Robustness of optimal control when subject to control constraints

François Chaplais

CAS - January 62022

Outline

At an interior extremum point, the variation of a function is locally small.

We elaborate on that to show that optimal control is robust with respect to model perturbations.

First and second order conditions (Bryson and Ho, I969)

We wish to minimize the following cost:

$$
J(u)=\varphi\left(x\left(t_{f}\right), t_{f}\right)+\int_{0}^{t_{f}} L(x, u, t) d t
$$

with dynamics:

$$
\frac{d x}{d t}=f(x, u, t), x(0)=x_{0}
$$

Introducing the « Lagrangian »

In the cost equation (1) we introduce a «Lagrangian» to take into account the dynamics:

$$
J=\varphi\left(x\left(t_{f}\right), t_{f}\right)+\int_{0}^{t_{f}}\left\{L(x, u, t)+\lambda(t)^{T}\left(f(x, u, t)-\frac{d x}{d t}\right)\right\} d t .
$$

$$
\text { Define the Hamiltonian } H \triangleq L+\lambda^{T} f,
$$

and integrate $\lambda \frac{d x}{d t}$ by parts. The cost becomes

$$
J=\varphi\left(x\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right) x\left(t_{f}\right)+\lambda^{T}(0) x(0)+\int_{0}^{t_{f}}\left\{H(x, u, \lambda, t)+\frac{d \lambda^{T}}{d t} x\right\} d t
$$

Taylor expansion at order 2

Consider a small variation δx on the state and δu on the control. For the moment, these two variations are independent.
A second order Taylor expansion of the cost yields:

Taylor expansion at order 2

$$
\begin{aligned}
\delta J= & {\left[\frac{\partial \varphi}{\partial x}\left(x\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right)\right] \cdot \delta x\left(t_{f}\right)+\lambda^{T}(0) \cdot \delta x(0)+\int_{0}^{t_{f}}\left[\left(\frac{\partial H}{\partial x}+\frac{d \lambda^{T}}{d t}\right) \cdot \delta x(t)+\frac{\partial H}{\partial u} \cdot \delta u(t)\right] d t } \\
& +\frac{1}{2} \delta x\left(t_{f}\right)^{T} \cdot \frac{\partial^{2} \varphi}{\partial x^{2}}\left(x\left(t_{f}\right), t_{f}\right) \cdot \delta x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{t_{f}}\left[\delta x(t)^{T} \delta u(t)^{T}\right]\left[\begin{array}{cc}
\frac{\partial^{2} H}{\partial x^{2}} & \frac{\partial^{2} H}{\partial x \partial u} \\
\frac{\partial^{2} H}{\partial u \partial x} & \frac{\partial^{2} H}{\partial u^{2}}
\end{array}\right]\left[\begin{array}{l}
\delta x(t(t) \\
\delta u(t)
\end{array}\right] d t .
\end{aligned}
$$

Taylor expansion at order 2

$$
\begin{aligned}
\delta J= & {\left[\frac{\partial \varphi}{\partial x}\left(x\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right)\right] \cdot \delta x\left(t_{f}\right)+\lambda^{T}(0) \cdot \delta x(0)+\int_{0}^{t_{f}}\left[\left(\frac{\partial H}{\partial x}+\frac{d \lambda^{T}}{d t}\right) \cdot \delta x(t)+\frac{\partial H}{\partial u} \cdot \delta u(t)\right] d t } \\
& +\frac{1}{2} \delta x\left(t_{f}\right)^{T} \cdot \frac{\partial^{2} \varphi}{\partial x^{2}}\left(x\left(t_{f}\right), t_{f}\right) \cdot \delta x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{t_{f}}\left[\delta x(t)^{T} \delta u(t)^{T}\right]\left[\begin{array}{cc}
\frac{\partial^{2} H}{\partial x^{2}} & \frac{\partial^{2} H}{\partial x \partial u} \\
\frac{\partial^{2} H}{\partial u \partial x} & \frac{\partial^{2} H}{\partial u^{2}}
\end{array}\right]\left[\begin{array}{l}
\delta x(t)] \\
\delta u(t)
\end{array}\right] d t .
\end{aligned}
$$

min ondaylor expansion at order 2

$\delta J=\left[\frac{\partial \varphi}{\partial x}\left(x\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right)\right] \cdot \delta x\left(t_{f}\right)+\lambda^{T}(0) \cdot \delta x(0)+\int_{0}^{t_{f}}\left[\left(\frac{\partial H}{\partial x}+\frac{d \lambda^{T}}{d t}\right) \cdot \delta x(t)+\frac{\partial H}{\partial u} \cdot \delta u(t)\right] d t$

$$
+\frac{1}{2} \delta x\left(t_{f}\right)^{T} \cdot \frac{\partial^{2} \varphi}{\partial x^{2}}\left(x\left(t_{f}\right), t_{f}\right) \cdot \delta x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{t_{f}}\left[\delta x(t)^{T} \delta u(t)^{T}\right]\left[\begin{array}{cc}
\frac{\partial^{2} H}{\partial x^{2}} & \frac{\partial^{2} H}{\partial x \partial u} \\
\frac{\partial^{2} H}{\partial u \partial x} & \frac{\partial^{2} H}{\partial u^{2}}
\end{array}\right]\left[\begin{array}{l}
\delta x(t) \\
\delta u(t)
\end{array}\right] d t .
$$

Fimi condintaylor expansion at order 2

$$
\begin{aligned}
\delta J= & {\left[\frac{\partial \varphi}{\partial x}\left(x\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right)\right] \cdot \delta x\left(t_{f}\right)+\lambda^{T}(0) \cdot \delta x(0)+\int_{0}^{t_{f}}\left[\left(\frac{\partial H}{\partial x}+\frac{d \lambda^{T}}{d t}\right) \cdot \delta x(t)+\frac{\partial H}{\partial u} \cdot \delta u(t)\right] d t } \\
& +\frac{1}{2} \delta x\left(t_{f}\right)^{T} \cdot \frac{\partial^{2} \varphi}{\partial x^{2}}\left(x\left(t_{f}\right), t_{f}\right) \cdot \delta x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{t_{f}}\left[\delta x(t)^{T} \delta u\left(()^{T}\right]\left[\begin{array}{cc}
\frac{\partial^{2} H}{\partial x^{2}} & \frac{\partial^{2} H}{\partial x \partial u} \\
\frac{\partial^{2} H}{\partial u \partial x} & \frac{\partial^{2} H}{\partial u^{2}}
\end{array}\right]\left[\begin{array}{c}
\delta x(t) \\
\delta u(t)
\end{array}\right] d t .\right.
\end{aligned}
$$

Final conditaylor expansion at order 2

$$
\begin{aligned}
\delta J= & {\left[\frac{\partial \varphi}{\partial x}\left(x\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right)\right] \cdot \delta x\left(t_{f}\right)+\lambda^{T}(0) \cdot \delta x(0)+\int_{0}^{t_{f}}\left[\frac{\partial H}{2 x}+\frac{d \lambda^{T}}{d t}\right) \cdot \delta x(t)+\left[\frac{\partial H}{\partial u} \cdot \delta u(t)\right] d t } \\
& +\frac{1}{2} \delta x\left(t_{f}\right)^{T} \cdot \frac{\partial^{2} \varphi}{\partial x^{2}}\left(x\left(t_{f}\right), t_{f}\right) \cdot \delta x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{t_{f}}\left[\delta x(t)^{T} \delta u(t)^{T}\right]\left[\begin{array}{cc}
\frac{\partial^{2} H}{\partial x^{2}} & \frac{\partial^{2} H}{\partial x \partial u} \\
\frac{\partial^{2} H}{\partial u \partial x} & \frac{\partial^{2} H}{\partial u^{2}}
\end{array}\right]\left[\begin{array}{c}
\delta x(t) \\
\delta u(t)
\end{array}\right] d t \text { equation }
\end{aligned}
$$

Rewriting δJ

$$
\frac{1}{2} \delta x\left(t_{f}\right)^{T} \cdot \frac{\partial^{2} \varphi}{\partial x^{2}}\left(x\left(t_{f}\right), t_{f}\right) \cdot \delta x\left(t_{f}\right)+\frac{1}{2} \int_{0}^{t_{f}}\left[\delta x(t)^{T} \delta u(t)^{T}\right]\left[\begin{array}{cc}
\frac{\partial^{2} H}{\partial x^{2}} & \frac{\partial^{2} H}{\partial x \partial u} \\
\frac{\partial^{2} H}{\partial u \partial x} & \frac{\partial^{2} H}{\partial u^{2}}
\end{array}\right]\left[\begin{array}{l}
\delta x(t) \\
\delta u(t)
\end{array}\right] d t \text { (2) }
$$

for any variations $\delta x(t)$ and $\delta u(t)$

such that first order terms of δJ vanish.

Second order variation

Imagine that, for reasons not detailed here, the state is modified by a quantity δx and the adjoint state by a quantity $\delta \lambda$. We wish to study the loss of optimality due to these variations.

To do so, it is sufficient to study the variation of the cost for controls which satisfy the necessary stationarity condition

$$
\frac{\partial H}{\partial u}=0 .
$$

Variation of the stationarity condition

Using concise notations for the partial derivatives, we must have

$$
\begin{gathered}
H_{u x} \delta x+H_{u u} \delta u+H_{u, \lambda} \delta \lambda=0 \\
\text { that is, } \\
H_{u x} \delta x+H_{u u} \delta u+f_{u}^{T} \delta \lambda=0
\end{gathered}
$$

If $H_{u u}$ is invertible, we obtain the feedback equation

$$
\begin{equation*}
\delta u^{*}=-H_{u u}^{-1}\left(H_{u x} \cdot \delta x+f_{u}^{T} \cdot \delta \lambda\right) \tag{3}
\end{equation*}
$$

Sufficient condition for optimality

Inserting (3) into the local variation (2) of $\delta J, \delta J$ can be written as:

$$
\begin{gathered}
\delta J=\frac{1}{2} \delta x\left(t_{f}\right)^{T} \frac{\partial^{2} \varphi}{\partial x^{2}}\left(x\left(t_{f}\right), t_{f}\right) \delta x\left(t_{f}\right) \\
+\frac{1}{2} \int_{0}^{t_{f}}\left[\delta x(t)^{T}\left(H_{x x}-H_{x u} H_{u u}^{-1} H_{u x}\right) \delta x(t)+\delta \lambda(t)^{T} f_{u} H_{u u}^{-1} f_{u}^{T} \delta \lambda(t)\right] d t .
\end{gathered}
$$

We see that δJ is nonnegative for any $\delta x, \delta \lambda$ if the final cost matrix is nonnegative and if

$$
\begin{gathered}
\hline H_{x x}-H_{x u} H_{u u}^{-1} H_{u x} \geq 0 \\
H_{u u}>0 \\
\left(H_{u u} \text { must be invertible }\right)
\end{gathered}
$$

These conditions are called the strong

Sufficient condition for optimality

For static optimization problems, we know that convexity is essential to guarantee optimality.

The generalization of this to optimal control problems appears to be the Legendre-Clebsh conditions.

Regular perturbations in optimal control (Bensoussan 1988)

We introduce perturbations in the unconstrained problem (1) as follows

$$
\begin{gathered}
\min _{u}\left[J_{\varepsilon}(u)=\int_{0}^{T}\left[L_{0}(x, u)+\varepsilon L_{1}(x, u)\right] d t\right] \\
\text { with the perturbed dynamics } \\
\frac{d x}{d t}=f_{0}(x, u)+\varepsilon f_{1}(x, u), x(0)=X_{0}
\end{gathered}
$$

This perturbation is characterized by its magnitude, which means that all the functions and their derivatives are assumed to be bounded.

To simplify things, we shall assume that, for $0 \leq \varepsilon<\varepsilon_{1}$, the control problems have a unique solution $u^{*}(\varepsilon)$.

Regular perturbations in optimal control (Bensoussan 1988)

Theorem 3: assuming the strong Legendre-Clebsch conditions, there exists some $K \geq 0$ such that, for ε in a neighborood of 0 , the following bound holds

$$
0 \leq J_{\varepsilon}\left(u^{*}(0)\right)-\inf _{u} J_{\varepsilon}(u) \leq K \varepsilon^{2}
$$

The Legendre-Clebsch conditions are assumed to hold uniformly in (x, u) and for the optimal adjoint state of J_{0}.
Convergence of the control and state follows.

The benefit of optimization

Standard calculus easily shows that the cost is Lipschitz with respect to ε.

The benefit of using optimal control is to obtain an error bound that is proportional to ε^{2}.

Control constraints

The previous results rely heavily on the stationarity condition

$$
\frac{\partial H}{\partial u}=0
$$

In practice we have bounded controls, that is, we impose

$$
u \in U^{a d}
$$

where $U^{a d}$ is a compact convex set with non-empty interior.

Pontryagin minimum principle

A the boundary of $U^{a d}$, the variations δu are constrained.
As a consequence, the proof of the stationarity condition on the Hamiltonian H is invalid.

Pontryagin minimum principle

Instead, we have a constrained minimization condition on H :

$$
u(t) \text { minimizes } H(\lambda(t), x(t), u, t) \text { for } u \in U^{a d} \text {. }
$$

The previous variational computations are invalid.

Pontryagin minimum principle

In the following,
we shall manage the abstract set $U^{a d}$ numerically by using a gauge function.

Gauge function of $U^{a d}$

We assume that 0 belongs to the interior of $U^{\text {ad }}$.
The gauge function $G_{U^{a d}}$ of $U^{\text {ad }}$ is defined by

$$
G_{U^{a d}}(u)=\inf \left\{\lambda \geq 0 \text { s.t. } u \in \lambda U^{a d}\right\}
$$

This gauge is a norm iff $U^{a d}$ is symmetric with respect to 0 .
u is a (resp.) interior, boundary or exterior point de $U^{a d}$ if and only if

$$
G_{U_{\text {add }}}(u)<1, G_{U_{\text {add }}}(u)=1 \text { or } G_{U^{\text {add }}}(u)>1 .
$$

If $U^{a d}$ is defined by $c(u) \leq 0, c$ convex, its gauge is defined by

$$
G_{\text {Uad }}(u)=\inf \left\{\lambda \geq 0 \text { s.t. } c\left(\frac{u}{\lambda}\right) \leq 0, \forall i\right\} .
$$

Example

The gauge function for $U^{a d}=[-1,1]$ is defined by

$$
\begin{aligned}
G_{U a d}(u)=\inf \{\lambda & \left.\geq 0 \text { s.t. } u \in \lambda U^{a d}\right\}=\inf \left\{\lambda \geq 0 \text { s.t. } \frac{|u|}{\lambda} \leq 1\right\} \\
& =\inf \{\lambda \geq 0 \text { s.t. }|u| \leq \lambda\}=|u|
\end{aligned}
$$

that is,

$$
G_{[-1,1]}(u)=|u|
$$

Penalty for a static constraint $u \in U^{a d}$

Let γ_{u} a function from $[0,1[$ into \mathbb{R} such that

- γ_{u} is continuously differentiable, strictly convex and non drecreasing
- $\lim _{u \uparrow 1} \gamma_{u}(u)=+\infty$
- $\gamma_{u}(0)=0 ; \gamma_{u}$ is continuously differentiable at 0 with $\gamma_{u}^{\prime}(0)=0$
- $\gamma_{u}^{\prime}(u)$ is locally Lipschitz at $u=0$

Penalty for a static constraint $u \in U^{a d}$

Penalty for a static constraint $u \in U^{a d}$

For the constraint $u(t) \in U^{a d}$ we define the penalty

$$
P_{u}(u)=\int_{0}^{T} \gamma_{u} \circ G_{U^{a d}}(u(t)) d t
$$

Interior penalty methods (Bonnans et al 2003, Malisani et al 2014)

Given the original control problem (1) and $\epsilon>0$ we define the penalized problem:

$$
\min _{u \in U^{d d}} K(u, \epsilon)=J(u)+\epsilon P_{u}(u)
$$

Theorem 1: we assume that $x(t)$ is bounded for $u \in U^{a d}$
We also assume that $\lim _{\alpha \uparrow 1} \gamma_{u}^{\prime}(\alpha)=+\infty$.
If the penalized problem has a solution, it belongs to the interior of $U^{a d}$.

Interior penalty methods (Bonnans et al 2003, Malisani et al 2014)

Remark 1: why do we keep the constraint $u(t) \in U^{a d}$? Because the penalty is not defined for $u \notin U^{a d}$!

But, once the solution is in the interior of $U^{a d}$, it can be shown, using a change of variables on the control, that solving the problem with $u(t) \in$ interior ($U^{a d}$) is equivalent to an unconstrained problem.

Remark 2: The previous example penalty γ_{u} satisfies the assumptions.

Interior penalty methods (Bonnans et al 2003, Malisani et al 2014)

Theorem 2: it is assumed that for ϵ in a neighborhood of 0 , the penalized problem has a solution $u^{*}(\epsilon)$. Then

- $\lim _{\epsilon \downarrow 0} J\left(u^{*}(\epsilon)\right)=\inf _{u \in^{a d}} J(u)$
- $\lim _{\epsilon \downarrow 0} \epsilon P_{u}\left(u^{*}(\epsilon)=0\right.$

This means that the solution of the penalized problem asymptotically solves the original problem.

Under classical convexity assumptions, the optimal control and state converges to a solution of the original problem

Perturbations of Constrained Optimal Control Problems: Introduction

$$
\begin{gathered}
\text { We wish to solve } \\
\min _{u \in U^{a d}} J(u)=\int_{0}^{t_{f}}\left[L_{0}(x, u, t)+L_{1}(x, u, t)\right] d t \\
\text { with the dynamics } \\
\frac{d x}{d t}=f_{0}(x, u, t)+f_{1}(x, u, t), x(0)=x_{0}
\end{gathered}
$$

Regularity assumptions

We assume that f_{0}, f_{1}, L_{0} and L_{1} are

- globally Lipschitz with respect to x and u
- twice continuously differentiable with respect to x and u

Since the control and horizon are bounded, we derive that the state is bounded, and that f_{0}, f_{1}, L_{0} and L_{1} and their derivatives are also bounded.

Orders of magnitude

We assume that there exist $\varepsilon \in[0,1]$ such that

$$
g_{1}(x, u, t) \leq \varepsilon g_{0}(x, u, t)
$$

where g stands for f or L, or their first and second derivatives, with $u \in U^{a d}$ and $x \in X^{a d}, X^{a d}$ being a compact domain that will contain all the trajectories driven by $u \in U^{a d}$.

Regular perturbation for optimal control problems subject to control constraints (Maamria et al 2020)

After a rescaling of L_{1} and f_{1}, our problem becomes

$$
\min _{u \in U^{a d d}} J(u)=\int_{0}^{t_{f}}\left[L_{0}(x, u, t)+\varepsilon L_{1}(x, u, t)\right] d t
$$

with the dynamics

$$
\frac{d x}{d t}=f_{0}(x, u, t)+\varepsilon f_{1}(x, u, t), x(0)=x_{0}(4.4)
$$

We can solve the unperturbed problem $(\varepsilon=0)$ to obtain an optimal control u_{0}. How does $J\left(u_{0}\right)$ compare to the optimal value of (4.3)?

Regular perturbation for optimal control problems subject to control constraints (Maamria et al 2020)

If we omit the constraint $u \in U^{a d}$, the problem has been solved by Bensoussan in a slightly different context (ε being in a neighborhood of 0).

But, if we approximate problem $(4.3,4.4)$ with a penalized problem, we obtain an interior optimal control, and the stationarity condition $\frac{\partial H}{\partial u}=0$ still holds.

Regular perturbation for optimal control problems subject to control constraints (Maamria et al 2020)

Indeed, we shall prove that, for a given penalty parameter r, the nominal control is optimal up to an error of the form

$$
\Delta J \leq K, \varepsilon^{2} .
$$

We shall then prove that K_{r} is bounded when r tends to zero.

Perturbed, penalized problems

Consider the family of problems

$$
\begin{equation*}
\min _{u \in U^{a d}} J_{\varepsilon}^{r}(u)=\int_{0}^{T}\left[L_{0}(\sigma)+\varepsilon L_{1}(\sigma)+r P(u)\right] d t, r>0 \tag{5}
\end{equation*}
$$

with perturbed dynamics (4.4).
The letter σ denotes the couple (x, u), ε is the perturbation parameter, and r is the penalty parameter.
The letter p will be used to denote the adjoint states.

About the perturbation term ε

By contrast to the framework used by Bensoussan, we do not assume that ε is a parameter that tends to 0 .

All that we know is that $\varepsilon \in[0,1]$ and that it satisfies the inequations featured in (M):

$$
g_{1}(x, u, t) \leq \varepsilon g_{0}(x, u, t)
$$

For instance, if $\left|g_{1}\right|>0$ in (M), we cannot have $\varepsilon \rightarrow 0$.

A practical example

For a given path, we wish to minimize the consumption of a car engine. The model of the engine consumption is obtained after a series of benchmarks.

Sample measures are obtained, and we assume that we have some relation between the number of samples and the precision of the model.

A practical example

Here is a typical chart of the relation between the engine speed and the fuel consumption

A practical example

The optimal control problem depends heavily on this modelization. For a given number of measures, how can we make sure that the derived « optimal» control is good enough with respect to the best consumption model we might have?

Here we cannot play with the number of samples. Therefore we cannot have $\varepsilon \rightarrow 0$ in the problem formulation, because we have no access to the exact continuous consumption model.

Notations

For $\varepsilon=0$, define the Hamiltonian $H_{0}^{r}(\sigma, p)=H_{0}(\sigma, p)+r P(u)$.

For $\varepsilon>0$, the Hamiltonian is
$H_{\varepsilon}^{r}(\sigma, p)=L_{0}(\sigma)+\varepsilon L_{1}(\sigma)+p^{T}\left[f_{0}(\sigma)+\varepsilon f_{1}(\sigma)\right]+r P(u)=H_{0}^{r}(\sigma, p)+\varepsilon H_{1}(\sigma, p)$. and $u_{\varepsilon}^{r}, x_{\varepsilon}^{r}$ et p_{ε}^{r} denote the optimal control, state and adjoint state.

For any x and u, we denote

$$
\begin{gathered}
\delta x^{r}=x-x_{0}^{r}, \delta u^{r}=u-u_{0}^{r}, \delta \sigma^{r}=\sigma-\sigma_{0}^{r} \\
\text { and, for the optimal variables, } \\
\delta x_{\varepsilon}^{r}=x_{\varepsilon}^{r}-x_{0}^{r}, \delta u_{\varepsilon}^{r}=u_{\varepsilon}^{r}-u_{0}^{r}, \delta \sigma_{\varepsilon}^{r}=\sigma_{\varepsilon}^{r}-\sigma_{0}^{r} .
\end{gathered}
$$

The reference is the solution of the unperturbed, penalized problem.

Requirement on the estimation terms

In what follows, we shall obtain some bounds of the form

$$
K \varepsilon^{n}
$$

We shall require that K only depends on

- the formulation and solution of the unperturbed problem,
- estimates on the magnitude of the various derivatives of f_{1} and L_{1}.

If so, we shall say that K is a good bound.

Second order expansion of the cost with integral remainder

For any u, the following expansion holds along the direction $\delta \sigma^{r}=\sigma-\sigma_{0}^{r} \quad$ (nominal point is the unperturbed, nominal optimum) :

$$
\begin{aligned}
J_{\varepsilon}^{r}(u)= & \int_{0}^{T}\left[H_{\varepsilon}^{r}\left(\sigma_{0}^{r}, p_{0}^{r}\right)-p_{0}^{r T} \dot{x}_{0}^{r}\right] d t+\varepsilon \int_{0}^{T}\left[N^{0}(t) \cdot \delta u^{r}+N^{1}(t) \cdot \delta x^{r}\right] d t \\
& +\int_{0}^{T} \int_{0}^{1} \int_{0}^{1}\left[\delta \sigma^{r}\right] \partial_{\sigma \sigma} H_{\varepsilon}^{r}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma^{r}, p_{0}^{r}\right)\left[\delta \sigma^{r}\right]^{T} \lambda d \lambda d \mu d t
\end{aligned}
$$

with

$$
N^{0}(t)=\partial_{u} H_{1}\left(\sigma_{0}^{r}, p_{0}^{r}\right), N^{1}(t)=\partial_{x} H_{1}\left(\sigma_{0}^{r}, p_{0}^{r}\right)
$$

Error bounds on the trajectories driven by u_{0}^{r} with respect to perturbations

In the previous expansion, the 0 order term involves the Hamiltonian H_{ε}^{r} and
x_{0}^{r}, the trajectory driven by u_{0}^{r} with unperturbed dynamics $(\varepsilon=0)$.

Let X_{ε}^{r} the trajectory driven by the same control u_{0}^{r} but with a perturbed dynamics $(\varepsilon \neq 0)$. Then

$$
\left\|X_{\varepsilon}^{r}(t)-x_{0}^{r}(t)\right\| \leq \varepsilon F_{1}
$$

where F_{1} is a good bound.

A bound on the linear and quadratic terms

In what follows, for a given penalty parameter r, we wish to compare the performances of u_{0}^{r} and u_{ε}^{r}.

Define

$$
M_{0} \triangleq J_{\varepsilon}^{r}\left(u_{0}^{r}\right)-\int_{0}^{T}\left[H_{\varepsilon}^{r}\left(\sigma_{0}^{r}, p_{0}^{r}\right)-p_{0}^{r T} \dot{x}_{0}^{r}\right] d t .
$$

One can prove that

$$
\left|M_{0}\right| \leq m_{0} \varepsilon^{2}
$$

where m_{0} is a good bound.

Proof

We use the Taylor expansion for $u=u_{0}^{r}$. In this case, we have $\delta u^{r}=u-u_{0}^{r}=0$.
Since we have shown that

$$
\left\|X_{\varepsilon}^{r}(t)-x_{0}^{r}(t)\right\| \leq \varepsilon F_{1},
$$

the quadratic term is proportional to $\varepsilon^{2} F_{1}^{2}$ because $\partial_{x x} H_{\varepsilon}^{r}=\partial_{x x}\left(H_{0}^{0}+\varepsilon H_{1}\right)$ does not depend on r.

The linear term is proportional to $\varepsilon^{2} F_{1} n_{1}$, where n_{1} is a bound on $\left\|N_{1}\right\|$. F_{1}^{2} and $F_{1} n_{1}$ are good bounds.

Remark

The previous result is false if we have state penalties, i.e. penalized state constraints.

Comparison with the optimal cost

Since $J_{\varepsilon}^{r}\left(u_{\varepsilon}^{r}\right) \leq J_{\varepsilon}^{r}\left(u_{0}^{r}\right)$, we derive

$$
J_{\varepsilon}^{r}\left(u_{\varepsilon}^{r}\right)-\int_{0}^{T}\left[H_{\varepsilon}^{r}\left(\sigma_{0}^{r}, p_{0}^{r}\right)-p_{0}^{r T} \dot{x}_{0}^{r}\right] d t \leq M_{0} \leq m_{0} \varepsilon^{2}
$$

Inserting the Taylor expansion of $J_{\varepsilon}^{r}\left(u_{\varepsilon}^{r}\right)$ yields

$$
\begin{gathered}
m_{0} \varepsilon^{2} \geq \varepsilon \int_{0}^{T}\left[N^{0} \delta u_{\varepsilon}^{r}+N^{1} \delta x_{\varepsilon}^{r}\right] d t \\
+\int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{\varepsilon}^{r}\left(\sigma_{0}^{r}+\mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t . \text { (6) } \\
\text { where } \\
\partial_{\sigma \sigma} H_{\varepsilon}^{r}=\partial_{\sigma \sigma} H_{0}^{r}+\varepsilon \partial_{\sigma \sigma} H_{1}
\end{gathered}
$$

Investigation of the quadratic term with $\partial_{\sigma \sigma} H_{0}^{r}$

Define

$$
z(\lambda, \mu, t) \triangleq \delta u_{\varepsilon}^{r}+\left[\partial_{u u} H_{0}^{r}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma^{r}, p_{0}^{r}\right)\right]^{-1} \partial_{u x} H_{0}^{r}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma^{r}, p_{0}^{r}\right) \delta x_{\varepsilon}^{r}
$$

Inserting z into the the quadratic term that involves $\partial_{\sigma \sigma} H_{0}^{r}$ yields

Legendre-Clebsch assumptions

We assume that, for the unperturbed, unpenalized problem

- $\partial_{u u} H_{0}\left(\sigma, p_{0}^{*}\right) \geq \beta I$ uniformly with respect to σ
- $\left(\partial_{x x} H_{0}-\partial_{x u} H_{0}\left[\partial_{u u} H_{0}\right]^{-1} \partial_{u x} H_{0}\right)\left(\sigma, p_{0}^{*}\right) \geq 0$ uniformly with respect to $\sigma \quad$ (h2)

Observe that

- H_{0}^{r} is the sum of H_{0} and a strong convex penalty, hence (h1) still holds for H_{0}^{r}
- We have $\partial_{x} H_{0}^{r}=\partial_{x} H_{0}$, hence (h2) still holds for H_{0}^{r}

From this we derive

$$
\begin{equation*}
\partial_{\sigma \sigma} H_{0}^{r}(.)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \geq \beta\|z(\lambda, \mu, t)\|^{2} \tag{7}
\end{equation*}
$$

Summary

From (6) and (7), and since $H_{\varepsilon}^{r}=H_{0}^{r}+\varepsilon H_{1}$, we derive

$$
\begin{aligned}
& \left(c_{0} F_{1}^{2}+c_{1} N_{1}^{2}\right) \varepsilon^{2} \geq \varepsilon \int_{0}^{T}\left[N^{0} \delta u_{\varepsilon}^{r}+N^{1} \delta x_{\varepsilon}^{r}\right] d t+\beta R \\
+ & \int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{1}\left(\sigma_{0}^{r}+\mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t . \text { (8) }
\end{aligned}
$$

$$
\text { where } R=\int_{0}^{T} \int_{0}^{1} \int_{0}^{1}\|z(\lambda, \mu, t)\|^{2} \lambda d \lambda d \mu d t \text {. }
$$

Intermediary estimates on δu and δx

The definition of z can be rewritten as $\delta u_{e}^{r}=z-\left[\partial_{u u} H_{0}^{r}(.)\right]^{-1} \partial_{u x} H_{0}^{r}(.) \delta x_{e}^{r}$.
From the Legendre-Clebsch conditions we derive

$$
\left\|\delta u_{\varepsilon}^{r}\right\| \leq\|z(\lambda, \mu, t)\|+\gamma_{1}\left\|\delta x_{\varepsilon}^{r}\right\|
$$

where γ is a constant. Moreover, one can easily prove that

$$
\begin{equation*}
\left\|\delta x_{\varepsilon}^{r}(t)\right\| \leq \Gamma \int_{0}^{t}\left[\left\|\delta x_{\varepsilon}^{r}(t)\right\|+\left\|\delta u_{\varepsilon}^{r}(t)\right\|\right] d t+\varepsilon F_{1} t \tag{10}
\end{equation*}
$$

From (10) and (9) we derive
$\left\|\delta x_{\varepsilon}^{r}(t)\right\| \leq \Gamma\left(1+\gamma_{1}\right) \int_{0}^{t}\left\|\delta x_{\varepsilon}^{r}(t)\right\| d t+\Gamma \int_{0}^{t}\|z(\lambda, \mu, s)\| d s+\varepsilon F_{1} t$

A bound on $\delta x_{\varepsilon}^{r}$ and $\delta u_{\varepsilon}^{r}$

Using the Grönwall lemma, we derive

$$
\left\|\delta x_{\varepsilon}^{r}(t)\right\|^{2} \leq \alpha_{1}(t) R+\alpha_{2}(t) F_{1}^{2} \varepsilon^{2}
$$

where α_{1} and α_{2} are good bounds.

Inserting this into (9) yields

$$
\left\|\delta u_{\varepsilon}^{r}\right\|^{2} \leq 2\|z(\lambda, \mu, t)\|^{2}+2 \gamma_{1}^{2}\left\|\delta x_{\varepsilon}^{r}\right\|^{2}
$$

Together with (12), this implies

$$
\begin{equation*}
\left\|\delta u_{\varepsilon}^{r}(t)\right\|_{L^{2}}^{2} d t \leq \alpha_{3} R+\alpha_{4} F_{1}^{2} \varepsilon^{2} \tag{13}
\end{equation*}
$$

where α_{3} and α_{4} are good bounds.

Remark

If we can bound R by some $k \varepsilon^{2}$, the main result will easily follow!

To do so, we come back to equation (8):

$$
\begin{aligned}
& \left(c_{0} F_{1}^{2}+c_{1} N_{1}^{2}\right) \varepsilon^{2} \geq \varepsilon \int_{0}^{T}\left[N^{0} \delta u_{\varepsilon}^{r}+N^{1} \delta x_{\varepsilon}^{r}\right] d t+\beta R \\
+ & \varepsilon \int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{1}\left(\sigma_{0}^{r}+\mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t . \text { (8) }
\end{aligned}
$$

Investigation of the linear term

$$
\text { We want a lower bound on } \varepsilon \int_{0}^{T}\left[N^{0} \delta u_{\varepsilon}^{r}+N^{1} \delta x_{\varepsilon}^{r}\right] d t \text {. }
$$

Using the Young inequality and the bounds on δx and δu, we obtain a lower bound of the form

$$
-\left(n_{0}^{2}+n_{1}^{2}\right) \frac{\varepsilon^{2}}{2 m}-\alpha_{5}\left(F_{1}^{2} \frac{m}{2} \varepsilon^{2}-\frac{m}{2} R\right)
$$

where m is any positive number, n_{0} and n_{1} are good bounds, and α_{5} is derived from the estimates (12) and (13).

Investigating the quadratic term

The quadratic term involves $\delta x, \delta u$ and $\partial_{\sigma \sigma} H_{1}\left(\sigma, p_{0}^{r}\right)$. Observe that $\partial_{\sigma \sigma} H_{1}\left(\sigma, p_{0}^{r}\right)$ depend on r only through p_{0}^{r}. Since the control and states are bounded, and that the dynamics of the adjoint state does not involve the penalty,

$$
\begin{aligned}
& p_{0}^{r} \text { is bounded and we can define, for a bounded } r \text {, } \\
& \bar{H}=\inf _{\sigma, r}\left\|\partial_{\sigma \sigma} H_{1}\left(\sigma, P_{0}^{r}\right)\right\| \text {, which is a good bound. }
\end{aligned}
$$

Using (12) and (13) yields the following lower bound on the quadratic term:

$$
-\frac{\bar{H}}{2}\left[F_{1}^{2} \alpha_{8} \varepsilon^{2}+\varepsilon \alpha_{9} R\right]
$$

Estimate on R

Inserting the previous estimates into (8) yield

$$
\begin{gathered}
\left(c_{0} F_{1}^{2}+c_{1} N_{1}^{2}\right) \varepsilon^{2} \geq-\varepsilon^{2}\left[\frac{1}{2 m} \alpha_{5}+\frac{m}{2} F_{1}^{2} \alpha_{6}\right]+R\left[\beta-\frac{m}{2} \alpha_{7}\right]-\frac{\bar{H}}{2}\left[F_{1}^{2} \alpha_{8} \varepsilon^{2}+\varepsilon \alpha_{9} R\right] \\
\text { Reordering this inequality yields }
\end{gathered}
$$

$$
\begin{equation*}
R\left[\beta-\frac{m}{2} \alpha_{7}-\varepsilon \frac{\alpha_{9}}{2} \bar{H}\right] \leq F_{1}^{2} \varepsilon^{2}\left[c_{0}+\alpha_{6} \frac{m}{2}+\frac{\alpha_{8}}{2} \bar{H}\right]+\varepsilon^{2}\left[c_{1}+\alpha_{5} \frac{1}{2 m}\right] \tag{15}
\end{equation*}
$$

We will have an upper bound on R if

$$
\gamma \triangleq\left[\beta-\frac{m}{2} \alpha_{7}-\varepsilon \frac{\alpha_{9}}{2} \bar{H}\right]>0
$$

Investigating the coefficient of R

$$
\text { We wish } \gamma \triangleq\left[\beta-\frac{m}{2} \alpha_{7}-\varepsilon \frac{\alpha_{9}}{2} \bar{H}\right]>0
$$

To do so, we choose $m=\frac{\beta}{\alpha_{7}}$. Then $\gamma=\frac{\beta}{2}-\varepsilon \frac{\alpha_{9}}{2} \bar{H}$.
We have $\gamma>0$ if and only if the following holds:

$$
\begin{aligned}
\varepsilon \bar{H} & <\frac{\beta}{\alpha_{9}} \quad(\mathrm{~h} 3) \\
\text { Denote } \rho & =\frac{\varepsilon \alpha_{9} \bar{H}}{\beta}<1 . \text { Then } \\
\gamma & =(1-\rho) \frac{\beta}{2} .
\end{aligned}
$$

Interpretation of (h3)

> Assumption (h3) requires essentially that the perturbation parameter ε be reasonably smaller than the strong convexity constant β of the nominal Hamiltonian H_{0} with respect to u.

Estimate on R

Assuming that (h3) holds, equation (15) yields

$$
R(1-\rho) \frac{\beta}{2} \leq F_{1}^{2} \varepsilon^{2}\left[c_{0}+\alpha_{6} \frac{m}{2}+\frac{\alpha_{8}}{2} \bar{H}\right]+\varepsilon^{2}\left[c_{1} N_{1}^{2}+\alpha_{5} \frac{1}{2 m}\right] \text { with } m=\frac{\beta}{\alpha_{7}} .
$$

and hence

$$
R \leq \varepsilon^{2} \frac{2}{(1-\rho) \beta}\left[F_{1}^{2}\left(c_{0}+\frac{\alpha_{6}}{2} \frac{\beta}{\alpha_{7}}+\rho \frac{\alpha_{8}}{2} \frac{\beta}{\alpha_{9}}\right)+\left(c_{1} N_{1}^{2}+\frac{a_{5}}{2} \frac{\alpha_{7}}{\beta}\right)\right]
$$

which is conservative but highlights the importance of β and $\rho=\frac{\varepsilon \alpha_{0} \bar{H}}{\beta}$.
Since β is a convexity estimate, we can always assume that it is not too large.
Problems arise when

Estimates on $\delta x_{\varepsilon}^{r}$ and $\delta u_{\varepsilon}^{r}$

$$
\text { Let } s_{2 a}=c_{0}+\frac{\alpha_{6}}{2} \frac{\beta}{\alpha_{7}}+\rho \frac{\alpha_{8}}{2} \frac{\beta}{\alpha_{9}} \text { and } s_{2 b}=c_{1} N_{1}^{2}+\frac{a_{5}}{2} \frac{\alpha_{7}}{\beta} .
$$

The bound on R can be written $R \leq \varepsilon^{2} \frac{2}{(1-\rho) \beta}\left[s_{2 a} F_{1}^{2}+s_{2 b}\right]$
From (12) and (13) we directly derive

$$
\begin{aligned}
& \left\|\delta x_{\varepsilon}^{r}(t)\right\|^{2} \leq \varepsilon^{2}\left[F_{1}^{2}\left(\alpha_{2}(t)+\frac{2}{(1-\rho) \beta} \alpha_{1}(t) s_{2 a}\right)+\frac{2}{(1-\rho) \beta} \alpha_{1}(t) s_{2 b}\right] \\
& \int_{0}^{T}\left\|\delta u_{\varepsilon}^{r}(t)\right\|^{2} d t \leq \varepsilon^{2}\left[F_{1}^{2}\left(\alpha_{4}+\frac{2}{(1-\rho) \beta} \alpha_{3} s_{2 a}\right)+\frac{2}{(1-\rho) \beta} \alpha_{3} s_{2 b}\right]
\end{aligned}
$$

Now what?

We have estimates on the control and state, so it seems that our problem is solved.

Now what?

We have estimates on the control and state, so it seems that our problem is solved.
However, we have to investigate the cost itself
because of the penalty parameter

$$
r P(u)
$$

Sub optimality

The following holds

$$
0 \leq J_{\varepsilon}^{r}\left(u_{0}^{r}\right)-J_{\varepsilon}^{r}\left(u_{\varepsilon}^{r}\right) \leq\left|M_{0}\right|-M_{1},
$$

where M_{0} satisfies:

$$
\left|M_{0}\right| \leq\left(c_{0} F_{1}^{2}+c_{1} N_{1}^{2}\right) \varepsilon^{2}
$$

and M_{1} is defined by

$$
M_{1}=J_{\varepsilon}^{r}\left(u_{\varepsilon}^{r}\right)-\int_{0}^{T}\left[H_{\varepsilon}^{r}\left(\sigma_{0}^{r}, p_{0}^{r}\right)-p_{0}^{r T} \dot{x}_{0}^{r}\right] d t
$$

The simple case

If M_{1} is not negative, we directly have

$$
0 \leq J_{\varepsilon}^{r}\left(u_{0}^{\gamma}\right)-J_{\varepsilon}^{r}\left(u_{e}^{\prime}\right) \leq\left(c_{0} F_{1}^{2}+c_{1} N_{1}^{2}\right) \varepsilon^{2}
$$

and the result is proved.

Second order expansion for M_{1} negative

If M_{1} is negative, we rewrite $-M_{1}>0$ as

$$
\begin{gathered}
-M_{1}=-\varepsilon \int_{0}^{T}\left[N^{0} \delta u_{\varepsilon}^{r}+N^{1} \delta x_{\varepsilon}^{r}\right] d t-\int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{0}^{r}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t \\
-\varepsilon \int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{1}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t
\end{gathered}
$$

Second order expansion for M_{1} negative

Since the penalty is convex, we have $\partial H_{\sigma \sigma} H_{0} \leq \partial H_{\sigma \sigma} H_{0}^{r}$

$$
\text { and hence }-\partial H_{\sigma \sigma} H_{0}^{r} \leq-\partial H_{\sigma \sigma} H_{0} .
$$

As a consequence, we have

$$
\begin{gathered}
-M_{1} \leq-\varepsilon \int_{0}^{T}\left[N^{0} \delta u_{\varepsilon}^{r}+N^{1} \delta x_{\varepsilon}^{r}\right] d t-\int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{0}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t \\
-\varepsilon \int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{1}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t
\end{gathered}
$$

Second order expansion for M_{1} negative

Since the penalty is convex, we have $\partial H_{\sigma \sigma} H_{0} \leq \partial H_{\sigma \sigma} H_{0}^{r}$

$$
\begin{aligned}
& \text { and hence }-\partial H_{\sigma \sigma} H_{0}^{r} \leq-\partial H_{\sigma \sigma} H_{0} . \\
& \text { As a consequence, we have }
\end{aligned}
$$

$$
\begin{aligned}
& -\varepsilon \int_{0}^{T} \int_{0}^{1} \int_{0}^{1} \partial_{\sigma \sigma} H_{1}\left(\sigma_{0}^{r}+\lambda \mu \delta \sigma_{\varepsilon}^{r}, p_{0}^{r}\right)\left(\delta \sigma_{\varepsilon}^{r}\right)^{2} \lambda d \lambda d \mu d t
\end{aligned}
$$

Investigation of the linear term

Using the Young inequality and the bounds on δx and δr, we can bound the first order term

$$
-\varepsilon \int_{0}^{T}\left[N^{0} \delta u_{\varepsilon}^{r}+N^{1} \delta x_{\varepsilon}^{r}\right] d t
$$

$$
\varepsilon^{2}\left[\frac{n_{0}^{2}+n_{1}^{2}}{2 m_{1}}+m_{1}\left(F_{1}^{2}\left(\alpha_{10}+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 a}\right)+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 b}\right)\right]
$$

for any $m_{1}>0$.

Investigation of the quadratic terms

We have the following estimate on the vector $\delta \sigma_{\varepsilon}^{r}$:

$$
\left\|\delta \sigma_{\varepsilon}^{r}\right\|^{2} \leq \varepsilon^{2}\left[F_{1}^{2}\left(\alpha_{10}+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 a}\right)+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 b}\right] .
$$

If we bound the quadratic form by $\bar{H}_{\sigma, \sigma}=\max _{i=1,2 \text { et } t \in[0, T]}\left\|\partial_{\sigma \sigma} H_{i}\right\|$ the quadratic term is bounded

$$
2 \varepsilon^{2} \bar{H}_{\sigma, \sigma}\left[F_{1}^{2}\left(\alpha_{10}+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 a}\right)+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 b}\right] .
$$

M_{1} summary

We have the bound

$$
\begin{gathered}
0 \leq J_{\varepsilon}^{r}\left(u_{0}^{r}\right)-J_{\varepsilon}^{r}\left(u_{\varepsilon}^{r}\right) \leq\left|M_{0}\right|-M_{1} \\
\text { with } \\
-M_{1} \leq \varepsilon^{2}\left[\frac{\bar{N}^{2}}{2 m_{1}}+\left(m_{1}+2 \bar{H}_{\sigma, \sigma}\right)\left(F_{1}^{2}\left(\alpha_{10}+\frac{2}{(1-\rho) \beta} \alpha_{11} S_{2 a}\right)+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 b}\right)\right]
\end{gathered}
$$

where m_{1} is a parameter that remains to be determined.

Sub optimality

Gathering the bounds on M_{0} and M_{1} yields

$$
0 \leq J_{\varepsilon}^{r}\left(u_{0}^{r}\right)-J_{\varepsilon}^{r}\left(u_{\varepsilon}^{r}\right) \leq K_{r} \varepsilon^{2}
$$

with

$$
\begin{gathered}
K_{r}=\left(c_{0} F_{1}^{2}+c_{1}\left\|N_{1}\right\|_{\infty}^{2}\right)+\frac{\bar{N}^{2}}{2 m_{1}} \\
+\left(m_{1}+2 \bar{H}_{\sigma, \sigma}\right)\left(F_{1}^{2}\left(\alpha_{10}+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 a}\right)+\frac{2}{(1-\rho) \beta} \alpha_{11} s_{2 b}\right)
\end{gathered}
$$

which is a good bound,

Main result

Going to the limit $r \rightarrow 0$ in (15) yields $K_{0} \geq 0$ such that the following bound holds

$$
0 \leq J_{\varepsilon}\left(u^{*}(0)\right)-\inf _{u \in U^{a d}} J_{\varepsilon}(u) \leq K_{0} \varepsilon^{2}
$$

Numerical evaluation

As a numerical example, all the estimates are computed on an LQ problem, using the numerical values and the stability of the chosen system.
We also compute the cost of the perturbed problem.
We obtain the following figure

We see that there is a ratio of 15 between the conservative estimate and the actual error

Conclusion

The sub optimality of the nominal control, subject to model perturbations, has been extended to the control constrained case.

It is also a robustness result.

If some model uncertainties can be bounded (relatively to the nominal data), then the optimality of the nominal control will be robust to these uncertainties (with an error which is the square of their relative magnitude).

References

Bryson A-E, Ho Y-C. Applied Optimal Control.Waltham, MA: Ginn and Company; 1969.

Bensoussan A. Perturbation Methods in Optimal Control. Hoboken, NJ:Wiley; 1988.
Bonnans JF., Guilbaud T. Using logarithmic penalties in the shooting algorithm for optimal control problems. Optim. Control Appl. Methods, 2003; 24:257-278.

Malisani P., Chaplais F., Petit N. An interior method for penalty optimal control problems with state and input constraints of non-linear systems. Optim. Control Appl. Methods. 2016;37(1):3-33.

Maamria D., Chaplais F., Sciarretta A., Petit N. Impact of regular perturbations in input constrained optimal control problems Optim. Control Appl. Methods. 2020;41(4):1321-1351
and the speaker's notes on the course by Alain Bensoussan.

