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Outline

At an interior extremum point, 
the variation of a function is locally small. 

We elaborate on that to show that 
optimal control is robust with respect 

to model perturbations.



First and second order conditions 
(Bryson and Ho, 1969)

We wish to minimize the following cost: 

 

with dynamics: 

J(u) = φ(x(tf), tf) + ∫
tf

0
L(x, u, t)dt (1)

dx
dt

= f(x, u, t), x(0) = x0



Introducing the « Lagrangian »

In the cost equation (1) we introduce a « Lagrangian »  
to take into account the dynamics: 

 

Define the Hamiltonian , 

and integrate  by parts. The cost becomes 

J = φ(x(tf), tf) + ∫
tf

0
{L(x, u, t) + λ(t)T( f(x, u, t) −

dx
dt

)}dt .

H ≜ L + λTf

λ
dx
dt

J = φ(x(tf), tf) − λT(tf)x(tf) + λT(0)x(0) + ∫
tf

0
{H(x, u, λ, t) +

dλ
dt

T
x}dt



Consider a small variation  on the state and  on the control. 
For the moment, these two variations are independent. 

A second order Taylor expansion of the cost yields:
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If  is unconstrained, setting the first order to zero implies δu
∂H
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Rewriting δJ

 

for any variations  and  
such that first order terms of  vanish.

1
2

δx(tf)T ⋅
∂2φ
∂x2

(x(tf), tf) ⋅ δx(tf) +
1
2 ∫

tf

0
[δx(t)T δu(t)T]

∂2H
∂x2

∂2H
∂x∂u

∂2H
∂u∂x

∂2H
∂u2

[δx(t)
δu(t)] dt (2)

δx(t) δu(t)
δJ



Second order variation

Imagine that, for reasons not detailed here, 
the state is modified by a quantity  and the adjoint state by a quantity . 

We wish to study the loss of optimality due to these variations. 

To do so, it is sufficient to study the variation of the cost 
for controls which satisfy the necessary stationarity condition 

.

δx δλ

∂H
∂u

= 0



Variation of the stationarity condition

Using concise notations for the partial derivatives, 
we must have 

 
that is, 

 
If  is invertible, we obtain the feedback equation 

Huxδx + Huuδu + Hu,λδλ = 0

Huxδx + Huuδu + fT
u δλ = 0

Huu

δu* = − H−1
uu (Hux ⋅ δx + fT

u ⋅ δλ) (3)



Sufficient condition for optimality
Inserting (3) into the local variation (2) of ,  can be written as: 

 

 

We see that  is nonnegative for any ,  if 
the final cost matrix is nonnegative and if 

 
  

(  must be invertible) 
These conditions are called the strong Legendre-Clebsch conditions.

δJ δJ

δJ =
1
2

δx(tf)T ∂2φ
∂x2

(x(tf), tf)δx(tf)

+
1
2 ∫

tf

0
[δx(t)T(Hxx − HxuH−1

uu Hux)δx(t) + δλ(t)T fuH−1
uu fT

u δλ(t)] dt .

δJ δx δλ

Hxx − HxuH−1
uu Hux ≥ 0

Huu > 0
Huu



For static optimization problems, 
we know that convexity is essential to guarantee optimality. 

The generalization of this 
to optimal control problems appears to be 

the Legendre-Clebsh conditions.

Sufficient condition for optimality



Regular perturbations 
in optimal control (Bensoussan 1988)

We introduce perturbations in the unconstrained problem (1) as follows 

 (4.1) 

with the perturbed dynamics 

 (4.2) 

This perturbation is characterized by its magnitude, which means 
that all the functions and their derivatives are assumed to be bounded. 

To simplify things, we shall assume that, for , 
the control problems have a unique solution .

min
u [Jε(u) = ∫

T

0
[L0(x, u) + εL1(x, u)] dt]

dx
dt

= f0(x, u) + εf1(x, u), x(0) = X0

0 ≤ ε < ε1
u*(ε)



Regular perturbations 
in optimal control (Bensoussan 1988)

Theorem 3: assuming the strong Legendre-Clebsch conditions, 
there exists some   such that, for  in a neighborood of 0, 
the following bound holds 

 

The Legendre-Clebsch conditions are assumed to hold uniformly in  and 
for the optimal adjoint state of . 
Convergence of the control and state follows.

K ≥ 0 ε

0 ≤ Jε(u*(0)) − inf
u

Jε(u) ≤ Kε2

(x, u)
J0



The benefit of optimization

Standard calculus easily shows that 
the cost is Lipschitz with respect to . 

The benefit of using optimal control is to obtain 
an error bound that is proportional to .

ε

ε2



Control constraints
The previous results rely heavily on the stationarity condition 

 

In practice we have bounded controls, that is, we impose 

  

where  is a compact convex set with non-empty interior.

∂H
∂u

= 0

u ∈ Uad

Uad



Pontryagin minimum principle

A the boundary of , the variations  are constrained. 
As a consequence, the proof of the  stationarity condition 

on the Hamiltonian  is invalid.

Uad δu

H



Pontryagin minimum principle

Instead, we have a constrained minimization condition on : 

 minimizes  for . 

The previous variational computations are invalid.

H

u(t) H(λ(t), x(t), u, t) u ∈ Uad



Pontryagin minimum principle

In the following, 
we shall manage the abstract set  numerically 

by using a gauge function.
Uad



Gauge function of Uad

We assume that  belongs to the interior of . 
The gauge function  of  is defined by 

 

This gauge is a norm iff  is symmetric with respect to . 

 is a (resp.) interior, boundary or exterior point de  if and only if 
,  or . 

If  is defined by ,  convex, its gauge is defined by 

.

0 Uad

GUad Uad

GUad(u) = inf {λ ≥ 0 s.t. u ∈ λUad}
Uad 0

u Uad

GUad(u) < 1 GUad(u) = 1 GUad(u) > 1

Uad c(u) ≤ 0 c

GUad(u) = inf {λ ≥ 0 s.t. c ( u
λ ) ≤ 0 , ∀i}



Example
The gauge function for  is defined by 

 

 

that is, 

Uad = [−1,1]

GUad(u) = inf {λ ≥ 0 s.t. u ∈ λUad} = inf {λ ≥ 0 s.t. 
|u |
λ

≤ 1}
= inf {λ ≥ 0 s.t.  |u | ≤ λ} = |u |

G[−1,1](u) = |u |



Penalty for a static constraint u ∈ Uad

Let  a function from  into  such that 

•   is continuously differentiable, strictly convex and non drecreasing 

•  

• ;  is continuously differentiable at 0 with  
•  is locally Lipschitz at 

γu [0,1[ ℝ

γu
lim
u↑1

γu(u) = + ∞

γu(0) = 0 γu γ′ u(0) = 0
γ′ u(u) u = 0



Penalty for a static constraint u ∈ Uad

Example 
γu(u) = − u log(1 − u)

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

1

2

3



Penalty for a static constraint u ∈ Uad

For the constraint  we define the penalty 

 

u(t) ∈ Uad

Pu(u) = ∫
T

0
γu ∘ GUad(u(t))dt



Interior penalty methods 
(Bonnans et al 2003, Malisani et al 2014)

Given the original control problem (1) and  we define the penalized problem: 
 

Theorem 1: we assume that  is bounded for  
We also assume that . 

If the penalized problem has a solution, it belongs to the interior of .

ϵ > 0
min
u∈Uad

K(u, ϵ) = J(u) + ϵPu(u)

x(t) u ∈ Uad

lim
α↑1

γ′ u(α) = + ∞

Uad



Interior penalty methods 
(Bonnans et al 2003, Malisani et al 2014)

Remark 1: why do we keep the constraint  ? 
Because the penalty is not defined for  ! 

But, once the solution is in the interior of , 
it can be shown, using a change of variables on the control, 

that solving the problem with  
is equivalent to an unconstrained problem. 

Remark 2: The previous example penalty  satisfies the assumptions.

u(t) ∈ Uad

u ∉ Uad

Uad

u(t) ∈  interior (Uad)

γu



Interior penalty methods 
(Bonnans et al 2003, Malisani et al 2014)

Theorem 2: it is assumed that for  in a neighborhood of 0, 
the penalized problem has a solution . Then 

•  

•  

This means that the solution of the penalized problem 
asymptotically solves the original problem. 

Under classical convexity assumptions, 
the optimal control and state converges to a solution of the original problem

ϵ
u*(ϵ)

lim
ϵ↓0

J(u*(ϵ)) = inf
u∈ad

J(u)

lim
ϵ↓0

ϵPu(u*(ϵ) = 0



Perturbations of  Constrained Optimal Control Problems: 
Introduction

We wish to solve 

 

with the dynamics 

min
u∈Uad

J(u) = ∫
tf

0
[L0(x, u, t) + L1(x, u, t)] dt (1)

dx
dt

= f0(x, u, t) + f1(x, u, t), x(0) = x0



Regularity assumptions
We assume that  are 

• globally Lipschitz with respect to  and  
• twice continuously differentiable with respect to  and  

Since the control and horizon are bounded, we derive that the state is bounded,  
and that  and their derivatives are also bounded.

f0, f1, L0 and L1

x u
x u

f0, f1, L0 and L1



Orders of magnitude
We assume that there exist  such that 

  (M) 

where  stands for  or , or their first and second derivatives, 
with  and ,  being a compact domain that  

will contain all the trajectories driven by .

ε ∈ [0,1]

g1(x, u, t) ≤ εg0(x, u, t)

g f L
u ∈ Uad x ∈ Xad Xad

u ∈ Uad



Regular perturbation  
for optimal control problems subject  

to control constraints (Maamria et al 2020)

After a rescaling of  and , our problem becomes 

 

with the dynamics 

 

We can solve the unperturbed problem ( ) 
to obtain an optimal control . How does  compare 

to the optimal value of (4.3)?

L1 f1

min
u∈Uad

J(u) = ∫
tf

0
[L0(x, u, t) + εL1(x, u, t)] dt (4.3)

dx
dt

= f0(x, u, t) + εf1(x, u, t), x(0) = x0 (4.4)

ε = 0
u0 J(u0)



Regular perturbation  
for optimal control problems subject  

to control constraints (Maamria et al 2020)

If we omit the constraint , 
the problem has been solved by Bensoussan 

in a slightly different context 
(  being in a neighborhood of ). 

But, if we approximate problem (4.3,4.4) with 
a penalized problem, we obtain an interior optimal control, 

and the stationarity condition  still holds.

u ∈ Uad

ε 0

∂H
∂u

= 0



Regular perturbation  
for optimal control problems subject  

to control constraints (Maamria et al 2020)

Indeed, we shall prove that, for a given penalty parameter , 
the nominal control is optimal up to an error of the form 

. 

We shall then prove that  is bounded when  tends to zero.

r

ΔJ ≤ Krε2

Kr r



Perturbed, penalized problems
Consider the family of problems 

  (5) 

with perturbed dynamics (4.4). 
The letter  denotes the couple , 

 is the perturbation parameter, 
and  is the penalty parameter. 

The letter  will be used to denote the adjoint states.

min
u∈Uad

Jr
ε(u) = ∫

T

0
[L0(σ) + εL1(σ)+rP(u)]dt, r > 0

σ (x, u)
ε

r
p



About the perturbation term ε
By contrast to the framework used by Bensoussan, 

we do not assume that  is a parameter that tends to . 

All that we know is that  
and that it satisfies the inequations featured in (M): 

 

For instance, if  in (M), 
we cannot have .

ε 0

ε ∈ [0,1]

g1(x, u, t) ≤ εg0(x, u, t)

|g1 | > 0
ε → 0



A practical example

For a given path, we wish to minimize the consumption of a car engine. 
The model of the engine consumption is obtained after a series of benchmarks. 

Sample measures are obtained, and we assume that we have some relation 
between the number of samples and the precision of the model.



A practical example
Here is a typical chart of the relation between 
the engine speed and the fuel consumption



A practical example

The optimal control problem depends heavily on this modelization. 
For a given number of measures, how can we make sure 

that the derived « optimal » control is good enough 
with respect to the best consumption model we might have? 

Here we cannot play with the number of samples. 
Therefore we cannot have  in the problem formulation, 

because we have no access to the exact continuous consumption model.
ε → 0



Notations
For , define the Hamiltonian . 

For , the Hamiltonian is 

. 
and ,  et  denote the optimal control, state and adjoint state. 

For any  and , we denote 
  ,    ,   

and, for the optimal variables, 
  ,    ,    . 

The reference is the solution of the unperturbed, penalized problem.

ε = 0 Hr
0(σ, p) = H0(σ, p)+rP(u)

ε > 0
Hr

ε(σ, p) = L0(σ) + εL1(σ) + pT [f0(σ) + εf1(σ)]+rP(u) = Hr
0(σ, p) + εH1(σ, p)

ur
ε xr

ε pr
ε

x u
δxr = x − xr

0 δur = u − ur
0 δσr = σ − σr

0

δxr
ε = xr

ε − xr
0 δur

ε = ur
ε − ur

0 δσr
ε = σr

ε − σr
0



Requirement on the estimation terms
In what follows, we shall obtain some bounds of the form 

 

We shall require that  only depends on 

• the formulation and solution of the unperturbed problem, 
• estimates on the magnitude of the various derivatives of  and . 

If so, we shall say that  is a good bound.

Kεn

K

f1 L1

K



Second order expansion of the cost 
with integral remainder

For any , the following expansion holds along the direction 
   (nominal point is the unperturbed, nominal optimum) : 

 

 

with 

u
δσr = σ − σr

0

Jr
ε(u) = ∫

T

0
[Hr

ε(σr
0, pr

0) − prT
0

·xr
0] dt + ε∫

T

0
[N0(t) ⋅ δur + N1(t) ⋅ δxr] dt

+∫
T

0 ∫
1

0 ∫
1

0
[δσr]∂σσHr

ε(σr
0 + λμδσr, pr

0)[δσr]Tλ dλ dμ dt

N0(t) = ∂uH1(σr
0, pr

0) , N1(t) = ∂xH1(σr
0, pr

0)



Error bounds on the trajectories 
driven by  with respect to perturbationsur

0
In the previous expansion, the 0 order term involves 

the Hamiltonian  and 
, the trajectory driven by  with unperturbed dynamics ( ). 

Let  the trajectory driven by the same control  
but with a perturbed dynamics ( ). Then 

 

where  is a good bound.

Hr
ε

xr
0 ur

0 ε = 0

Xr
ε ur

0
ε ≠ 0

Xr
ε(t) − xr

0(t) ≤ εF1

F1



A bound on the linear and quadratic terms
In what follows, for a given penalty parameter , 

we wish to compare the performances of  and . 

Define 

 .  

One can prove that 

 

where  is a good bound.

r
ur

0 ur
ε

M0 ≜ Jr
ε(ur

0) − ∫
T

0
[Hr

ε(σr
0, pr

0) − prT
0

·xr
0] dt

|M0 | ≤ m0 ε2

m0



Proof
We use the Taylor expansion for . In this case, we have . 

Since we have shown that 

, 

the quadratic term is proportional to  because  

 does not depend on . 

The linear term is proportional to , where  is a bound on . 

 and  are good bounds.

u = ur
0 δur = u − ur

0 = 0

Xr
ε(t) − xr

0(t) ≤ εF1

ε2F2
1

∂xxHr
ε = ∂xx(H0

0 + εH1) r

ε2F1n1 n1 N1

F2
1 F1n1



Remark

The previous result is false if we have state penalties, 
i.e. penalized state constraints. 



Comparison with the optimal cost
Since , we derive 

. 

Inserting the Taylor expansion of  yields 

 

(6) 

where 

Jr
ε(ur

ε) ≤ Jr
ε(ur

0)

Jr
ε(ur

ε) − ∫
T

0
[Hr

ε(σr
0, pr

0) − prT
0

·xr
0] dt ≤ M0 ≤ m0ε2

Jr
ε(ur

ε)

m0ε2 ≥ ε∫
T

0
[N0δur

ε + N1δxr
ε] dt

+∫
T

0 ∫
1

0 ∫
1

0
∂σσHr

ε(σr
0 + μδσr

ε, pr
0)(δσr

ε)2λ dλ dμ dt .

∂σσHr
ε = ∂σσHr

0 + ε∂σσH1



Investigation of the quadratic term with ∂σσHr
0

Define 

 

Inserting  into the the quadratic term that involves  yields 

z(λ, μ, t) ≜ δur
ε + [∂uuHr

0 (σr
0 + λμδσr, pr

0)]
−1

∂uxHr
0 (σr

0 + λμδσr, pr
0) δxr

ε

z ∂σσHr
0

∂σσHr
0( . )(δσr

ε)2 = zT∂uuHr
0( . )z + δxrT

ε [∂xxHr
0 − ∂xuHr

0[∂uuHr
0]−1∂uxHr

0]( . )δxr
ε .



Legendre-Clebsch assumptions
We assume that, for the unperturbed, unpenalized problem 

•                                     (h1) 

•     (h2) 

Observe that 
•  is the sum of  and a strong convex penalty, hence (h1) still holds for  
• We have , hence (h2) still holds for  

From this we derive 

  (7)

∂uuH0(σ, p*0 ) ≥ βI uniformly with respect to σ

(∂xxH0 − ∂xuH0[∂uuH0]−1∂uxH0)(σ, p*0 ) ≥ 0 uniformly with respect to σ

Hr
0 H0 Hr

0
∂xHr

0 = ∂xH0 Hr
0

∂σσHr
0( . )(δσr

ε)2 ≥ β z(λ, μ, t)
2



Summary
From (6) and (7), and since , we derive 

   

(8) 

where .

Hr
ε = Hr

0 + εH1

(c0F2
1 + c1N2

1)ε2 ≥ ε∫
T

0
[N0δur

ε + N1δxr
ε] dt + βR

+ε∫
T

0 ∫
1

0 ∫
1

0
∂σσH1 (σr

0 + μδσr
ε, pr

0)(δσr
ε)2 λ dλ dμ dt .

R = ∫
T

0 ∫
1

0 ∫
1

0
z(λ, μ, t)

2
λ dλ dμ dt



Intermediary estimates on  and δu δx
The definition of  can be rewritten as . 

From the Legendre-Clebsch conditions we derive 

 (9) 

where  is a constant. Moreover, one can easily prove that 

   (10) 

From (10) and (9) we derive 

   (11) 

z δur
ε = z − [∂uuHr

0( . )]−1∂uxHr
0( . )δxr

ε

δur
ε ≤ z(λ, μ, t) + γ1 δxr

ε

γ

δxr
ε(t) ≤ Γ∫

t

0
[ δxr

ε(t) + δur
ε(t) ] dt + εF1t

δxr
ε(t) ≤ Γ(1 + γ1)∫

t

0
δxr

ε(t) dt + Γ∫
t

0
z(λ, μ, s) ds + εF1t



Using the Grönwall lemma, we derive 

  (12). 

where  and  are good bounds. 
  

Inserting this into (9) yields 

 

Together with (12), this implies 
  

  (13) 

where  and  are good bounds.

δxr
ε(t)

2
≤ α1(t)R + α2(t)F2

1ε2

α1 α2

δur
ε

2
≤ 2 z(λ, μ, t)

2
+ 2γ2

1 δxr
ε

2

δur
ε(t)

2

L2
dt ≤ α3R + α4F2

1ε2

α3 α4

A bound on  and δxr
ε δur

ε



Remark
If we can bound  by some , the main result will easily follow! 

To do so, we come back to equation (8): 

 

(8) 

R kε2

(c0F2
1 + c1N2

1) ε2 ≥ ε∫
T

0
[N0δur

ε + N1δxr
ε] dt + βR

+ε∫
T

0 ∫
1

0 ∫
1

0
∂σσH1 (σr

0 + μδσr
ε, pr

0)(δσr
ε)2 λ dλ dμ dt .



Investigation of the linear term
We want a lower bound on . 

Using the Young inequality and the bounds on  and ,  
we obtain a lower bound of the form 

 

where  is any positive number,  and  are good bounds, 
and  is derived from the estimates (12) and (13).

ε∫
T

0
[N0δur

ε + N1δxr
ε] dt

δx δu

−(n2
0 + n2

1)
ε2

2m
− α5 (F2

1
m
2

ε2 −
m
2

R)
m n0 n1

α5



Investigating the quadratic term
The quadratic term involves ,  and . 

Observe that  depend on  only through . 
Since the control and states are bounded, and that 

the dynamics of the adjoint state does not involve the penalty,  
 is bounded and we can define, for a bounded , 

, which is a good bound. 

Using (12) and (13) yields the following lower bound on the quadratic term: 

δx δu ∂σσH1(σ, pr
0)
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Estimate on R
Inserting the previous estimates into (8) yield 

 

Reordering this inequality yields 

  (15) 
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(c0F2
1 + c1N2

1) ε2 ≥ − ε2 [ 1
2m

α5 +
m
2

F2
1α6] + R [β −

m
2

α7] −
H̄
2 [F2

1α8ε2 + εα9R]

R [β −
m
2

α7 − ε
α9

2
H̄] ≤ F2

1ε2 [c0 + α6
m
2

+
α8

2
H̄] + ε2 [c1 + α5

1
2m ]

R

γ ≜ [β −
m
2

α7 − ε
α9

2
H̄] > 0



We wish . 

To do so, we choose . Then . 

We have  if and only if the following holds: 

     (h3) 

Denote . Then 
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Investigating the coefficient of R



Interpretation of (h3)

Assumption (h3) requires essentially 
that the perturbation parameter   

be reasonably smaller than 
the strong convexity constant  of 

the nominal Hamiltonian  with respect to .

ε

β
H0 u



Estimate on R
Assuming that (h3) holds, equation (15) yields

 with . 

and hence 

 

which is conservative but highlights the importance of  and . 

Since  is a convexity estimate, we can always assume that it is not too large. 
Problems arise when  is too small with respect to the perturbation terms. 
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Estimates on  and δxr
ε δur

ε
Let  and . 

The bound on  can be written  

From (12) and (13) we directly derive 

 

and 

s2a = c0 +
α6

2
β
α7

+ ρ
α8

2
β
α9

s2b = c1N2
1 +

a5

2
α7

β

R R ≤ ε2 2
(1 − ρ)β [s2aF2

1 + s2b]

δxr
ε(t)

2
≤ ε2 [F2

1 (α2(t) +
2

(1 − ρ)β
α1(t)s2a) +

2
(1 − ρ)β

α1(t)s2b]

∫
T

0
δur

ε(t)
2

dt ≤ ε2 [F2
1 (α4 +

2
(1 − ρ)β

α3s2a) +
2

(1 − ρ)β
α3s2b]



Now what?

We have estimates on the control and state, 
so it seems that our problem is solved.



Now what?

We have estimates on the control and state, 
so it seems that our problem is solved.

However, we have to investigate the cost itself 
because of the penalty parameter 

.rP(u)



Sub optimality
The following holds 

, 

where  satisfies: 

 

and  is defined by 
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The simple case

If  is not negative, we directly have 

 

and the result is proved.
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Second order expansion for  negativeM1

If  is negative, we rewrite  as 
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Since the penalty is convex, we have  
and hence . 

As a consequence, we have 
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Second order expansion for  negativeM1



Since the penalty is convex, we have  
and hence . 

As a consequence, we have 
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 has vanishedr



Investigation of the linear term
Using the Young inequality and the bounds on  and , 

we can bound the first order term 

 

by 

 

for any .
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Investigation of the quadratic terms

We have the following estimate on the vector : 

. 

If we bound the quadratic form by    

the quadratic term is bounded 

.
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 summaryM1
We have the bound 

 

with 

 

where  is a parameter that remains to be determined.
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Sub optimality
Gathering the bounds on  and  yields 

  (15) 

with 

 

 

which is a good bound, independent of , and bounded if  is bounded.
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Main result

Going to the limit  in (15) yields  such that 
the following bound holds 

r → 0 K0 ≥ 0

0 ≤ Jε(u*(0)) − inf
u∈Uad

Jε(u) ≤ K0ε2



As a numerical example, all the estimates are computed 
on an LQ problem, using the numerical values 

and the stability of the chosen system. 
We also compute the cost of the perturbed problem. 

We obtain the following figure 

 
We see that there is a ratio of 15 between  

the conservative estimate and the actual error
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Conclusion
The sub optimality of the nominal control, subject to model perturbations, 

has been extended to the control constrained case. 

It is also a robustness result. 

If some model uncertainties can be bounded 
(relatively to the nominal data), 

then the optimality of the nominal control 
will be robust to these uncertainties 

(with an error which is the square of their relative magnitude).
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