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Stability analysis of a 2 ˆ 2 linear hyperbolic
system with a sampled-data controller via

backstepping method and looped-functionals
M. A. Davó, D. Bresch-Pietri, C. Prieur, and F. Di Meglio

Abstract—This work is concerned with the global exponential
stability of a 2 ˆ 2 linear hyperbolic system with a sampled-
data boundary feedback control designed by means of the
backstepping method for a nominal continuous input. We show
that there exists a sufficiently small inter-sampling time (that
encompasses both periodic and aperiodic sampling) for which
the global exponential stability of the closed-loop system is
guaranteed. In addition, we provide easily tractable sufficient
stability conditions which can be used to find an upper bound
of the maximum inter-sampling time. The results rely on the
combination of the Lyapunov method and looped-functionals.
The effectiveness of the proposed results is illustrated with a
numerical example.

I. INTRODUCTION

Nowadays, control systems are usually implemented using
digital technologies, which leads to the interaction of contin-
uous dynamics, usually coming from the plant, and discrete
dynamics, coming from the sampling mechanism, controllers,
or digital communication networks. The problems arising in
this context have been deeply studied for finite dimensional
systems (see, e.g., [8, 17]) under different areas such as
sampled-data control, networked control systems, event-based
control, and hybrid control systems. However, considerably
less attention has been paid to infinite-dimensional systems
in presence of sampling, mainly due to the complexity of the
systems. The majority and the first results were developed
for general infinite-dimensional systems based mainly on
the semigroups approach [16, 19, 24]. These results include
sufficient and necessary conditions for the stabilizability of an
infinite-dimensional system, under some assumptions, with a
static sampled-data controller, see e.g., [14, 15]. For particular
infinite-dimensional systems, most of the results focused on
delay systems, see e.g., [10, 18, 23] and references therein,
and only few contributions in the last decade deal with systems
described by Partial Differential Equations (PDEs). Besides,
the majority of the results are focused on parabolic PDEs
[6, 12, 13, 20, 21]. There are only three results recently
published on hyperbolic PDEs: the work [11] analyzes the
exponential stability of a linear 1-D PDE under sampled-data
boundary feedback control, the works [5] and [4] propose
event-triggered control strategies for 2 ˆ 2 linear hyperbolic
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PDEs of balance laws and linear hyperbolic PDEs of conser-
vation laws, respectively.

This work analyzes the global exponential stability of 2ˆ2
linear hyperbolic systems under boundary feedback control
in presence of sampling. There are two main reasons for
considering this class of systems: first, it is a good model
of many physical systems having a direct engineering interest,
for instance transmission lines, heat exchangers, etc. (see e.g.,
[2]); the second reason is that it is simple enough to perform
an explicit mathematical analysis, that will illustrate how the
proposed method can be applied to more general systems. We
consider a full state feedback law designed by the backstep-
ping approach, proposed in [1] based on the results in [25], that
render the closed-loop system exponentially stable. It is then
proved that there exists a small enough inter-sampling time
(encompassing periodic and aperiodic sampling), such that the
exponential stability is preserved. This is the main contribution
of the paper. In addition, we provide sufficient conditions
in the form of matrix inequalities to check the exponential
stability of the closed-loop system, which can be used as a
procedure to numerically compute an appropriate sampling
period. On the other hand, the results in [5] indirectly prove
that such small enough inter-sampling time exists. However,
there are several differences between [5] and this work: we
consider a more general system than [5], where the distributed
coupling term are constants with some constraints; second
the results in [5] consider a particular boundary condition
where only one boundary interconnection of the two PDEs
is considered; third we consider the modified control law
proposed in [1]; finally, our stability analysis is based on the
Lyapunov method and the looped-functional approach (see,
e.g., [3, 22]), that is applied to PDEs for the first time.

The rest of the paper is organized as follows. First, the prob-
lem under consideration is introduced in Section 2. Section
3 contains the main results: first, the existence of an upper-
bound of the inter-sampling times and the sampling period, and
second, the sufficient conditions for its numerical computation.
Section 4 illustrates the results by a numerical example. The
proof of the results is provided in the appendix.

Notation: Rě and Rą are the set of non-negative real
numbers and positive real numbers, respectively. Given a
topological set S and a interval I Ď R, C0pI, Sq denotes
the class of continuous functions f : I Ñ S. By CkpI, Sq,
we denote the class of continuous functions f : I Ñ S,
which have continuous derivatives of order k. Let us define
the vectors enj “ r01,j´1, 1, 01,n´js

J with 0 ă j ď n.
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II. PRELIMINARIES AND PROBLEM STATEMENT

This work focuses on the following linear hyperbolic system

utpt, xq ` λ1uxpt, xq “ σ1pxqvpt, xq
vtpt, xq ´ λ2vxpt, xq “ σ2pxqupt, xq

(1)

with boundary conditions

upt, 0q “ qvpt, 0q,
vpt, 1q “ ρupt, 1q ` Uptq,

(2)

where u, v : Rě ˆ r0, 1s Ñ R are the system states, λ1,
λ2 P Rą, σ1, σ2 P C0pr0, 1s,Rq, ρ, q P R are such that
|ρq| ă 1, and U : Rě Ñ R is the control signal.

A. Preliminaries

The results in [25] guarantee that there exist functions Kuu,
Kuv , Kvu, Kvv , Lαα, Lαβ , Lβα, Lββ P C1pJ ,Rq with
domain J “ tpx, yq : 0 ď y ď x ď 1u such that the Volterra
transformation

αpt, xq “ upt, xq ´

ż x

0

rKuupx, yq Kuvpx, yqs

„

upt, yq
vpt, yq



dy

βpt, xq “ vpt, xq ´

ż x

0

rKvupx, yq Kvvpx, yqs

„

upt, yq
vpt, yq



dy

(3)

with inverse transformation

upt, xq “ αpt, xq ´

ż x

0

“

Lααpx, yq Lαβpx, yq
‰

„

αpt, yq
βpt, yq



dy

vpt, xq “ βpt, xq ´

ż x

0

“

Lβαpx, yq Lββpx, yq
‰

„

αpt, yq
βpt, yq



dy

(4)

maps the original system (1)-(2) into the target system

αtpt, xq ` λ1αxpt, xq “ 0
βtpt, xq ´ λ2βxpt, xq “ 0

(5)

with boundary conditions

αpt, 0q “ qβpt, 0q,

βpt, 1q “ ραpt, 1q ´
ş1

0

“

Lαpxq Lβpxq
‰

„

αpt, xq
βpt, xq



dx` Uptq,

(6)
where Lαpxq “ Lβαp1, xq ` ρLααp1, xq and Lβpxq “

Lββp1, xq ` ρLαβp1, xq. In addition, it has been already
proved (see [1] and [2]) that for all1 k0 P r0, 1s there exist
constants C and η such that the solution to system (5)-(6)
with Uptq “ κ̄ppαpt, ¨q, βpt, ¨qqJq, where

κ̄ppαpt, ¨q, βpt, ¨qqJq “ ´k0ραpt, 1q

`

ż 1

0

“

Lαpxq Lβpxq
‰

„

αpt, xq
βpt, xq



dx
(7)

satisfies

}pαpt, ¨q, βpt, ¨qqJ}L2pr0,1s,R2q ď Ce´ηt}pα0, β0qJ}L2pr0,1s,R2q

(8)

1The results in [2] only consider the case k0 “ 0, but the extension to
k0 P r0, 1s is straightforward. The work [1] shows that the coefficient k0 can
be interpreted as a tuning parameter, enabling a trade-off between convergence
rate and robustness with respect to delays.

for all initial condition pα0, β0qJ P L2pr0, 1s,R
2q. From the

inverse transformation (4), the same exponential estimation
is obtained for the solution to system (1)-(2) with Uptq “
κppupt, ¨q, vpt, ¨qqJq, where

κppupt, ¨q, vpt, ¨qqJq “ ´k0ρupt, 1q

`

ż 1

0

rKupxq Kvpxqs

„

upt, xq
vpt, xq



dx
(9)

with Kupxq “ Kvup1, xq`ρp1´k0qK
uup1, xq and Kvpxq “

Kvvp1, xq ` ρp1´ k0qK
uvp1, xq.

B. Problem statement

In this work, we investigate the effect of sampling the
control signal on the exponential convergence of the solution
to (1)-(2). Let us assume that there exists a strictly increasing
sequence of instants ttkukPN satisfying

t0 “ 0, Tk “ tk`1 ´ tk P p0, T
˚s, lim

kÑ8
tk “ 8 (10)

with T˚ ą 0, such that the control signal U is sampled at
those instants, that is

Uptq “ κppuptk, ¨q, vptk, ¨qq
Jq, t P rtk, tk`1q. (11)

Note that the sampling process introduces discontinuities in the
solutions u and v, which will propagate along the characteristic
lines. For the sake of clarity of the following results, we
define the following two families of sets, that contain all the
discontinuities in the interval r0, xs of the solutions u and v
at the instant t:

pXpt, xq “ tx̄ P r0, xs : Dpk, jq P N2, x̄ “ χ̂pt´ tk, jqu
qXpt, xq “ tx̄ P r0, xs : Dpk, jq P N2, x̄ “ χ̌pt´ tk, jqu

(12)
where t ě 0, x P r0, 1s, and

χ̂pτ, jq “ λ1pτ ´ jTp ´
1
λ2
q, χ̌pτ, jq “ 1´ λ2pτ ´ jTpq,

(13)

Tp “
λ1 ` λ2

λ1λ2
. (14)

For the case of ρ “ 0, the above definitions are used with
j “ 0. In what follows, we restrict the analysis to the class
of solutions given by Definition 1 below. Note that this mild
restriction serves purely technical purposes and does not affect
the controller design.

Definition 1 (Solution to system (1)-(2)). For an initial condi-
tion pu0, v0qJ P Cpr0, 1s,R2q, functions u : Rěˆ r0, 1s Ñ R

and v : Rěˆr0, 1s Ñ R are a solution to system (1)-(2) with
control signal (11) if

a) the mappings t ÞÑ upt, xq and t ÞÑ vpt, xq are piecewise
continuous and right differentiable for all x P r0, 1s,

b) the mappings x ÞÑ upt, xq and x ÞÑ vpt, xq are piecewise
left continuous and piecewise right continuous, respec-
tively, for all t P Rě,

c) the left derivative B´x upt, xq “ limεÑ0`
upt,xq´upt,x´εq

ε
exists and is finite for all pt, xq P Rě ˆ p0, 1s,

d) the right derivative B`x vpt, xq “ limεÑ0`
vpt,xq´vpt,x`εq

ε
exists and is finite for all pt, xq P Rě ˆ r0, 1q,



3

N0 “ rλ2L
βp0q ´ λ1L

αp0qq ´ λ2L
βp1q λ1L

αp1q 0 ´ ρλ1 ´ 1s, N1 “

„

1 ´ρp1´ k0q

´ρp1´ k0q ρ2p1´ k0q
2



,

Π1 “ ´diag
´´

p2

λ2
´

p1q
2

λ1

¯

,´ p2

λ2
e
γ
λ2 , p1

λ1
e
´γ
λ1 ,

´

p4

λ2
´

p3q
2λ2

2

λ3
1

¯

, p3

λ1
e
´γ
λ1 , 0

¯

`
p4

λ3
2
e
γ
λ2 NJ0 N0,

Π2 “ p5diagp01,1, N1, 03,3q,

M “ 2 max
xPr0,1s

ˆ

λ3
1L

α
x pxq

2e
γ
λ1

p1
,
λ3

2L
β
xpxq

2

p2

˙

,

Π3 “ p5

»

—

—

—

–

e6
2
J

e6
3
J

N0

´λ1e
6
5
J

fi

ffi

ffi

ffi

fl

J

„

02,2 N1

NJ1 02,2



»

—

—

–

en2
e6

3

N0

´λ1e
6
5
J

fi

ffi

ffi

fl

.

(15)

e) functions u and v are continuous on Du “ tpt, xq P Rěˆ
r0, 1s : x R pXpt, 1qu and Dv “ tpt, xq P Rě ˆ r0, 1s :
x R qXpt, 1qu, respectively, and they are of class C1 on
D1 “ Du XDv X pRą ˆ r0, 1sq,

f) equation (1) holds for all pt, xq P D1, equation (2) holds,
up0, xq “ u0pxq holds for all x P p0, 1s, and vp0, xq “
v0pxq holds for all x P r0, 1q.

For the case pu0, v0q P C1pr0, 1s,R2q, the functions are
differentiable on D1 “ DuXDv . In addition, similar definition
applies to the solution to system (5)-(6) where functions α and
β are of class C1 on DuXpRąˆr0, 1sq and DvXpRąˆr0, 1sq,
respectively.

III. MAIN RESULTS

In this section, we analyze two different cases; firstly,
we consider periodic sampling where Tk “ T for some
T P p0, T˚s, secondly, we focus on aperiodic sampling with
Tk P p0, T

˚s. In both cases, we prove that there exists a
small enough T˚ ą 0 such that the solution to system (1)-
(2) with a sampled controller exponentially converges. Before
presenting the main results, let us define the following set
T “ tT P Rą : Dm P N, Tp “ mT u with Tp given in (14),
which is used in the following theorems and lemma.

Theorem 1 (System with boundary reflection, ρ ‰ 0). There
exist constants η, C ą 0, and

T˚ P

"

Rą, if k0 “ 0,
T , if k0 P p0, 1s,

(16)

such that for all constant T ď T˚ and for all initial condition
pu0, v0qJ P C1pr0, 1s,R2q, the solution to system (1)-(2)
satisfies

}spt, ¨q}2L2pr0,1s,R4q ď Ce´ηt}pu0, v0, u0
x, v

0
xq
J}2L2pr0,1s,R4q

(17)
with spt, ¨q “ pupt, ¨q, vpt, ¨q, B´x upt, ¨q, B

`
x vpt, ¨qq

J, when the
control law (11) is applied with
‚ Tk P p0, T s, k P N for k0 “ 0 (aperiodic sampling);
‚ Tk “ T P T , k P N for k0 “ p0, 1s (periodic sampling).

Theorem 2 (System without boundary reflection, ρ “ 0).
There exist constants T˚, η, C ą 0 such that for all pu0, v0q P

Cpr0, 1s,R2q the solution to system (1)-(2) with ρ “ 0 and
control law (11) with Tk P p0, T˚s for all k P N, satisfies

}pupt, ¨q, vpt, ¨qqJ}L2pr0,1s,R2q ď Ce´ηt}pu0, v0qJ}L2pr0,1s,R2q.
(18)

The above results guarantee the existence of a sufficiently
small inter-sampling time for which the global exponential
stability of the closed-loop system is guaranteed. Moreover we
provide sufficient conditions in the form of matrix inequalities
to efficiently compute an upper-bound of the inter-sampling
times.

Lemma 1. Suppose there exist T˚, γ ą 0, and pi ą 0, i P
t1, . . . , 6u such that

γ ´ p6 ą 0, (19)

Π1 ´Π2 ´
p6

M
e6

6e
6
6
J
ď 0, (20)

Π1 ´Π2 ` T
˚ppγ ´ p6qΠ2 `Π3q ´

p6

M
e6

6e
6
6
J
ď 0, (21)

where the different matrices and constants are defined in (15).
Then the following statements hold
‚ Periodic sampling and boundary reflection: if T˚ P T

and k0 P p0, 1s, then for all initial conditions pu0, v0qJ P

C1pr0, 1s,R2q the solution to system (1)-(2) with control
law (11) and Tk “ T for all k P N, satisfies (17) with
η “ γ ´ p6 for all T P T , T ď T˚.

‚ Aperiodic sampling and boundary reflection: if T˚ P

Rą and k0 “ 0, then for all initial conditions pu0, v0qJ P

C1pr0, 1s,R2q the solution to system (1)-(2) with control
law (11) and Tk P p0, T

˚s for all k P N, satisfies (17)
with η “ γ ´ p6.

‚ Aperiodic sampling and no boundary reflection: if ρ “
0, then for all initial conditions pu0, v0qJ P Cpr0, 1s,R2q

the solution to system (1)-(2) with control law (11) with
Tk P p0, T

˚s for all k P N, satisfies (18) with η “ γ´ p6.

A feasible solution to conditions (19)-(21) can be found by
a line search on several parameters and solving the resulted
Linear Matrix Inequalities. Note that Theorems 1 and 2
guarantee that the feasible region is not empty.

Remark 1. The existence of a dwell-time (minimum inter-
event time) for the event-triggering mechanism proposed in
[5], suggests an alternative proof of Theorem 2 for the
particular case of k0 “ 0 and σ1, σ2 P R.

IV. PROOF OF THE MAIN RESULTS

This section focuses on the proof of the main results of
this work. Since there are several steps in common for all the
results, we provide a unique proof divided into several steps.
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Following, we assume that the initial conditions u0 and v0

satisfy equation (2) for the sake of clarity2. The steps are as
follows:

1) Existence of the solution to system (1)-(2) with a piece-
wise constant input U : Rě Ñ R;

2) Proof that transformation (3) maps (1)-(2) to (5)-(6)
despite the discontinuities introduced by a piecewise
constant input U .

3) Construction of a Lyapunov function V and looped-
functionals Vk with an exponential convergence for sys-
tem (5)-(6), and proof of Lemma 1.

4) Proof of Theorems 1 and 2.
For the sake of clarity, we provide in this section the proof

of Steps 3 and 4, and the proof of the two first steps are
given in Appendix A.

3) Exponential convergence of the solution to system
(5)-(6) and proof of Lemma 1: First, let us assume periodic
sampling with Tk “ T P T (later this assumption will
be removed in order to prove the second and third items
of Lemma 1). Consider the following Lyapunov functional
V ptq “ V1ptq ` V2ptq with

V1ptq “
p1

λ1

ż 1

0

e
´γ
λ1
xαpt, xq2dx`

p2

λ2

ż 1

0

e
γ
λ2
xβpt, xq2dx

(22)

V2ptq “
p3

λ1

ż 1

0

e
´γ
λ1
x
B´x αpt, xq

2dx`
p4

λ2

ż 1

0

e
γ
λ2
x
B`x βpt, xq

2dx,

(23)
where pi ą 0, i P t1, . . . , 4u.

Consider the sets given in (12). First, note that Tk P p0, T˚s
guarantees that there is a finite number of elements in pXpt, 1q
and qXpt, 1q for all t ě 0. In addition, the elements in
pXpt, 1q and qXpt, 1q can be ordered, and thus, we define the
sequences px̂1, x̂2, . . . , x̂N̂pt,1qq and px̌1, x̌2, . . . , x̌Ňpt,1qq for
any instant t P Rě, where N̂pt, 1q and Ňpt, 1q are the number
of elements in the sets pXpt, 1q and qXpt, 1q, respectively. Note
that the elements in the above sequences evolve with time and
the dynamics is given by equation (13). Considering these
sequences, the functional V1 and V2 are rewritten as follows:

V1ptq “
p1

λ1

N̂pt,1q
ÿ

i“0

ż x̂´i`1

x̂`i

e
´γ
λ1
xαpt, xq2dx

`
p2

λ2

Ňpt,1q
ÿ

i“0

ż x̌´i`1

x̌`i

e
γ
λ2
xβpt, xq2dx

(24)

V2ptq “
p3

λ1

N̂pt,1q
ÿ

i“0

ż x̂´i`1

x̂`i

e
´γ
λ1
x
B´x αpt, xq

2dx

`
p4

λ2

Ňpt,1q
ÿ

i“0

ż x̌´i`1

x̌`i

e
γ
λ2
x
B`x βpt, xq

2dx,

(25)

2Note that when u0 and v0 does not satisfy equation (2), the initial
condition will introduce discontinuities into the solution of the system. These
discontinuities can be treated as the discontinuities due to the sampling, and
the proof follows similarly.

where we define x̂0 “ 0, x̌0 “ 0, x̂N̂pt,1q`1 “ 1 and
x̌Ňpt,1q`1 “ 1. Every interval rtk, tk`1q can be divided into
subintervals in which N̂pt, 1q and Ňpt, 1q are constants and
the elements x̂i, x̌i evolve linearly and described by (13). In
these intervals the time-derivative of V1 along the trajectories
of the system is given by

9V1ptq “ p1

N̂pt,1q´1
ÿ

i“1

e
´γ
λ1
x̂i
`

αpt, x̂´i q
2 ´ αpt, x̂`i q

2
˘

`
p1

λ1

N̂pt,1q
ÿ

i“0

ż x̂i`1

x̂`i

2e
´γ
λ1
xαtpt, xqαpt, xqdx

´ p2

Ňpt,1q´1
ÿ

i“1

e
γ
λ2
x̌i
`

βpt, x̌´i q
2 ´ βpt, x̌`i q

2
˘

`
p2

λ2

Ňpt,1q
ÿ

i“0

ż x̌´i`1

x̌i

2e
γ
λ2
xβtpt, xqβpt, xqdx.

(26)

Using (5) and integration by parts, we get

9V1ptq “ ´
p1

λ1
e
´γ
λ1 αpt, 1q2 `

p1

λ1
αpt, 0q2

´
p1γ

λ1

ż 1

0

e
´γ
λ1
xαpt, xq2dx

`
p2

λ2
e
γ
λ2 βpt, 1q2

´
p2

λ2
βpt, 0q2 ´

p2γ

λ2

ż 1

0

e
γ
λ2
xβpt, xq2dx.

(27)

Following the same procedure for V2 and from the fact that α
and β satisfy

αtxpt, xq ` λ1αxxpt, xq “ 0
βtxpt, xq ´ λ2βxxpt, xq “ 0

(28)

with the boundary conditions

B´x αpt, 0q “ ´q
λ2

λ1
B`x βpt, 0q

B`x βpt, 1q “
1
λ2
βtpt, 1q

(29)

for almost all t ě 0 and x P r0, 1s, we can also obtain

9V2ptq “ ´
p3

λ1
e´

γ
λ1 B´x αpt, 1q

2 `
p3

λ1
B´x αpt, 0q

2

´
p3γ

λ1

ż 1

0

e
´γ
λ1
x
B`x αpt, 1q

2dx

`
p4

λ2
e
γ
λ2 B`x βpt, 1q

2

´
p4

λ2
B`x βpt, 0q

2 ´
p4γ

λ2

ż 1

0

e
γ
λ2
x
B`x βpt, xq

2dx.

(30)

Using the boundary conditions, it follows

9V1ptq ď ´p
p2

λ2
´
p1q

2

λ1
qβpt, 0q2 ´

p1

λ1
e´

γ
λ1 αpt, 1q2

`
p2

λ2
e
γ
λ2 βpt, 1q2 ´ γV1ptq

(31)

9V2ptq ď ´

ˆ

p4

λ2
´
p3q

2λ2
2

λ3
1

˙

B`x βxpt, 0q
2

´
p3

λ1
e
´γ
λ1 B´x αxpt, 1q

2 `
p4

λ3
2

e
γ
λ2 βtpt, 1q

2 ´ γV2ptq.

(32)
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Now consider the following looped-functional

Vkpτ, χkq “ p5pTk ´ τqχkpτq
2 (33)

with τ P r0, Tks and χkpτq “ βptk`τ
´, 1q´ρp1´k0qαptk`

τ´, 1q for all k P N. Let us remark that χkpTkq “ βpt´k`1, 1q´
ρp1 ´ k0qαpt

´
k`1, 1q. In addition, note that the assumption

Tk “ T P T guarantees that αpt, 1q and βpt, 1q are continuous
between the sampling times, since the discontinuities reflected
by the boundary condition at x “ 1 coincide always with a
sampling instant. Taking the derivative with respect to τ of
Vkpτ, χkq, one gets

9Vkpτ, χkq “ ´ p5χkpτq
2 ` 2p5pTk ´ τqχkpτq 9χkpτq. (34)

The time-derivative of βp1, tq is given by βtp1, tq “ N0ζptq
where N0 is given in (15) and

ζptq “ rβpt, 0q βpt, 1q αpt, 1q βxpt, 0q αxpt, 1q ψptqsJ

(35)
with ψptq “

ş1

0
λ1L

α
xpxqαpt, xq ´ λ2L

β
xpxqβpt, xqdx. Using

the definitions in (15) into equations (31), (32), it is obtained

9V ptq ď ´γV ptq ` ζptqJΠ1ζptq (36)

and using equation (34), we get

9Vkpτ, χkq ď ´ηVkpτ, χkq
` ζptk ` τq

Jp´Π2 ` pTk ´ τqpηΠ2 `Π3qqζptk ` τq
(37)

with η “ γ ´ p6. In addition, note that the term ψptq can be
simply bounded by V1ptq as follows ψptq2 ď MV1ptq where
M is given in (15). Let us remark that the kernels of the inverse
backstepping transformation are differentiable and defined in
a compact set, and thus functions Lαx and Lβx used in M are
bounded. Adding p6

M pψptq
2 ´ ψptq2q to (36) and considering

the bound of ψptq2, we obtain

9V ptk ` τq ` 9Vkpτ, χkq ď ´ηpV ptk ` τq ` Vkpτ, χkqq
` ζptk ` τq

JΨpτ, Tkqζptk ` τq,
(38)

where Ψpτ, Tkq “ pΠ1´Π2`pTk´τqpηΠ2`Π3q´
p6

M e6
6e

6
6
J
q.

Note that if Ψpτ, Tkq ď 0 then it follows

9V ptk ` τq ` 9Vkpτ, χkq ď ´η pV ptk ` τq ` Vkpτ, χkqq (39)

for all τ P r0, Tks, and thus, we get

V ptk ` τq ď V ptk ` τq ` Vkpτ, χkq
ď e´ηptk`τq pV p0q ` V0p0, χ0qq “ e´ηptk`τqV p0q,

(40)

which implies (note that V0p0, χ0q “ 0, since t0 is the first
sampling time)

}s̄pt, ¨q}2L2pr0,1s,R4q ď Ce´ηt}pα0, β0, α0
x, β

0
xqq

J}2L2pr0,1s,R4q

(41)
with s̄pt, ¨q “ pαpt, ¨q, βpt, ¨q, B´x αpt, ¨q, B

`
x βpt, ¨qq

J.
In addition, the derivative of (4) with respect to x is given by

uxpt, xq “ αxpt, xq ´ L
ααpx, xqαpt, xq ´ Lαβpx, xqβpt, xq

´

ż x

0

`

Lααx px, yqαpt, yq ` L
αβ
x px, yqβpt, yq

˘

dy,

vxpt, xq “ βxpt, xq ´ L
βαpx, xqαpt, xq ´ Lββpx, xqβpt, xq

´

ż x

0

`

Lβαx px, yqαpt, yq ` L
ββ
x px, yqβpt, yq

˘

dy.

(42)

Using (4) and (42) into (41), we get (17). Finally, note that
Ψpτ, Tkq ď 0 from Tk “ T , conditions (19)-(21) and a
convexity argument on τ and T . Therefore, the first item in
Lemma 1 is proved. The proof of the second item follows
directly by noting that k0 “ 0 implies that χkpτq is continuous,
and thus, the looped-functional Vk is continuous between the
sampling instants for any Tk P p0, T

˚s. That is, assumption
Tk “ T P T is not necessary. Finally, in order to prove
the third item, note that ρ “ 0 implies that assumption
Tk “ T P T is again not necessary, since the looped-
functional Vk is continuous between the sampling instants for
any Tk P p0, T˚s. In addition, we get

9V1ptk ` τq` 9Vkpτ, χkq ď ´ηpV1ptk ` τq ` Vkpτ, χkqq
` ζptk ` τq

JEJΨpτ, TkqEζptk ` τq
(43)

for ρ “ 0 with E “ re6
1 e6

2 e6
3 e6

6s
J. Since Ψpτ, Tkq is

negative-semidefinite, then EJΨpτ, TkqE is also negative-
semidefinite. The rest of the proof follows as the proof of the
first item.

4) Proof of Theorems 1 and 2: Note that if the right term
in (20) is strictly negative then there exists a small enough
T˚ such that (21) holds, which directly proves Theorems 1
and 2 whenever condition (19) is satisfied. Therefore, let us
find constants γ ą 0 and pi, i P t1, . . . 6u such that condition
(20) is strict and (19) holds. First, from the definition of N0

it follows the following inequality

NJ0 N0 ď p1` εqρ
2λ2

1e
6
5e

6
5
J
` p1`

1

ε
qÑJ0 Ñ0 (44)

for all ε ą 0 with

N̄0 “ rλ2L
βp0q´λ1L

αp0qq ´λ2L
βp1q λ1L

αp1q 0 0 ´1s.
(45)

Taking into account the above inequality and after some
calculations, condition (20) is strict if the following conditions
hold

p4

λ3
2

e
γ
λ2 p1`

1

ε
q}Ñ0}

2 `
p1q

2

λ1
´
p2

λ2
ă 0 (46)

p3q
2λ2

2

λ3
1

´
p4

λ2
ă 0 (47)

p4

λ3
2

e
γ
λ2 p1`

1

ε
q}Ñ0}

2 ´
p6

M
ă 0 (48)

p4

λ3
2

e
γ
λ2 p1` εqρ2λ2

1 ´
p3

λ1
e
´γ
λ1 ă 0 (49)
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«

%` p2

λ2
e
γ
λ2 ´ p5 p5ρp1´ k0q

‹ %´ p1

λ1
e
´γ
λ1 ´ p5ρ

2p1´ k0q
2

ff

ă 0

(50)
with % “ p4

λ3
2
e
γ
λ2 p1` 1

ε q}Ñ0}
2. First, let us pick γ and ε such

that

γ ă ´ logpρqq2λ1λ2

λ1`λ2
, ε ă e

γp 1
λ1
` 1
λ2
q

pρqq2 ´ 1. (51)

Now consider any p2 ą 0, and pick p1 ă
p2

q2λ2
and p6 ă γ,

thus (19) holds. By choosing p4 small enough and p5 suffi-
ciently large with respect to p2, conditions (46), (48), and (50)
are satisfied. For the given p4, conditions (47) and (49) hold
by choosing p3 as follows

p4p1` εqρ
2λ3

1e
γp 1
λ1
` 1
λ2
q

λ3
2

ă p3 ă
p4λ

3
1

λ3
2q

2
. (52)

Equation (51) guarantees that the above p3 exists. Therefore,
the proof is complete.

V. ILLUSTRATIVE EXAMPLE

In this section, a numerical example is provided in order to
illustrate the proposed stability analysis. Consider the system
(1)-(2) with λ1 “ 1, λ2 “ 2, σ1 “ 2, σ2 “ 2, and q “ 0.5.
Let us analyze the following two cases:

1) System with boundary reflection: Consider for instance
ρ “ 0.5, then the existence of T˚, such that the exponential
estimation (17) holds, follows directly from Theorem 1. In
addition, solving the conditions in Lemma 1 with a line search
in the variable p6 and γ, we obtain that T˚ “ 1.5{12 is
the maximum sampling period belonging to T “ p 1.5

j q
8
j“1

for which the exponential convergence of the solution is
guaranteed for all k0 P r0.3, 1s. For k0 P r0, 0.3q the maximum
sampling period is T˚ “ 1.5{13. For the particular case
k0 “ 0, exponential convergence is guaranteed with aperiodic
sampling satisfying Tk P p0, T˚s.

Fig. 1 shows the evolution of the component vpt, xq when
the system is controlled by the continuous controller (left)
and the sampled-data controller (right) with k0 “ 0.8 and the
initial condition u0pxq “ qv0pxq, v0pxq “ 10p1 ´ xq for all
x P r0, 1s. In addition, the control signal U is plotted in Fig. 2
for both cases. Note how the discontinuities, introduced by the
sampled-data controller, propagate across the spatial domain.

2 ) System without boundary reflection, ρ “ 0: Theorem
2 guarantees that there exists T˚ such that the exponential
convergence given by (18) holds. In addition, from Lemma 1,
we can obtain a decay rate η “ 1.3ˆ 10´2 for the parameter
T˚ “ 0.12. As we may expect it is possible to obtain larger
decay rates (upper bounded by the decay rate of the continuous
case) by reducing T˚. On the other hand, the computation of
the upper bound T˚ of the inter-event times for the case k0 “ 0
by using the results in [5] leads to T˚ ă 0.06 independently
of the decay rate, suggesting that the proposed method is less
conservative in terms of the upper bound computation.

VI. CONCLUSIONS

This work provides results on the existence of small enough
inter-sampling times such that the global exponential stability

Time (t)
0 1 2 3 4 5 6

U

-5

-4

-3

-2

-1

0

1

Fig. 2. Time-evolution of the continuous-time controller (blue dashed line)
and the sampled-data controller (red line).

of a 2 ˆ 2 linear hyperbolic system with a predesigned
controller is preserved in presence of sampling. The controller
under study is the modified version, proposed in [1], of the
full state boundary feedback controller propounded in [25]
by means of the backstepping method. Two different cases
depending on the boundary conditions are analyzed. Firstly,
we consider that the two PDEs are interconnected on both
boundaries (system with boundary reflection). In this case, we
show that there exists a sufficiently small sampling period,
under a commensurability assumption with the transport ve-
locities, for which the exponential stability, in terms of the L2-
norm of the states and their spatial derivatives, is guaranteed.
Secondly, we assume that no boundary reflection occurred,
which allows us to guarantee exponential stability, in terms
of the L2-norm of only the states, under small enough inter-
sampling times (encompassing both periodic and aperiodic
sampling). In order to easily compute an upper bound of
the maximum inter-sampling time or sampling period, we
provide tractable sufficient stability conditions in the form of
matrix inequalities. As a future work, it could be interesting
to generalize the obtained results to a more general class of
systems such as n ˆ n linear hyperbolic systems and also to
relax equation (16) for k0 ‰ 0. Finally, the proposed method
might be combined with an event-triggering mechanism, in
order to design an event-triggering strategy with a greater
dwell-time, or a periodic event-triggered controller following
the ideas in [7].
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[24] Y. Tan, E. Trélat, Y. Chitour, and D. Nes̆ić. Dynamic
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APPENDIX

This section contains the Steps 1 and 2 of the proof given
in Section IV.

1) Existence of solution: Consider the system (5)-(6) with
Uptq “ K for all t ě 0 and some K P R. Let us prove that
for all piecewise continuous initial condition pα0, β0qJ, there
exists T ą 0 such that the above system has a unique solution
for all t P r0, T q. By the method of characteristics we get

αpt, xq “

"

αp0, x´ λ1tq, x ą λ1t
α
`

t´ x
λ1
, 0
˘

, x ď λ1t
(53)
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βpt, xq “

"

βp0, x` λ2tq, x ă 1´ λ2t
β
`

t´ 1´x
λ2
, 1
˘

, x ě 1´ λ2t
(54)

Let us consider T “ minp 1
λ1
, 1
λ2
q, the solutions αpt, xq and

βpt, xq are given as follows:

αpt, xq “

"

αp0, x´ λ1tq x ą λ1t
qβ

`

0, λ
`

t´ x
λ1

˘˘

x ď λ1t
(55)

βpt, xq “ βp0, x` λ2tq x ă 1´ λ2t (56)

and defining t̄ “ t´ 1´x
λ2

, the solution βpt, xq for x ě 1´λ2t
is given by

βpt, xq “ dpt̄q `

ż 1

1´λ2 t̄

Lβpyqβ
`

t̄´ 1´y
λ2
, 1
˘

dy (57)

with

dpt̄q “ K ` ραp0, 1´ λ1t̄q `

ż λ1 t̄

0

qLαpyqβ
`

0, λ2

`

t̄´ y
λ1

˘˘

dy

`

ż 1

λ1 t̄

Lαpyqαp0, y ´ λ2t̄qdy `

ż 1´λ2 t̄

0

Lβpyqβp0, y ` λ2t̄qdy

(58)

In order to prove that there exits βpt̄, 1q that satisfies (57), let
us consider the change of variable z “ t̄´ 1´y

λ2
, then it follows

βpt̄, 1q “ dpt̄q `

ż t̄

0

λ2L
βp1´ λ2pt̄´ zqqβpz, 1qdz (59)

Since dpt̄q and Lβp1´λ2pt̄´zqq are well-defined for t̄ P r0, ts
and t ă minp 1

λ1
, 1
λ2
q, and in addition Lβp1 ´ λ2pt̄ ´ zqq

is also continuous in the interval, then equation (59) is a
linear Volterra integral equation with a unique solution (see
Theorem 6 in [9]). Therefore, there exists a unique solution
to (5)-(6) with Uptq “ K for all t ě 0 in the interval
r0, T q. Since U defined in Section II is a piecewise constant
function with jump discontinuities at ttkukPN, the solution
to system (5)-(6) is simply made up of an initial condition
pα0, β0qJ P Cpr0, 1s,R2q and a sequence of segments of the
solution to the initial-value problem (5)-(6) with constant
Uptq “ K for all t ě 0 and different values of K. Finally, the
inverse backstepping transformation (4) leads to the existence
of a unique solution to system (1)-(2) with a piecewise
constant signal U .

2) Backstepping transformation: In this part, we aim at
proving that for any piecewise continuous signal U : Rě Ñ R

with jump discontinuities at ttkukPN, the backstepping trans-
formation (3) maps system (1)-(2) to system (5)-(6). This part
of the proof is added for the sake of completeness, and it is
similar to the proof in [2, 25] but with an explicit treatment of
the discontinuities. Consider the sets given in (12). Note that
Tk P p0, T

˚s implies that there is a finite number of elements
in pXpt, xq and qXpt, xq for all t ě 0 and x P r0, 1s. Since the
elements in pXpt, xq and qXpt, xq can be ordered, we define the
sequences px̂1, x̂2, . . . , x̂N̂pt,xqq and px̌1, x̌2, . . . , x̌Ňpt,xqq for
any instant t P Rě and x P r0, 1s, where N̂pt, xq and Ňpt, xq
are the number of elements in the sets pXpt, xq and qXpt, xq,
respectively. The elements in sequences evolve with dynamics
given by equation (13).

Consider the backstepping transformation (3), without loss of
generality let us assume N̂pt, xq ą 0 and Ňpt, xq ą 0, then
the transformation of u (similarly for v) can be rewritten as
follows:

αpt, xq “ upt, xq ´

ż x̂´1

0

Kuupx, yqupt, yqdy

´

ż x

x̂`
N̂pt,xq

Kuupx, yqupt, yqdy ´

N̂pt,xq´1
ÿ

i“1

ż x̂´i`1

x̂`i

Kuupx, yqupt, yqdy

´

ż x̌´1

0

Kuvpx, yqvpt, yqdy ´

ż x

x̌`
Ňpt,xq

Kuvpx, yqvpt, yqdy

´

Ňpt,xq´1
ÿ

i“1

ż x̌´i`1

x̌`i

Kuvpx, yqvpt, yqdy
(60)

Taking a time-derivative of αpt, xq on D1 and using equation
(1), we get

αtpt, xq “ utpt, xq ´

ż x

0

Kuupx, yqp´λ1B
´
y upt, yq

` σ1pyqvpt, yqqdy `

N̂pt,xq
ÿ

i“1

λ1K
uupx, x̂iq

`

upt, x̂`i q ´ upt, x̂
´
i q
˘

´

ż x

0

Kuvpx, yqpλ2B
`
y vpt, yq ` σ2pyqupt, uqqdy

`

Ňpt,xq
ÿ

i“1

λ2K
uvpx, x̌iq

`

vpt, x̌`i q ´ vpt, x̌
´
i q
˘

(61)

From (1) and using integration by parts, it is obtained
ż x

0

λ1K
uupx, yqB´y upt, yqdy “ λ1K

uupx, xqupt, xq

´ λ1K
uupx, 0qupt, 0q ´

ż x

0

Kuu
y px, yqupt, yqdy

´

N̂pt,xq
ÿ

i“1

λ1K
uupx, x̂iq

`

upt, x̂`i q ´ upt, x̂
´
i q
˘

(62)

and
ż x

0

λ2K
uvpx, yqB`y vpt, yqdy “ λ2K

uvpx, xqvpt, xq

´ λ1K
uvpx, 0qvpt, 0q ´

ż x

0

Kuv
y px, yqvpt, yqdy

´

Ňpt,xq
ÿ

i“1

λ2K
uvpx, x̌iq

`

vpt, x̌`i q ´ vpt, x̌
´
i q
˘

.

(63)

Replacing (62) and (63) into (61), it follows

αtpt, xq “ utpt, xq ` λ1K
uupx, xqupt, xq ´ λ1K

uupx, 0qupt, 0q

´

ż x

0

Kuu
y px, yqupt, yqdy ´

ż x

0

Kuupx, yqσ1pyqvpt, yqdy

` λ2K
uvpx, xqvpt, xq ´ λ2K

uvpx, 0qvpt, 0q

´

ż x

0

Kuv
y px, yqvpt, yqdy ´

ż x

0

Kuvpx, yqσ2pyqupt, yqdy
(64)

Note that despite the discontinuities introduced by U , the
obtained time-derivative, αtpt, xq, is the same as in [2]
(similarly for β). Hence, following the procedure in [2], we
get the target system (5)-(6) as in the case of a continuous U .


