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Abstract— The approach recently proposed by the authors
for the null controllability of 1-D parabolic equations is applied
to the nontrivial case of a heat equation with discontinuous
coefficients and subjected to Robin boundary conditions. The
control steering the system to zero from a discontinuous initial
state is comprehensively derived, together with the correspond-
ing trajectory. Numerical experiments illustrate several features
of the theory and demonstrate its effectiveness.

I. INTRODUCTION

The null controllability of parabolic equations has been
extensively investigated since several decades. After the pio-
neering works [1]–[3], mainly concerned with the 1-D case,
there has been significant progress in the N-D case by using
Carleman estimates, see in particular [4]. More recently, the
case of discontinuous coefficients has been studied along
similar lines [5]–[7]. A direct alternative approach based on
the so-called flatness property [8], [9], was proposed in [10]
for the plain heat equation, and extended to the parabolic
case with fairly irregular coefficients [11].

In this paper we apply the method of [11] to a physi-
cally relevant problem with discontinuous coefficients. We
consider the heat conduction in a one-dimensional rod made
of two sections with constant thermal properties. Without
restriction, we can assume the rod has length 1, with one
section of length X and the other of length 1− X . The
evolution of the temperature Θ is given by the heat equation

ρΘt(x, t) = (aΘx)x(x, t);

a and ρ are the piecewise constant functions on (0,1)

(
a(x),ρ(x)

)
:=

{
(a0,ρ0), 0 < x < X
(a1,ρ1), X < x < 1,

where a0,a1,ρ0,ρ1 are strictly positive constants. This situ-
ation is typical of composite materials. At the 0-end the rod
is submitted to the constant ambient temperature Θ0, and at
the 1-end to a time-varying heat source (the control input)
of temperature Θ1(t). The heat flux −aΘx at the ends obeys
the convection conditions

−(aΘx)(0, t) = h0
(
Θ0−Θ(0, t)

)
−(aΘx)(1, t) = h1

(
Θ(1, t)−Θ1(t)

)
,

with h0 and h1 positive constants. Setting θ(x, t) := Θ(x, t)−
Θ0 and taking as the control input u(t) := Θ1(t)−Θ0 results
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in the boundary value problem

ρθt(x, t)− (aθx)x(x, t) = 0, (x, t) ∈ (0,1)× (0,T ) (1)
α0θ(0, t)+β0(aθx)(0, t) = 0 (2)
α1θ(1, t)+β1(aθx)(1, t) = u(t), (3)

where the constants α0,β0,α1,β1 satisfy α2
0 +β 2

0 > 0, α2
1 +

β 2
1 > 0, α0β0 ≤ 0 and α1β1 ≥ 0. Note the two limiting cases:

βi = 0 (Dirichlet condition), obtained when taking hi → ∞;
αi = 0 (Neumann condition), obtained when considering the
control input is u(t) := h1

(
Θ(1, t)−Θ1(t)

)
and taking h0 = 0.

Included in the formulation of the system is the fact that a
solution θ and its quasi-derivative aθx are differentiable in
particular at x = X (whereas θx will in general be discontin-
uous at X). We could thus rewrite (1) more explicitly as the
piecewise constant heat equation{

θt(x, t) =
a0
ρ0

θxx(x, t), 0 < x < X

θt(x, t) =
a1
ρ1

θxx(x, t), X < x < 1

together with the so-called interface conditions

θ(X−, t) = θ(X+, t)

a0θx(X−, t) = a1θx(X+, t).

The aim of this paper is to fully derive and numerically
test the open-loop control steering the system (1)–(3) from
an initial state θ0 ∈ L2(0,1) at time 0 to the final state 0
at time T . We follow the approach proposed in [11] for the
null controllability of general 1-D parabolic equations with
fairly irregular coefficients. The paper runs as follows: in
section II, we recall the main formal steps of the approach on
our specific example; in section III, we give the detailed ex-
pressions of the quantities involved in the control law; finally
in section IV, we present detailed numerical experiments.

II. OUTLINE OF THE FLATNESS-BASED APPROACH

In [11] is established a general result for the null control-
lability of the one-dimensional parabolic system

ρθt − (aθx)x−bθx− cθ = 0, (x, t) ∈ (0,1)× (0,T )
α0θ(0, t)+β0(aθx)(0, t) = 0
α1θ(1, t)+β1(aθx)(1, t) = u(t),

where a,b,c,ρ are functions on (0,1) such that;
• a(x)> 0 and ρ(x)> 0 for almost all x ∈ (0,1)
• ∃K ≥ 0 such that c(x)≤ Kρ(x) for almost all x ∈ (0,1).
Theorem 1: Assume 1

a ,
b
a ,c,ρ ∈ L1(0,1) and a1− 1

p ρ ∈
Lp(0,1) for some p ∈ (1,∞]. Consider an initial state θ0 ∈
L1

ρ(0,1), a final time T > 0 and s ∈ (1,2− 1
p ).
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Then there exists a control u ∈ Gs([0,T ],R) which steers
the system from θ0 to the final state θ(·,T ) = 0. Moreover
θ ,aθx ∈ Gs

(
[ε,T ],W 1,1(0,1)

)
for all ε ∈ (0,T ).

In the theorem, L1
ρ(0,1) is the space of functions f

such that
∫ 1

0 | f (x)|ρ(x)dx < ∞; Gs([0,T ],B)⊂C∞([0,T ],B),
where B is a Banach space with norm ‖·‖B, is the class of
Gevrey functions of order s, i.e. such that for some M,R > 0,∥∥y(i)(t)

∥∥
B ≤M

i!s

Ri , ∀t ∈ [0,T ], ∀i≥ 0.

The proof of this result provides an explicit construction
of the control u in the form of an infinite series. We outline
in the sequel the formal aspects of the construction for
our particular case (1)–(3), where b = c = 0; also 1

a ,ρ ∈
L∞(0,1), which implies L2(0,1) ⊂ L1

ρ(0,1). We refer the
reader to [11] for all the technical aspects, in particular
proofs of convergence of all the series appearing in the
sequel. The method comprises two phases: we first apply
a zero control on [0,τ], where τ ∈ (0,T ) is some arbitrary
intermediate time, to steer the system from the “irregular”
initial state θ0 ∈ L2 to a “more regular” intermediate state θτ ;
we then use the flatness property to steer the system from θτ

to the final state θ(T,x) = 0.

A. First phase: null control on [0,τ]
Since u(t) = 0 here, the boundary condition (3) becomes

α1θ(1, t)+β1(aθx)(1, t) = 0, (4)

and we can solve (1), (2) and (4) by the method of separa-
tion of variables. Indeed, there exists an orthonormal basis
(en)n≥0 of L2

ρ(0,1) and a sequence (λn)n≥0 in R such that

−(ae′n)
′ = λnρen (5)

α0en(0)+β0(ae′n)(0) = 0 (6)
α1en(1)+β1(ae′n)(1) = 0. (7)

L2
ρ(0,1) is the space of functions f such that 〈 f , f 〉ρ <∞, en-

dowed with the inner product 〈 f ,g〉ρ :=
∫ 1

0 f (x)g(x)ρ(x)dx.
In our case L2(0,1) = L2

ρ(0,1) since ρ and 1
ρ

are bounded.
In other words, the λn’s and en’s are the eigenvalues and

eigenfunctions of the Sturm-Liouville problem

−(aφ
′)′ = λρφ (8)

α0φ(0)+β0(aφ
′)(0) = 0 (9)

α1φ(1)+β1(aφ
′)(1) = 0. (10)

As we will need this fact in section III-B, we now prove
the λn’s are strictly positive (and by the way rederive that the
λn’s, hence the en’s, are real). Indeed, consider a (possibly
complex) solution λ ,φ of (8)–(10). On the one hand by (8),∫ 1

0
φ̄(x)(aφ

′)′(x)dx =−λ

∫ 1

0
|φ(x)|2 ρ(x)dx,

where φ̄ is the complex conjugate of φ ; on the other hand,
integrating (8) by parts gives∫ 1

0
φ̄(x)(aφ

′)′(x)dx =
[
(aφ

′
φ̄)(x)

]1
0−

∫ 1

0
(aφ

′
φ̄
′)(x)2dx

= K0−K1−
∫ 1

0
a(x)

∣∣φ ′(x)∣∣2 dx,

where Ki := αiβi
|φ(i)|2+|(aφ ′)(i)|2

α2
i +β 2

i
. As a consequence,

λ

∫ 1

0
|φ(x)|2 dx = K1−K0 +

∫ 1

0
a(x)

∣∣φ ′(x)∣∣2 dx,

which implies λ is real and, because α0β0 ≤ 0 and α1β1 ≥ 0,
strictly positive.

As (en)n≥0 is an orthonormal basis of L2
ρ(0,1), we can

expand the initial condition as θ0 = ∑n≥0 cnen in L2
ρ(0,1),

with coefficients cn := 〈θ0,en〉ρ such that ∑n≥0 |cn|2 < ∞. It
is then easy to check that

θ(x, t) := ∑
n≥0

cne−λnten(x)

is the solution of (1), (2), (4) for t ∈ (0,τ] starting from θ0.

B. Second phase: flatness-based control on [τ,T ]

We now show the state θτ(x) := θ(x,τ) reached at the end
of the first phase can be steered to 0. To this end, we now
seek θ in the form

θ(x, t) := ∑
i≥0

gi(x)y(i)(t), (11)

where the generating functions gi are solutions of the se-
quence of Cauchy problems

(ag′0)
′ = 0 (12)

α0g0(0)+β0(ag′0)(0) = 0 (13)
β0g0(0)−α0(ag′0)(0) = K (14)

for some K 6= 0, and

(ag′i)
′ = ρgi−1 (15)

α0gi(0)+β0(ag′i)(0) = 0 (16)
β0gi(0)−α0(ag′i)(0) = 0 (17)

for i≥ 0. It can then be shown that for some C,R > 0

sup
x∈[0,1]

|gi(x)| ≤
C

Ri(i!)2 , ∀i≥ 0,

so that the series (11) converges as soon as y ∈Gs([τ,T ],R)
with s < 2.

On the other hand, each eigenfunction en can be expanded
on the gi’s as en = ζn ∑i≥0(−λn)

igi, with

ζn :=
β0en(0)−α0(ae′n)(0)
β0g0(0)−α0(ag′0)(0)

.

Indeed, setting fn := ζn ∑i≥0(−λn)
igi we find

(a f ′n)
′ = ζn ∑

i≥0
(−λn)

i(ag′i)
′

= ζn ∑
i≥1

(−λn)
i(ρgi−1)

=−λnρζn ∑
j≥0

(−λn)
jg j

=−λnρ fn

α0 fn(0)+β0(a f ′n)(0) = ζn
(
α0g0(0)+β0(ag′0)(0)

)
= 0

β0 fn(0)−α0(a f ′n)(0) = ζn
(
β0g0(0)−α0(ag′0)(0)

)
= β0en(0)−α0(ae′n)(0).
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Therefore en− fn satisfies a Cauchy problem with zero initial
conditions, implying en− fn = 0.

It is now easy to check that the control defined by

y(t) := φs

( t− τ

T − τ

)
∑
n≥0

cnζne−λnt (18)

u(t) := ∑
i≥0

(
α1gi(1)+β1g′i(1)

)
y(i)(t), (19)

where φs is the “Gevrey step” of section III-C, steers the
system from θτ at time τ to 0 at time T . Indeed, (11), (18),
(19) is clearly the solution of (1)–(3); as φ

(i)
s (1) = 0 for i≥ 0,

θ(T,x) = ∑
i≥0

y(i)(T )gi(x) = 0;

and as φs(0) = 1 and φ
(i)
s (0) = 0 for i≥ 1,

θτ(x) = ∑
n≥0

cne−λnτ en(x)

= ∑
n≥0

cne−λnτ
ζn ∑

i≥0
(−λn)

igi(x)

= ∑
i≥0

(
∑
n≥0

cnζne−λnτ(−λn)
i
)

gi(x)

= ∑
i≥0

y(i)(τ)gi(x).

III. EXPLICIT EXPRESSIONS

We now provide explicit expressions for the generating
functions gi, the eigenfunctions en and the derivatives of the
“Gevrey step” φs. We set κ0 :=

√
ρ0
a0

and κ1 :=
√

ρ1
a1

.

A. Generating functions

It is easily seen that the solution of (12)–(17) is

gi(x) =

{
gi,0(x), 0 < x < X
gi,1(x), X < x < 1,

where

gi,0(x) = K
(

a0β0−
α0x

2i+1

) (κ0x)2i

(2i)!

gi,1(x) =
i

∑
j=0

[
gi− j,0(X)+

a0

a1

(x−X)g′i− j,0(X)

2 j+1

](
κ1(x−X)

)2 j

(2 j)!
.

The quasiderivatives are (ag′0,0)(x) = (ag′0,1)(x) = −a0Kα0,
and for i≥ 1,

(ag′i,0)(x) = a0κ0K
(

a0β0−
α0x
2i

) (κ0x)2i−1

(2i−1)!

(ag′i,1)(x) = (ag)′i,0(x)+κ1

i

∑
j=1

[
a1gi− j,0(X)

+
(x−X)(ag)′i− j,0(X)

2 j

](
κ1(x−X)

)2 j−1

(2 j−1)!
.

Clearly, the initial conditions (13), (14), (16) and (17) are
satisfied, as well as the interface conditions gi,0(X) = gi,1(X)
and (ag′i,0)(X) = (ag′i,1)(X).

B. Eigenvalues and eigenfunctions

Since we have proved the Sturm-Liouville problem (8)–
(10) may have nonzero solutions only for λ > 0, we set
µ :=

√
λ . A candidate solution φ then reads

φ(x) =

{
φ0(x), 0 < x < X
φ1(x), X < x < 1,

with

φ0(x) =C0 cos(µκ0x)+D0 sin(µκ0x)

φ1(x) =C1 cos
(
µκ1(x−X)

)
+D1 sin

(
µκ1(x−X)

)
.

The interface conditions φ0(X) = φ1(X) and (aφ0)
′(X) =

(aφ1)
′(X) then yield (using µ 6= 0)

C1 =C0 cos(µκ0X)+D0 sin(µκ0X) (20)

D1 =
a0κ0

a1κ1

(
D0 cos(µκ0X)−C0 sin(µκ0X)

)
. (21)

The boundary conditions (9), (10) read

α0C0 +β0µκ0D0 = 0 (22)
(α1c1−µβ1a1κ1s1)C1 +(α1s1 +µβ1a1κ1c1)D1 = 0, (23)

where we have set

c0 := cos(µκ0X)

s0 := sin(µκ0X)

c1 := cos
(
µκ1(1−X)

)
s1 := sin

(
µκ1(1−X)

)
.

Injecting (20), (21) into (22), (23) gives the linear system(
α0 β0µκ0

F(µ) G(µ)

)(
C0
D0

)
=

(
0
0

)
,

which has a nonzero solution iff the determinant f (µ) :=
α0G(µ)−β0µκ0F(µ) is zero. Since

f (µ) = (α0α1 +µ
2
β0β1a0ρ0)s0c1

+
(

α0α1
a0κ0

a1κ1
+µ

2
β0β1a0ρ0

a1κ1

a0κ0

)
c0s1

+µa0κ0

[
(α0β1−α1β0)c0c1

−
(

α0β1
a1κ1

a0κ0
−α1β0

a0κ0

a1κ1

)
s0s1

]
is odd, and µ = 0 is excluded, we are interested only in
the strictly positive roots of f (µ) = 0. There is no closed-
form expression for these roots, so they must be determined
numerically. In the simulations of section IV, we have for
instance used the function roots from the open-source
package Chebfun [12], which is very handy to find all the
roots of a function in a given interval.

To each strictly positive root µn of f then corresponds the
eigenfunction

en(x) =

{
en,0(x), 0 < x < X
en,1(x), X < x < 1,
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with

en,0(x) = Mn

[
β0a0 cos(µnκ0x)−α0

sin(µnκ0x)
µnκ0x

]
en,1(x) = en,0(X)cos(µnκ0x)+

a0

a1
e′n,0(X)

sin
(
µnκ1(x−X)

)
µnκ1

;

the coefficient Mn is chosen so that 〈en,en〉ρ = 1. The quasi-
derivatives are

(ae′n,0)(x) =−Mn
[
β0a0µnκ0 sin(µnκ0x)+α0 cos(µnκ0x)

]
(ae′n,1)(x) =−en,0(X)µnκ0 sin(µnκ0x))

+
1
a1

(ae′n,0)(X)cos
(
µnκ1(x−X)

)
.

Clearly, the boundary conditions (6), (7) are satisfied, as
well as the interface conditions en,0(X) = en,1(X) and
(ae′n,0)(X) = (ae′n,1)(X).

Fig. 1 displays some eigenfunctions; though not obvious
at first sight, these eigenfunctions are indeed orthogonal.
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Fig. 1. Eigenfunctions e1,e3,e7,e20,e50,e100.

C. The Gevrey “step function” and its derivatives

It it well-known that the “bump function”

ϕs(t) :=

{
0 if t 6∈ (0,1)

exp
(

−1
Mtk(1−t)k

)
if t ∈ (0,1),

where k = (s−1)−1 and M > 0, is Gevrey of order s; and so
is the Gevrey “step function”

φs(t) :=


1 if t ≤ 0
0 if t ≥ 1

1−
∫ t

0 ϕs(ρ)dρ∫ 1
0 ϕs(ρ)dρ

if t ∈ (0,1),

used in (18) to design the flatness-based control. It is readily
checked that φs(0) = 1, φ

(i)
s (0) = 0 for i≥ 1, and φ

(i)
s (1) = 0

for i≥ 0.
A practical problem when implementing the control (19)

is to evaluate sufficiently many derivatives of φs, i.e. of ϕs.
This can be done easily as follows. We first note that

pk+1
ϕ̇s = kṗϕs, (24)

where p(t) := M
1
k t(1− t) is a polynomial of degree 2 (hence

its derivatives of order > 2 are zero). We then apply the
general Leibniz rule

(uv)(i) =
i

∑
j=0

(
i
j

)
u(i)v(i− j)

to both sides of (24), yielding

Pϕ
(i+1)
s +

i

∑
j=1

(
i
j

)
P( j)

ϕ
(i+1− j)
s = k

(
ṗϕ

(i)
s + ip̈ϕ

(i−1)
s

)
. (25)

This is a recursion formula giving ϕ
(i+1)
s in function of

ϕ
0)
s , . . . ,ϕ

i)
s and the derivatives of P := pk+1. The derivatives

of P are obtained in the same manner, by applying the
Leibniz rule to both sides of

pṖ = (k+1)ṗP,

yielding the recursion formula

pP(i+1) = (k+1− i)ṗP(i)+
i
2
(2k+3− i)p̈P(i−1). (26)

To avoid computing ratios of very large numbers, it is in
practice better to use recursion formulas for P̃(i)) := P(i)

i! and

ϕ̃
(i)
s ) := ϕ

(i)
s

(2i)! . From (26) and (25), we find

pP̃(i+1) =
1

i+1

[
(k+1− i)ṗP̃(i)+

2k+3− i
2

p̈P̃(i−1)
]

P̃ϕ̃
(i+1)
s =

k
(2i+2)(2i+1)

[
ṗϕ̃

(i)
s +

p̈ϕ̃
(i−1)
s

2(2i−1)

]
−

i

∑
j=1

di+1, jP̃( j)
ϕ̃
(i+1− j)
s

di+1,0 = 1

di+1, j =
i− j+1

(2i−2 j+4)(2i−2 j+3)
di+1, j−1, j = 1, · · · , i.

Using this procedure, about 140 derivatives can be efficiently
determined with Matlab double-precision arithmetics.
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IV. NUMERICAL EXPERIMENTS

We now show some numerical results, using as parameters

X a0 ρ0 a1 ρ1 α0 β0 α1 α1
1
2

10
19

15
8 10 1

8 cos π

3 −sin π

3 cos π

4 sin π

4

The initial condition θ0 ∈ L2(0,1) is the step function
θ0(x) =− 1

2 on (0, 1
2 ) and θ0(x) = 1

2 on ( 1
2 ,1); θ0 not being

continuous, its coefficients cn decay slowly. The final time
is T = 0.35; several values of the intermediate time τ are
used, namely τ = 0.01,0.05,0.1,0.15, to see its influence.
Finally s = 1.65 and M = 2 for the base case (recall s and
M are the coefficients in the Gevrey “step function”); theses
values are later changed one at a time to see their influences.
The series for u and y in (18) and (19) were truncated
at a “large enough” order for a good accuracy, namely
i = 130 and n = 60; a fairly large i is needed here because
(T − τ) a0

ρ0
is rather small. The error on the trajectory due

to these truncations is expected to behave well, provided
that the uniform estimates proved in [10] in a much simpler
situation are generalizable. Also note that the control effort,
as well as the truncation index i needed to ensure a good
accuracy of u, grows rapidly as T decreases.

Fig. 2 shows the evolution of the control u(t) and Fig. 3

the evolution of the control energy
(∫ t

0 u2(s)ds
) 1

2 ; it appears
that the control effort increases with τ (for a given T ),
with a more oscillatory behavior. Fig. 4 shows the resulting
temperature θ (for τ = 0.05 only); the discontinuity of θx
at x = X is clearly visible. Fig. 5 and Fig. 6 show the
evolution of the control and of its energy when M = 1, and
so do Fig. 7 and Fig. 8 when s = 2.5; it appears that the
control effort decreases as M increases, but at the expense
of a more oscillatory behavior (and a higher i for a good
accuracy of u). Finally, Fig. 9 and Fig. 10 show the evolution
of the control and of the control energy when s = 1.45, and
so do Fig. 11 and Fig. 12 when s = 1.5; it appears that the
control effort decreases as s increases, but at the expense of a
more oscillatory behavior (and a higher i for a good accuracy
of u). Of course these few qualitative remarks should be
taken with caution, as they are yet to be backed by theory.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−20

−10

0

10

20

30

40

Fig. 2. Base case: evolution of the control u(t).
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Fig. 5. M = 1: evolution of the control u(t).
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Fig. 6. M = 1: evolution of the control energy
(∫ t

0 u2(s)ds
) 1

2 .
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Fig. 7. M = 2.5: evolution of the control u(t).
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Fig. 8. M = 2.5: evolution of the control energy
(∫ t

0 u2(s)ds
) 1
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Fig. 9. s = 1.45: evolution of the control u(t).

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

5

10

15

20

25

30

35

40

Fig. 10. s = 1.45: evolution of the control energy
(∫ t

0 u2(s)ds
) 1

2 .
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Fig. 11. s = 1.55: evolution of the control u(t).
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Fig. 12. s = 1.55: evolution of the control energy
(∫ t

0 u2(s)ds
) 1
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