apply [22, Theorem 3.2] on this new trian-
gular domain. This guarantees the well-posedness of the
kernelsKu

d ,Kv
d , K̄u

p and K̄v
p onRu. This implies the exis-

tence of L∞-functionsKu
d andKv

d on the domainR0 and
of L∞ functions Ku

p and Kv
p on {(x, ξ) ∈ Tb, x ≤ x1}.

Repeating the procedure on each Rn leads to the ex-
pected result. 2

The transformation (32) is a Volterra transformation to
which an affine term that depends on the distal state is
added. Consequently, it is invertible [45] and there exist
Lup and Lvp in L∞(Tb) and Lud and Lvd in L∞(U) such that

vp(t, x) = βp(t, x)−
∫ x

0

Lup(x, ξ)up(t, ξ)dξ

−
∫ x

0

Lvp(x, ξ)β
p(t, ξ)dξ −

∫ 0

−1

Lvd(x, ξ)u
d(t, ξ)dξ

−
∫ 0

−1

Lvd(x, ξ)v
d(t, ξ)dξ. (45)

Differentiating (32) with respect to time and space and
integrating by parts, the original system (5)-(13) is
mapped to the following target system, schematically
pictured in Figure 3,

∂tu
p(t, x) + Λ+

p ∂xu
p(t, x) = Σ++

p (x)up(t, x)

+Σ+−
p (x)βp(t, x)− I1(x, up, βp, ud, vd), (46)

∂tβ
p(t, x)− Λ−p ∂xβ

p(t, x) = Ω(x)βp(t, 0), (47)

∂tu
d(t, x) + Λ+

d ∂xu
d(t, x) = Σ++

d (x)ud(t, x)

+ Σ+−
d (x)vd(t, x), (48)

∂tv
d(t, x)− Λ−d ∂xv

d(t, x) = Σ−+
d (x)ud(t, x)

+ Σ−−d (x)vd(t, x), (49)

with the boundary conditions

ud(t,−1) = Rdv
d(t,−1), (50)

vd(t, 0) = Qdpβ
p(t, 0) +Qddu

d(t, 0), (51)

up(t, 0) = Qppβ
p(t, 0) +Qpdu

d(t, 0), (52)

βp(t, 1) = Rpu
p(t, 1) + V (t)− I2(up, vp, ud, vd), (53)

where the function Ω(x) is defined by

Ω(x) = Kv
p (x, 0)Λ−p −Kv

d (x, 0)Λ−d Qdp

−Ku
p (x, 0)Λ+

p Qpp. (54)

Note that this matrix is upper-triangular due to (42).
The integral terms I1 and I2 are defined by

I1(x, up, βp, ud, vd) = Σ+−
p (x)

(∫ x

0

Lup(x, ξ)up(·, ξ)dξ)

+

∫ x

0

Lvp(x, ξ)β
p(·, ξ)dξ +

∫ 0

−1

Lvd(x, ξ)u
d(·, ξ)dξ

+

∫ 0

−1

Lvd(x, ξ)v
d(·, ξ)dξ), (55)

I2(up, vp, ud, vd) =

∫ 1

0

Ku
p (1, ξ)up(·, ξ)dξ

+

∫ 1

0

Kv
p (1, ξ)vp(·, , ξ)dξ

+

∫ 0

−1

[
Kv
d (1, ξ)ud(·, , ξ) +Kv

d (1, ξ)vd(·, , ξ)
]
dξ. (56)

The local terms originally present in equation (6)
have been replaced by a non-local term that depends
on βp(t, 0). This structure will help us to track the
desired virtual input. In what follows we decide to
cancel the right-hand part of the boundary condition
(53) using the actuation. More precisely, we choose
V (t) = V̄ (t) − Rpu

p(t, 1) + I2(up, vp, ud, vd). where
V̄ is our new control input that will be used to track
the virtual input previously defined. With this new
control input, the boundary condition (53) rewrites
βp(t, 1) = V̄ (t). Although, this choice of control law
considerably simplifies the analysis, it is worth notic-
ing that such an approach requires the cancelation of
the reflection term Rpu

p(t, 1) . As shown in [5], this
may have major consequences regarding the robustness
margins of the closed-loop system. More precisely, the
corresponding feedback law is not proper which may
lead to vanishing delay margins. To avoid this problem
and make the control law strictly proper, we choose to
combine it with a well-tuned low pass filter, the design
of which is detailed in Section 6.
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ud(t, x) Qpd up(t, x)

vd(t, x) Qdp βp(t, x)

Σ−+
d Σ+−

d
Σ+−
pI1

Ω(x)β(t, 0)

RpRd QppQdd

V (t)− I2

-1 0 +1 x

Fig. 3. Schematic representation of the target system (46)-(53).

4.2 Tracking control design

The backstepping transformation (32) has allowed us to
map the original system (5)-(13) to the simpler target
system (46)-(53). A closer analysis to this target system
shows that once the distal subsystem has been stabilized,
then the proximal subsystem also converges to zero. In-
deed, having ud ≡ 0 and vd ≡ 0 in (46)-(47), the states
up and vp converge to zero due to the cascade structure of
(46)-(47) (the matrix Ω is upper-triangular) [28]. Thus,
our objective is to guarantee the exponential stabiliza-
tion of the distal subsystem. In other words, we want
the function Qdpβ

p(t+ 1
µp1
, 0) to track V ref

virt (29). In this

section, we propose a flatness-based feedforward track-
ing control design for V̄ . More precisely, inspired by [28],
we show in the following lemma that the the boundary
value βp(t, 0) corresponds to a flat output [35,30], which
we later use for trajectory planning similarly to [34].

Lemma 9 Let us consider the control law V̄ (t) defined
for all 1 ≤ i ≤ mp by

V̄i(t) =ζi(t+
1

µpi
)

−
mp∑

j=i+1

∫ 1

µ
p
i

0

Ωi,j(µ
p
i ν)ζj(t+

1

µpi
− ν)dν, (57)

where ζ is an arbitrary known function. Then, for any
t ≥

∑mp
j=1

1
µp
j

, we have βp(t, 0) ≡ ζ(t).

PROOF. The proof is inspired by [28, Theorem 5.1].
Applying the method of characteristics to equation (47),
we obtain for all 1 ≤ i ≤ mp and for all t > 1

µp
i

βpi (t, 0) = V̄mp(t− 1

µpi
)

+

md∑
k=i+1

∫ 1

µ
p
i

0

Ωik(µiν)βpk(t− ν, 0)dν. (58)

Let us consider the case i = mp. For t ≥ 1
µpmp

we have

βpmp(t, 0) = V̄mp

(
t− 1

µpmp

)
. Choosing V̄mp(t) = ζmp(t+

1
µpmp

) guarantees βpmp(t, 0) = ζmp(t) for t ≥ 1
µpmp

. Let us

now consider the case i = mp − 1. For t ≥ 1
µp
(mp−1)

, we

have, using equation (58),

V̄mp−1(t) = βpmp−1

(
t+

1

µp(mp−1)

, 0

)
(59)

−
∫ 1

µ
p
i

0

Ωmp−1,mp(µpmp−1ν)βpmp

(
t+

1

µp(mp−1)

− ν, 0

)
dν.

When t ≥ 1
µpmp

we have βpmp(t, 0) = ζmp(t). Thus, choos-

ing

V̄mp−1(t) = ζmp−1

(
t+

1

µp(mp−1)

)
(60)

−
∫ 1

µ
p
i

0

Ωmp−1,mp(µpmp−1ν)ζmp

(
t+

1

µp(mp−1)

− ν

)
dν,

we obtain βpmp−1(t, 0) = ζmp−1(t) for t ≥ 1
µp
(mp−1)

+ 1
µpmp

(as we have to wait an extra 1
µp
(mp−1)

for the control

input to propagate). Iterating the procedures gives the
expected result. 2

Consequently, any arbitrary function ζ can be tracked
using the input V̄ . However, this requires knowing fu-
ture values of the function ζ, which can lead to a non-
causal control law. This explains why we have defined
Vvirt(t) = Qdpv

p(t + 1
µp1
, 0) instead of simply choosing

Qdpv
p(t, 0) as the virtual input. We can then design a

feedforward controller for the finite-time stable cascade
with the new input V̄ . Note that the tracking error re-
sulting from incompatible initial conditions decays in fi-
nite time with such a control law.

5 Stabilizing control law

We are now able to design a stabilizing control law for
the system (5)-(13). Indeed, it is sufficient to choose the
function ζ as the reference trajectory for the flat output
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βp(t, 0) to be tracked. This reference trajectory should
stabilize the distal subsystem.

Theorem 10 Let us consider the function I2 defined
by (56) and the control law V ref

virt, defined in (29). Let us
consider the function ζ defined by

ζ(t) = QTdp(QdpQ
T
dp)
−1Vvirt(t−

1

µp1
). (61)

Then, the control law V (t) defined for all 1 ≤ i ≤ np by

Vi(t) = −(Rpu
p(t, 1))i + (I2(up, vp, ud, vd))i + ζi(t+

1

µpi
)

−
mp∑

j=i+1

∫ 1

µ
p
i

0

Ωi,j(µ
p
i ν)ζj(t+

1

µpi
− ν)dν, (62)

stabilizes the system (5)-(13) in the sense of theL2-norm.

PROOF. The matrix QTdp(QdpQ
T
dp)
−1 is well-defined

due to Assumption 2. Note that the control law V (t) de-
fined by equation (62) is causal. Using the backstepping
transformation (32), we can map the original system (5)-
(8) to the target system (46)-(53). Using Lemma 9, the
control law (62) ensures the convergence of vp(t, 0) to
the function ζ(t) (defined in (61)) in finite time. Then, it

implies that Qdpv
p(t, 0) = V ref

virt

(
t− 1

µp1

)
. Thus, apply-

ing Theorem 7, we have the L2-exponential convergence
of the state ud and vd to zero. This implies the conver-
gence of ζ and of vp(t, 0) to zero. Consequently, due to
the transport structure of (47), the state βp(t, ·) expo-
nentially converges to zero. Using the boundary condi-
tion (52), the state up(t, 0) exponentially converges to
zero. Thus, the state up(t, x) now converges to zero, since
all the terms that do not depend on up in equation (46)
converge to zero and since the homogeneous equation is
exponentially stable [28]. Using the invertibility of the
backstepping transformation (32), this implies the expo-
nential convergence of the state vp(t, ·) to zero. Conse-
quently, the state (up, vp, ud, vd) exponentially converges
to zero in the sense of the L2-norm. This concludes the
proof. 2

Though stabilizing, the control law (62) presents the
drawback of canceling (among others) the proximal re-
flection term Rpu

p(t, 1). In that sense, it is not a strictly
proper feedback law. It has been shown in [5] that such
a cancelation may raise important issues concerning the
existence of robustness margins at high frequencies. To
overcome this issue, a first solution could be to cancel
only a part of the reflection terms in (62). This could
be achieved by modifying the tracking design with a
convolutional procedure as performed e.g. in [6,44]. Al-
though somehow more standard, this approach presents
the drawback of not distinguishing the effects of high
and low frequencies in terms of stability and robustness.

In addition, such an approach can be difficult to imple-
ment when considering chains with a higher number of
subsystems. Instead, we now propose an approach based
on the filtering of the control.

6 Robustness aspects

In this section, we combine the control law V(t) with
a low-pass filter to make it strictly proper, while guar-
anteeing the nominal stabilization. We then show that
the resulting closed-loop system is robust with respect
to delays in the loop and uncertainties on the parame-
ters. The analysis we propose will be done in the Laplace
domain.

6.1 Neutral formulation and Laplace transform

Regarding robustness aspects, it may be easier to work
with the system’s neutral formulation rather than the
PDE formulation. Then, we rewrite the interconnected
system (16)-(18) as a neutral system. We have the fol-
lowing lemma, which is a direct application of [8].

Lemma 11 There exist L∞([0, τ ],R)-functions Hij

(with i ∈ {1, ..., np+md} and j ∈ {1, ...,mp+nd}) which
only depend on the parameters of the system (16)-(18)
such that the stability properties of the system (16)-(18)
are equivalent to those of the difference system defined
for all 1 ≤ i ≤ mp + nd by

zi(t) =

np+md∑
k=1

mp+nd∑
l=1

RikQkl(zd)l(t−
1

λk
− 1

µl
)+

mp+nd∑
l=1

∫ τ

0

Hil(ν)zl(t− ν)dν +AiVi(t), (63)

i.e., there exist two constants D1 > 0 and D2 > 0 and a
constant r0 > 0 such that for all t > τ ,

D1||z[t]||r0 ≤ ||(u, v)||L2 ≤ D2||z[t]||. (64)

There exists a bounded transformation F0 such that for
all t > τ , z(t) = F0(u(t, ·), v(t, ·)). Moreover, for all
x ∈ [0, 1], there exist L∞([0, τ ],R)-functions Hu

il and Hv
jl

such that for all t ≥ τ , for 1 ≤ j ≤ mp + nd, for all
1 ≤ i ≤ md + np, we have

ui(t, x) =

mp+nd∑
k=1

Qikzk(t− x

λi
− 1

µk
)

+

mp+nd∑
l=1

∫ τ

0

Hu
il(ν, x)zl(t− ν)dν. (65)

vj(t, x) =zj(t−
1− x
µj

)
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+

mp+nd∑
l=1

∫ τ

0

Hv
jl(ν, x)zl(t− ν)dν, (66)

PROOF. The proof of this lemma can be found follow-
ing [8]. It relies on successive backstepping transforma-
tions and on the method of characteristics. 2

We can now rewrite the system (63) in the Laplace do-
main. We have the following lemma

Lemma 12 There exist two holomorphic matrix-
functions F (s) and H(s) such that the Laplace transform
of the state z verifies

ẑ(s) = F (s)ẑ(s) +H1(s)ẑ(s) +AV̂ (s). (67)

in which the function H1 is strictly proper on C+, that is
for every s ∈ C+, lim

|s|→+∞
H1(s) = 0.

PROOF. Using equation (63), we immediately obtain

Fij(s) =
∑
k=1

RikQkje
−( 1

λk
+ 1
µj

)s
, (68)

(H1)ij(s) =

∫ τ

0

Hij(ν)e−νsdν, (69)

Using Riemann-Lebesgue’s lemma, we can show that
(H1)ij(s) goes to zero when |s| → +∞ as long as Re(s) ≥
0. This proves that H1 is strictly proper. 2

We now express the states u(t, x) and v(t, x) in the
Laplace domain as functions of ẑ(s).

Lemma 13 For all x ∈ [0, 1], there exist holomorphic
functions Fu(s, x), Fv(s, x), Hu

1 (s, x) and Hv
1 (s, x), Hu

1
andHv

1 being strictly proper on C+, such that the Laplace
transforms of the states u(t, x) and v(t, x) verify

û(s, x) = Fu(s, x)ẑ(s) +Hu
1 (s, x)ẑ(s) (70)

v̂(s, x) = F v(s, x)ẑ(s) +Hv
1 (s, x)ẑ(s) (71)

Moreover, RFu(s, 1) = F (s).

PROOF. Taking the Laplace transform of (66), we ob-
tain for 1 ≤ i ≤ mp + nd

v̂i(s, x) = e
− 1−x

µi
s
ẑi(s) +

mp+nd∑
l=1

(

∫ τ

0

Hv
il(ν, x)e−νsdν)ẑl(s).

This implies that for all 1 ≤ i, j ≤ mp+nd (F v)ij(s, x) =

e
− 1−x

µi
s

if i = j and (F v)ij(s, x) = 0 otherwise. In the
mean time (Hv

1 )ij(s, x) = (
∫ τ

0
Hv
ij(ν, x)e−νsdν). Using

Riemann-Lebesgue’s lemma, we have that Hv
1 is strictly

proper. Similar computations can be done to obtain
equation (70). The equality RFu(s, 1) = F (s) can be
obtained by direct computations. 2

We now rewrite the stabilizing control law V (t) defined
in equation (62) in terms of the state z.

Lemma 14 There exists a strictly proper holomorphic
function P (s) such that the Laplace transform of the con-
trol law V (t) defined by equation (62) rewrites

V̂ (s) = (P (s)−ATF (s))ẑ(s), (72)

PROOF. Let us consider the different terms that ap-
pear in equation (62) and compute their Laplace trans-
form. We haveRpu

p(t, 1) = ATRu(t, 1) Thus, taking the
Laplace transform of (6.1) and using (70), we obtain

Rpû
p(s, 1) = AT (F (s) +RHu

1 (s, 1))ẑ(s). (73)

Using (70), we directly obtain∫ 1

0

Ku(1, ξ)u(t, ξ)dξ =

∫ 1

0

Ku(1, ξ)(Fu(s, ξ)

+Hu
1 (s, ξ))dξẑ(s).

Again, due to Riemann-Lebesgues’ lemma, the function∫ 1

0
Ku(1, ξ)(Fu(s, ξ)+Hu

1 (s, ξ))dξ is strictly proper. Re-
peating the procedure for all the terms that form I2 (de-

fined by (56)), we can obtain Î2(s) = HI(s)ẑ(s), where
HI is strictly proper. The function V ref

virt is strictly proper
(since it only cancels integral terms). Thus, there ex-

ists a strictly proper function HV such that V̂ ref
virt(s) =

HV (s)ẑd(s). Using the operatorFd defined in Theorem 5

and Lemma 13, we obtain that V̂ ref
virt(s) = ĤV (s)ẑ(s)

with HV being strictly proper. Using the fact that the
transfer function between ζ and V ref

virt is bounded, we de-
duce that the transfer function between ẑ and ζ is strictly
proper. Combining the different transfer functions leads
to the definition of P and to the expected result. 2

6.2 Low-pass filtering of the actuation

We now show that there exists a low-pass filter ŵ(s) such

that the filtered control law ŵ(s)V̂ (s) still guarantees
the stabilization of the system (63) (and consequently
of (16)-(18)). The objective behind this filtering is to
make the control law strictly proper. We first state an
useful lemma
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Lemma 15 Consider F,H1 and P defined in (67) and
(72). There exist ε0 > 0 and 1 > ε1 > 0 such that, for
any s ∈ C+

σ̄(F (s)) < ε1 < 1. (74)

σ(Id− F −H1 −A(P −ATF )) > ε0, (75)

Furthermore, there exists M > 0 such that for any s ∈
C+ with |s| > M we have

σ̄(P (s)) < 1− ε1 (76)

σ(Id−H1(s)−AP (s)) > ε1 + σ̄(P (s)) (77)

PROOF. The first inequality is a direct consequence of
Assumption 1. Due to Theorem 10, the system (16)-(18)
with the control law (62) is exponentially stable. This in
turns implies (using Lemma 11) the exponential stabil-
ity of the state z(t), solution of (63). This means that
the characteristic equation of the closed-loop system is
lower-bounded on the complex right-half plane [26]. In-
jecting (72) in (67), we obtain the closed-loop system

ẑ(s) = (F (s) +H1(s) +A(P (s)−ATF (s)))ẑ(s), (78)

whose characteristic equation is given by

det(Id− F (s)−H1(s)−A(P (s)−ATF (s))) = 0.

This implies the second inequality. Since H1 and P are
strictly proper, we have

σ(Id−H1(s)−AP (s))
s∈C+

−→
|s|→+∞

σ(Id) = 1. (79)

Since P is strictly proper, there exists M0 > 0 such that
for any s ∈ C+ with |s| > M0 we have

ε1 + σ̄(P (s)) < 1. (80)

Combining this inequality and (79) implies the last in-
equality. 2

Theorem 16 Let w(s) be any low-pass filter such that
for all s ∈ C+

{
|1− w(s)| < min(1, ε0

ε1+σ̄(P (s)) ) if |s| ≤M,

|1− w(s)| < 1 if |s| > M,
(81)

where H1 and P are defined in (69) and (72) and M, ε0
and ε1 are defined in Lemma 15. Let us consider the
control law defined in the Laplace domain by

V̂f (s) = w(s)(P (s)−ATF (s))ẑ(s) (82)

Then, this control law delay-robustly stabilizes the system
(63).

PROOF. Definition of w: Note that the filter w is well
defined since the second condition of (81) allows the
convergence of w to zero for large |s|. The first condi-
tion of (81) implies that w is close to one for sufficiently
small |s|.

Stabilization: Let us prove that the new control law
Vf still guarantees the stabilization of the system (63).
Plugging the control law inside (27), the characteristic
equation of the closed-loop system now rewrites

det(Id− F (s)−H1(s)− w(s)A(P (s)−ATF (s))) = 0.

To ease the notations, we will denote P1(s) = Id−F (s)−
H1(s) − w(s)A(P (s) − ATF (s)) so that the character-
istic equation rewrites det(P1(s)) = 0. To prove that
the closed-loop system is exponentially stable, we need
to show that this characteristic equation does not have
any solution on C+. By contradiction, let us assume that
there exists s ∈ C+ such that det(P1(s)) = 0.

If |s| > M , we have P1(s) = Id−H1(s)−AP (s)− (Id−
w(s)AAT )F (s) + (1− w(s))AP (s). We have

σ̄(Id− w(s)AAT ) ≤ 1, (83)

σ̄((1− w(s))AP (s)) ≤ σ̄(P (s)). (84)

This implies,

σ̄((Id− w(s)AAT )F (s) + (1− w(s))AP (s))

≤ ε1 + σ̄(P (s)) < σ(Id−H1(s)−AP (s)), (85)

In the mean time, since det(P1(s)) = 0, we have
σ(P1(s)) = 0. Thus, we must have σ(Id − H1(s) −
AP (s)) ≤ σ̄((Id − w(s)AAT )F (s) + (1 − w(s))AP (s)).
This is a contradiction with equation (85).

If |s| ≤M . We have

P1(s) = Id−F (s)−H1(s)−A(P (s)−ATF (s))

+ (1− w(s))A(P (s)−ATF (s)).

Using (81), we have

σ̄((1− w(s))A(P (s)−ATF (s))) ≤ |1− w(s)|(σ̄(F (s))

+ σ̄(P (s))) < ε0. (86)

Since det(P1(s)) = 0 (and consequently σ(P1(s)) = 0),
we obtain σ(Id−F (s)−H1(s)−A(P (s)−ATF (s))) ≤
σ̄((1− w(s))A(P (s)− ATF (s))) < ε0. This is a contra-
diction with (75). Consequently, the characteristic equa-
tion cannot be satisfied on C+. This proves the stability
of the closed-loop system [26], since the asymptotic ver-
tical chain of zeros of this characteristic equation cannot
be the imaginary axis due to Assumption 1. 2
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The following lemma gives an explicit method to design
a suitable low-pass filter.

Lemma 17 There exists ν0 > 0 such that the low-pass
filter defined for all s ∈ C+ by w(s) = 1

1+ν0s
satisfies

equation (81).

PROOF. The filter w(s) verifies |1−w(s)| < 1 on C+.
The set S = {s ∈ C+, |s| ≤ M̄} is a compact set. Then,

we can define M̃ as

M̃ = inf
s∈S

(
ε0

ε1 + σ̄(P (s))
).

The constant M̃ is positive by definition. It is then suffi-

cient to choose ν0 <
M̃
M . Indeed, on the set S, we obtain

|1− w(s)| = | ν0s

1 + ν0s
| ≤ |ν0s| ≤ |ν0|M < M̃.

By definition of M̃ , condition (81) is then always satis-
fied.

This lemma and its proof give a constructive procedure
to design the low-pass filter introduced in Theorem 16.
Note that this design requires the estimation of the pa-
rameters ε0 and ε1. This can be obtained numerically
off-line from their definitions in (74)–(75).

6.3 Delay-robustness and w-stability

We are now able to assess the robustness properties of
our system.

Theorem 18 The control law (82) delay-robustly stabi-
lizes the system (5)-(13). The resulting closed-loop sys-
tem is w-stable.

PROOF. Note that the last sentence of the theorem is
a consequence of the fact that the conditions for delay-
robustness and w-stability are the same when the sys-
tem is input-output stable which is the case here due to
the boundedness of the different operators. We already
know that the control law Vf (t), whose Laplace trans-
form is defined in (82), stabilizes (63). Consequently, it
stabilizes (5)-(13) since the two systems have equivalent
stability properties. Let us now prove that it is robust to
small delays in the loop. Let us consider a delay vector δ
whose components δ1, δ2, .., δmp are positive delays. Let
us consider that each component (Vf (t))j is delayed by
δj . The characteristic equation of the closed-loop system
now rewrites

det(Id− F (s)−H1(s)− w(s)A∆(s)(P (s)

−ATF (s))) = 0, (87)

where ∆(s) = diag(e−δ1s, ..., e−δmps). Since σ(Id −
F (s)) > 0, since H1(s) − w(s)A∆(s)(P (s) − ATF (s))
is strictly proper and since σ̄(∆(s)) ≤ 1, there ex-
ists N > 0 such that for all δj > 0, equation (87)
does not have any solution if |s| > N (s ∈ C+).
On the compact set {s ∈ C+, |s| ≤ N}, due to the
continuity of the functions and to the fact that the
nominal system is exponentially stable (and that con-
sequently its characteristic equation do not vanish on
C+), there exists δ? > 0 such that for any δj < δ?,
det(Id−F (s)−H1(s)−w(s)A∆(s)(P (s)−ATF (s))) 6= 0.
Thus, for δj < δ?, the characteristic equation of the
system does not have any root on C+. This concludes
the proof [26], since again the asymptotic vertical chain
of zeros of this characteristic equation cannot be the
imaginary axis due to Assumption 1.

It is worth mentioning that the value ν0 chosen in
Lemma 17 may influence the largest admissible delay
δ?.

7 Simulation results

The proposed control law has been tested in simula-
tions using Matlab. The PDE system is simulated using
a classical finite volume method based on a Godunov
scheme. We used 61 spatial discretization points (and a
CFL number of 1). The algorithm we use to compute
the different kernels is the following. Using the method
of characteristics, we write the integral equations asso-
ciated to the kernel PDE-systems. These integral equa-
tions are solved using a fixed-point algorithm. The pre-
dictor is implemented using a backward Euler approx-
imation of the integral involved in (30). The numerical
values used are given below:

Λ+
p = 1, Λ+

d = 2, Λ−p =

(
1.3 0

0 1.7

)
, Λ−d =

(
0.8 0

0 1.5

)
,

Σ++
p = Σ++

d = 0, Σ+−
p = Σ+−

d =
(

0.5 0.25
)
,

Σ−+
p =

(
0 0.5

)
, Σ−−p =

(
0 −0.1

0.2 0

)
,

Σ−+
d =

(
−0.2 0.2

)
, Σ−−d =

(
0 0

0.45 0

)
,

Qpd = 0.3, Qpp =
(

0.3 0.6
)
, Rd =

(
0.8 0.6

)
,

Qdp =

(
0.4 0.24

0 0.4

)
, Qdd =

(
0.6

0.6

)
, Rp =

(
0.4.

0.3

)

These coefficients are chosen such that the distal and the
proximal PDEs subsystems are independently unstable
in open-loop and such that the resulting interconnected
system remains unstable. Assumption 2 is obviously sat-
isfied, while we can check numerically that Assumption 1
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Fig. 4. Evolution of the || · ||2-norm of the open-loop system
and of the closed-loop system (for two different filters) with
an input delay of 0.2s. The control law is defined by (82).
The filters have been designed with ν0 = 0.1 and ν0 = 0.5.
The L2-norm of the open-loop system has been divided by
50 for readability reasons.
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Fig. 5. Evolution of the control effort V1(t) and V2(t)
(ν0 = 0.1).

is also verified. Using Lemma 17, we define the low-pass
filter w(s) = 1

1+ν0s
. We choose ν0 = 0.1 and ν0 = 0.5

for the simulations. Note that a complete analysis of the
quantitative effects of the low-pass filter on the closed-
loop system is out of the scope of this paper. We have
pictured in Figure 4 the evolution of the L2-norm of the
open-loop system and of the closed-loop system (using
the control law (82)) in presence of a delay of 0.2 sec-
onds. As expected, the resulting system exponentially
converges to zero. The corresponding control effort has
been plotted in Figure 5.

8 Concluding remarks

In this paper, we have designed an explicit stabiliz-
ing state feedback control law for an underactuated
cascade network of two hyperbolic PDEs systems con-
nected through their boundaries, the control law being
located at one boundary of the network. The proposed

approach combines backstepping transformations that
simplify the network structure with a predictive track-
ing controller that stabilizes the distal subsystem. The
closed-loop system’s robustness properties are guaran-
teed by combining the stabilizing control law with a
well-tuned low-pass filter. In future contributions, we
will focus on the design of a state-observer, which is
necessary to obtain an output-stabilizing feedback law.
We will also have a closer look at the quantitative ef-
fects of the low-pass filter This will be the purpose of
our next contributions.
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Novel. Boundary control with integral action for hyperbolic
systems of conservation laws: Stability and experiments.
Automatica, 44(5):1310–1318, 2008.

[24] N. Espitia, A. Girard, N. Marchand, and C. Prieur. Fluid-flow
modeling and stability analysis of communication networks.
IFAC-PapersOnLine, 50(1):4534–4539, 2017.

[25] N. Gehring. A systematic design of backstepping-based state
feedback controllers for ODE-PDE-ODE systems. preprint,
ResearchGate, 2019.

[26] J. K. Hale and S. M. Verduyn Lunel. Introduction to
functional differential equations. Springer-Verlag, 1993.

[27] A Hayat. PI controller for the general Saint-Venant
equations. 2019.

[28] L. Hu, F. Di Meglio, R. Vazquez, and M. Krstic. Control of
homodirectional and general heterodirectional linear coupled
hyperbolic PDEs. IEEE Transactions on Automatic Control,
61(11):3301–3314, 2016.
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