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Abstract— We present a method to estimate the time-varying
free-flow wind speed on a wind farm based on local wind speed
measurements taken by a wind turbine inside the wake zone of
a turbine array. Our approach relies on a simple modeling of
the speed deficit as a 1-D transport equation [1]. We propose
to estimate the free-flow wind speed by integrating the error
between the local wind measurement and an estimation of it
computed with the free-flow estimate. We provide a bound
on the estimation error which we formally prove. Finally, we
provide numerical simulations to illustrate the interest and the
performance of the proposed method.

I. INTRODUCTION

The wind energy installed capacity has been growing
steadily in the recent past and is expected to continue to do so
in the foreseeable future. By the end of 2021, the worldwide
installed capacity was 837 GW, and more than 20% of it was
added from the beginning of 2020 to the end of 2021 [2].
Wind turbines are now deployed in ever denser wind farms,
which leads to challenges in the development of controllers
for such structures since the proximity between wind turbines
causes them to interfere with each other through aerodynamic
interactions.

One of these aerodynamic effects is the speed deficit in
the wake: a wind turbine creates behind itself a region where
the wind is slower and more turbulent than the incoming
wind that drives the turbine. When multiple turbines are
close to each other, their wakes superpose in an intricate
manner, and the downwind turbines experience a deteriorated
wind condition compared to that of the upwind turbines and,
consequently, generate less power. Furthermore, it is now
well established in the wind energy literature that greedy
approaches where each wind turbine is an isolated agent
seeking to maximize its power output without considering
its interactions with the other turbines are generally not
optimal when one considers the entire farm power production
as the objective function, see, e.g., [3]. In this context,
the wind energy community has been proposing wind farm
control strategies that take wake dynamics into account to
improve the power production of a wind farm as a whole.
A comprehensive review of the recent wind farm control
literature is given by [4], shorter surveys are provided in [3],
[5], and earlier works include [6], [7].
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To employ wind farm control techniques and for monitor-
ing purposes, though, one needs information about the wind
acting on the wind farm. Ideally, one wants to have a real-
time measurement of the free-flow wind speed, i.e., the wind
speed without the effect of the turbines. However, one will
often face a lack of sensors to obtain such measurements.
Indeed, the anemometers with which wind turbines are
normally equipped are well-suited only to provide a time-
averaged measurement of the wind speed and this measure-
ment is not exactly that of the effective wind speed, i.e.,
the speed that is correlated with power production, because
the anemometer only gives a punctual measurement and is
placed behind the rotor where the wind is affected by the
presence of the turbine (see, e.g., [8] and references therein).
Furthermore, better-suited tools such as a nacelle LiDAR
(Light Detection and Ranging) sensor, see, e.g., [9], [10],
are rarely available for all turbines in the wind farm due to
cost reasons.

In this paper, we consider the case where one wants to
estimate the free-flow wind speed but has access only to an
effective wind speed measurement downwind from a turbine
array, which we refer to as the local speed measurement. This
could be the case, e.g., when this measurement is taken from
a LiDAR sensor mounted on another turbine downwind from
the array (for lack of access, a fault on the upwind turbine,
or any other reason).

Estimation techniques such as the ones reviewed in [4]
usually rely on nonlinear versions of the Kalman Filter
that, whilst being regarded as powerful tools and yielding
good results in many applications, do not have guaranteed
performance.

The method we propose to apply relies on a simple 1-
D model of the wake, initially proposed in [1], to describe
the speed deficit caused by the wake of a turbine. Using
an analytical solution to this model, we propose to estimate
the local speed measurement based on a free flow estimate,
which, in turn, is updated by simply integrating the error
between the actual local speed measurement and its estimate.
Furthermore, we provide mathematical guarantees of the
performance of our method, under mild assumptions. This
is the main contribution of the paper. Numerical simulations
obtained with NREL’s FAST.Farm [11], [12] confirm the
interest of the proposed estimation methodology.

The rest of this paper is organized as follows. In Section II,
we present the problem under consideration more formally
and detail our proposed estimation approach, including a
short exposition of the analytical wake model we adopt and a
theorem quantifying a bound of the corresponding estimation



error. In Section III, we present and analyze numerical results
to assess the effectiveness of our method. Finally, we present
some concluding remarks in Section IV.

II. PROBLEM FORMULATION AND PROPOSED APPROACH

Consider an array of wind turbines aligned with the wind
direction. We are interested in the situation where one wants
to estimate the free-flow wind speed but only has access
to local speed information measured downwind from this
array by, e.g., a meteorological mast or another wind turbine.
When the downwind element is another turbine, the effective
wind speed (not considering the effect of this turbine itself)
can be obtained, e.g., with a nacelle LiDAR sensor or by
employing an estimation technique that infers the effective
wind speed from the SCADA data available to the turbine.
In any case, this local measurement is affected by the wake
of the upwind turbines and, therefore, does not correspond
to the free-flow wind speed. Fig. 1 shows a schematic of this
situation, where the measurement device is a LiDAR sensor
on a downwind turbine.

The problem addressed in this paper is to reconstruct
the free-flow wind speed using only the aforementioned
measurement.

To this end, we employ an estimation strategy that uses an
analytical model of the wake to estimate the local measure-
ment and feeds back the error between this estimate and the
actual measurement to update the estimate of the free-flow
wind speed. In the following subsections, we describe first
the wake model we use and then the update law for the free-
flow speed estimate together with a theorem that provides an
evaluation of the performance of this method.

In the following subsections, we present the wake model
we use, then the update law for the free-flow wind speed
estimate, and the implementation of the method.

A. Wake model

We apply the model proposed in [1], which uses a 1-D
first-order hyperbolic PDE to model the speed deficit caused
by a wind turbine. This model was initially proposed for a
constant free-flow speed, but it has since been applied also
to the time-varying case [13].

Fig. 1. Array of wind turbines and downwind measurement device. In this
case, we have an array of two wind turbines and the measurement device is
a LiDAR sensor mounted on the nacelle of a third turbine downwind from
the relevant array.

Given an array of N wind turbines, this model character-
izes the speed deficit caused by the ith one by

∂δui

∂t
+ U∞(t)

∂δui

∂x
= −wi(x)U∞(t)δui(x, t) + Si(x, t),
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di(x)
, Si(x, t) =

2aiU
2
∞(t)

d2i (x)
Gi(x), (3)

di(x) = 1 + κi ln

(
1 + exp

(
x− si −D

D/2

))
, (4)

Gi(x) =
1

(D/2)
√
2π

exp

(
− (x− si)

2

2(D/2)2

)
. (5)

Here, U∞ is the free-flow wind speed (which is always
positive), δui is the speed deficit caused by the ith turbine
in the array, κi > 0 is a coefficient related to the wake
diameter expansion, ai > 0 is the induction factor of the
ith turbine1, D > 0 is the rotor diameter (assumed the
same for all turbines), and si > 0 is the x position of the
ith turbine. For convenience, we label the turbines so that
s1 < s2 < . . . < sN . It should be noted that the boundary
of the domain should be far upwind from the turbine array,
i.e., s1 ≫ 0. We denote by L the x position where the wind
speed is measured.

We can express the solution to (1)-(2), for x ∈ [0, L] and
t > 0, as2

δui(x, t) =
2ai
d2i (x)

∫ x

0

Gi(ξ)U∞(t− τ(x− ξ, t))dξ, (6)

where τ is a delay implicitly defined by∫ t

t−τ(x,t)

U∞(r)dr = x. (7)

This integral equation uniquely defines the delay τ(x, t),
which is referred to as transport delay [15] or hydraulic
delay [16]. Note that this integral relation corresponds to
the integration along the characteristic lines of (1).

In the estimation technique that we use later in the paper,
we make a simplification with respect to the original model
[1]. Namely, we use a simple linear superposition of the
speed deficits to compute the wind speed, i.e., the wind speed
U at any point of the domain is computed as

U(x, t) = U∞(t)−
N∑
i=1

δui(x, t). (8)

Note that the literature proposes different ways to superpose
the wakes of multiple turbines [17]. Here, we choose the
simplest linear relation as it is more convenient to handle but
is also reported in [18] as delivering a satisfactory result.

We assume we can write the measured output as

y(t) = U(L, t) + ∆(t), (9)

1We assume each induction factor to be constant throughout the time
window of interest.

2Refer to [14] for details on how to obtain this solution.



where ∆ is a term representing modeling errors and mea-
surement noise. Indeed, the exact and complex behavior
of the wake phenomenon cannot be entirely captured by
the simplified model presented above. For this reason, we
explicitly account for a model error by this additive term in
the measurement equation. Note that wake modeling itself
is an active area of research with extensive literature but
beyond the scope of this paper, a couple of reviews that the
interested reader may refer to are [19], [20].

Moreover, we make the following assumptions:
Assumption 1: There exist constants Um > 0 and ζ ≥ 0

such that U∞(t) ≥ Um and |U̇∞(t)| ≤ ζ for all t ∈ R.
Assumption 2: There exists a constant ∆M ≥ 0 such that

|∆(t)| ≤ ∆M for all t ∈ R.
Assumption 3: For i = 1, . . . , N define

αi =
2ai

d2i (L)

∫ L

0

Gi(ξ)dξ, (10)

βi =
2ai

d2i (L)

∫ L

0

(L− ξ)Gi(ξ)dξ. (11)

We have

Z ≜
N∑
i=1

(
αi +

βiζ

U2
m

)
< 1 and

∆M

1− Z
< Um. (12)

Assumption 1 requires the free-flow to be lower-bounded
by a positive constant, which, in turn, ensures that the
transport delay defined in (7) is upper-bounded. This and
the fact that the variations of the free-flow and the error ∆
are bounded, as required by Assumption 2, are reasonable
requirements from a practical point of view.

Assumption 3 is the most demanding and technical one.
It requires the measurement error to be sufficiently small
for our estimation technique to work, as it is based on the
simplified wake model (1)-(2). Furthermore, it also requires
Z < 1. This originates from the use of Halanay’s inequality
in our stability proof, as will be detailed in the sequel.

We now turn our attention to the proposed estimation
strategy.

B. Free-flow wind speed estimation method

Let Û∞(t) represent the estimate of the free-flow wind
speed at time t. Similarly, define the estimate of the measured
output at time t, ŷ(t), as

ŷ(t) = Û∞(t)−
N∑
i=1

δûi(t), (13)

where

δûi(t) =
2ai

d2i (L)

∫ L

0

G(ξ − si)Û∞(t− τ̂(L− ξ, t))dξ (14)

and τ̂ is defined by the relation∫ t

t−τ̂(x,t)

Û∞(r)dr = x. (15)

Note that (14) and (15) are the counterparts of (6) and (7),
respectively, but with the estimated free-flow wind speed Û∞

instead of the actual one, U∞. Furthermore, we define the
error variables

Ũ∞(t) = U∞(t)− Û∞(t), (16)
δũi = δui(L, t)− δûi(t). (17)

We propose to update the free-flow speed estimate using
the following rule for t > 0:

˙̂
U∞(t) = k(y(t)− ŷ(t)), (18)

where k > 0 is a constant gain to be designed. As (14)-(15)
use past values of Û∞, we use Û∞(t) = Û∞(0) ≥ Um for
all t ≤ 0.

We can then establish the following result.
Theorem 1: Consider the system (1)-(2) satisfying As-

sumptions 1, 2, and 3 and the free-flow wind speed estimate
Û∞ defined according to (13)-(18). Then, there exist Ûm ∈
(0, Um − ∆M/(1 − Z)) and k∗ > 0 such that, if k > k∗
and sups∈[−τ̄ ,0] |Ũ∞(s)| ≤ Um − Ûm −∆M/(1 − Z), then
Û∞(t) ≥ Ûm for all t ≥ 0 and there exists σ > 0 such that

|Ũ∞(t)| ≤ sup
s∈[−τ̄ ,0]

|Ũ∞(s)|e−σt+
ζ

k (1− Z)
+

∆M

1− Z
. (19)

Proof: See the Appendix.
Notice Theorem 1 states that the steady-state error is

bounded by the sum of two terms. The first one is related to
ζ and we can make it arbitrarily small by choosing a large
gain k. The second one is related to the modeling error and
is not affected by the choice of the gain.

According to this result, one should thus adapt the update
gain k according to the magnitude of the free-flow variations:
the more important they are, the larger the gain should be,
to faster counteract them. It is also worth underlining that
Theorem 1 requires to bound the initial estimation error. This
technical assumption does not seem to be so restrictive in
practice as the simulations detailed in the sequel illustrate.
Future works should focus on alleviating this assumption.

C. Implementation

Here, we detail the implementation of the proposed
method. We propose to use a first-order discretization with
a fixed time-step of the time-integral formulation of the
solution to (1)-(2), which is

δui(x, t) =
2ai
d2i (x)

∫ t

t−τ(x,t)

Gi(x− Λ(s, t))U2
∞(s)ds, (20)

with

Λ(s, t) =

∫ t

s

U∞(r)dr. (21)

We use this form of the solution rather than the space-integral
formulation presented before as it is easier to implement
since computing (6) would require computing the transport
delay for each iteration of the integration loop. This is
avoided in this case as explained below.

Algorithm 1 shows the pseudo-code for the implemen-
tation. We use square brackets to denote the arguments in
discrete time, so, for instance, y[n] = y(n∆t), where ∆t
is the time-step. Recall that we assume the free-flow wind



speed estimate is constant before the estimation procedure
starts running, i.e., if j ≤ 0, we use Û∞[j] = Û∞(0).

Notice that the estimation procedure might use a time step
smaller than the time step used to obtain the measurements.
This may be a feature of interest to mitigate the steady-
state error as, according to Theorem 1, this may require
using a high value for the gain k, which, in general, requires
using a small ∆t. In this case, we simply interpolate the
measurements using a zero-order holder. Also, we include
saturation in the update law implementation so that the free-
flow speed estimate remains lower-bounded even with the
numerical errors that may be originated from the discretiza-
tion.

Moreover, note that the “while loop” is used to perform
the integral operation in (20). The condition Λ̂ < L is
used because Λ(t − τ(L, t), t) = L, thus, we can stop the
integration at the correct bound without computing the value
of transport delay in advance.

Most of the computational cost comes from the computa-
tion of the speed deficits. If the free-flow wind speed estimate
is nearly constant, we can roughly say that the computational
time for each iteration of the outermost loop is O(N/∆t).

In terms of memory usage, we need to store the values Û∞
in between iterations of this outermost loop. Since Û∞ ≥
Ûm, the number of iterations of the “while loop” is limited
and we need at most ⌊L/(Ûm∆t)⌋+ 1 past values of Û∞.

Algorithm 1 Implementation of the proposed method
for n = 0, 1, 2, . . . do
j ← n, ûi ← 0, Λ̂← 0
for i = 1, . . . , N do

δûi[n]← 0
end for
while Λ̂ < L do

for i = 1, . . . , N do
δûi[n]← δûi[n] +

2ai

d2
i (L)

Gi(L− Λ̂)Û2
∞[j]∆t

end for
Λ̂← Λ̂ + Û∞[j]∆t
j ← j − 1

end while
ŷ[n]← Û∞[n]− δû1[n]− . . .− δûN [n]

Û∞[n+1]← max
{
Û∞[n] + k(y[n]− ŷ[n])∆t, Ûmin

}
end for

III. NUMERICAL RESULTS

To assess the performance of the method, we tested it
using NREL’s FAST.Farm simulator [11], [12] to play the
role of the actual wind farm and provide us with the speed
measurement.

We use a configuration where we have an array of three
turbines evenly spaced 5D apart and the first turbine is at
s1 = 5D. We tested two cases. In the first one, we consider
we can measure the effective wind speed for the second
turbine, so N = 1 and L = 10D. In the second case, we
measure the effective wind speed of the third turbine, so
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Fig. 2. Free-flow wind speed estimation results using the local measurement
of the second (N = 1 case) and, respectively, third (N = 2 case) turbine
for a window of 10 minutes. The reference for the free-flow wind speed
comes from experimental data. The gain is k = 10 and Û∞(0) = 10 m/s.
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Fig. 3. Free-flow wind speed estimation error for the cases presented in
Fig. 2.

N = 2 and L = 15D. In all simulations, the turbines used
are NREL’s 5 MW turbine model with a rotor diameter of
D = 126 m.

The values of the coefficients κi and the induction factors
were tuned on preliminary tests with known constant free-
flow wind speed. The parameters selected were a1 = 0.27,
a2 = 0.32, κ1 = 0.03, and κ2 = 0.15.

To achieve a more realistic test, we fed to FAST.Farm a
free-flow wind speed that was obtained with experimental
field data from a LiDAR mounted on an operating turbine.
These LiDAR data were provided by Leosphere within the
framework of the project SmartEole of the French National
Research Agency (ANR).

Fig. 2 displays the estimation results in both the N = 1
and N = 2 cases. We used k = 10 and Û∞(0) = 10 m/s in
both cases. The errors U∞ − Û∞ for these same cases are
depicted in Fig. 3.

Fig. 4 depicts the actual local measurement provided in the
N = 2 case compared to one estimated by the model. We
see that the measurement estimate converges very fast and
thus, the estimation error observed in Fig. 2, which remains
low enough, is due to the modeling error.

In Fig. 5, we use the same data in the N = 2 case, but we
add noise to the measurements and show the effect of using
different values for the gain k. We used Û∞(0) = 10 m/s as
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Fig. 4. Estimation of the local speed measurement in the N = 2 case
corresponding to Fig. 2.

0 100 200 300 400 500 600
7

7.5

8

8.5

9

9.5

10

10.5

time [s]

w
in
d
sp
ee
d
[m

/
s]

reference estimate (k = 0.1)

estimate (k = 1) estimate (k = 10)

Fig. 5. Free-flow wind speed estimation results using noisy local mea-
surements of the third turbine (N = 2) for different gains. We used
Û∞(0) = 10 m/s.

before. At each measurement, the added noise is sampled
from a zero-mean Gaussian distribution with a standard
deviation equal to 2% of the true value of the measurement.
One can observe some degradation of the performance, as
one would expect, but the estimates still exhibit a similar
trend to the actual wind speed. We also notice that the effect
of the noise is less pronounced when a small gain (k = 0.1)
is used, as one would expect for a technique that relies on
output feedback, but at the expense of the time response.

IV. CONCLUSIONS

We presented a method for estimating the free-flow wind
speed acting on an array of wind turbines using wind speed
measurements that are affected by the wake of the array. The
effectiveness of the method was tested using numerical sim-
ulations with data obtained from the FAST.Farm simulator.
The presented method is simple to implement and possesses
performance guarantees.

Although some idealizations were made (such as the
turbines being placed so that they are aligned with the wind
direction), this method provides interesting results using only
a very simple wake model and could be implemented in real-
time. This indicates it could be used as a building block for
estimation strategies designed for more complex scenarios,
such as when the wind direction is unknown and/or time-

varying. Future works could go in this direction, using e.g.,
the 2-D extension [21] of the wake model used here that
takes into account the wake deflection caused when there is
a misalignment between the turbines and the wind direction.
Another possible path for future research is trying to extend
this method to identify other possibly unknown parameters
(such as the wake expansion coefficients) of the wind farm.

APPENDIX
PROOF OF THEOREM 1

The proof follows essentially the same steps as the one
of [14, Theorem 1], but it was modified to account for the
error term ∆ in the measurement equation (9) and the fact
that we may have N > 1 (i.e., multiple turbines causing the
wake) here.

Let V (t) ≜ Ũ2
∞(t)/2 and δũ(t) ≜ δũ1(t) + . . .+ δũN (t).

We have

V̇ (t) = Ũ∞(t) ˙̃U∞(t) = Ũ∞(t)(U̇∞(t)− ˙̂
U∞(t)).

Notice that
˙̂
U∞(t) = k(y(t)− ŷ(t)) = k(Ũ∞(t)− δũ(t) + ∆(t)).

Using this and Assumptions 1 and 2, we have

V̇ (t) ≤ |Ũ∞(t)|ζ − kŨ2
∞(t) + k|Ũ∞(t)||δũ(t) + ∆(t)|

≤ |Ũ∞(t)|ζ − kŨ2
∞(t) + k|Ũ∞(t)| (|δũ(t)|+∆M ) . (22)

The following inequality is shown in the proof of [14,
Theorem 1] (and we suppress the details here for the sake
of brevity)

|δũi(t)| ≤
(
αi +

βiζ

Û2
m

)
sup

s∈[−τ̄ ,0]

|Ũ∞(t+ s)|.

Thus, it is clear that

|δũ(t)| ≤ Z sup
s∈[−τ̄ ,0]

|Ũ∞(t+ s)|. (23)

Recall that the constants αi, βi, and Z are defined in
Assumption 3.

Combining (22) and (23), we see that

V̇ (t) ≤ |Ũ∞(t)|(ζ + k∆M )− kŨ2
∞(t)

+ kZ sup
s∈[−τ̄ ,0]

Ũ2
∞(t+ s)

≤
√

2V (t)(ζ + k∆M )− 2kV (t)

+ 2kZ sup
s∈[−τ̄ ,0]

V (t+ s).

Then, from Young’s inequality, we have that√
2V (t)(ζ + k∆M ) ≤ ϵ(ζ + k∆M )2

2
+

V (t)

ϵ

for any ϵ > 0. Defining ρ = 2kϵ > 0, we have

V̇ (t) ≤ ρ(ζ + k∆M )2

4k
− 2k

(
1− 1

ρ

)
V (t)

+ 2kZ sup
s∈[−τ̄ ,0]

V (t+ s).



Let us choose a value of ρ such that Z < 1− 1/ρ. Then
we can apply a generalization of Halanay’s inequality [22]
to show that there is a σ1 > 0 such that

V (t) ≤ sup
s∈[−τ̄ ,0]

V (s)e−σ1t +
ρ(ζ + k∆M )2

8k2
(
1− 1

ρ − Z
) .

Notice that such ρ exists if and only if Assumption 3 holds.
Finally, using the fact that

√
a2 + b2 ≤ |a|+ |b|, we have

|Ũ∞(t)| ≤
√√√√2 sup

s∈[−τ̄ ,0]

V (s)e−σ1t +
ρ(ζ + k∆M )2

4k2
(
1− 1

ρ − Z
)

≤ sup
s∈[−τ̄ ,0]

|Ũ∞(s)|e−σt +

√
ρ(ζ + k∆M )

2k
√
1− 1

ρ − Z
,

where σ = σ1/2. We minimize this upper bound by picking
ρ = 2/(1− Z), which yields (19).

To prove that Û∞(t) remains lower-bounded, consider
Ûm ∈ (0, Um −∆M/(1− Z)) and

k∗ ≜
ζ/(1− Z)

Um − Ûm − ∆M

1−Z − sups∈[−τ̄ ,0]|Ũ∞(s)|
.

Notice k∗ > 0 because we assume in the statement of the
theorem that sups∈[−τ̄ ,0]|Ũ∞(s)| < Um−Ûm−∆M/(1−Z).
Also,

Û∞(0) = U∞(0)− Ũ∞(0) ≥ Um − sup
s∈[−τ̄ ,0]

|Ũ∞(s)| > Ûm.

By way of contradiction, suppose there exists t1 > 0 such
that Û∞(t1) < Ûm. Since Û∞ is continuous, there must be
a t2 ∈ (0, t1) such that Û∞(t) > Ûm for all t ∈ [0, t2) and
Û∞(t2) = Ûm. Using (19) with t = t2 and k > k∗, we have

|Ũ∞(t2)| < sup
s∈[−τ̄ ,0]

|Ũ∞(s)|e−σt2 +
ζ

k∗ (1− Z)
+

∆M

1− Z

≤ sup
s∈[−τ̄ ,0]

|Ũ∞(s)|e−σt2 + Um − Ûm − sup
s∈[−τ̄ ,0]

|Ũ∞(s)|

≤ Um − Ûm − sup
s∈[−τ̄ ,0]

|Ũ∞(s)|
(
1− e−σt2

)
.

Then,

Û∞(t2) = U∞(t2)− Ũ∞(t2) ≥ Um − |Ũ∞(t2)|

> Um −
[
Um − Ûm − sup

s∈[−τ̄ ,0]

|Ũ∞(s)|
(
1− e−σt2

)]
≥ Ûm + sup

s∈[−τ̄ ,0]

|Ũ∞(s)|
(
1− e−σt2

)
≥ Ûm,

i.e., Û∞(t2) > Ûm. But, t2 was defined so that Û∞(t2) =
Ûm, so this is a contradiction and therefore we cannot have
a t1 such that Û∞(t1) < Ûm. This concludes the proof.
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