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1 Introduction

Motion planning, i.e., the construction of an open-loop

control connecting an initial state to a final state, is

a fundamental problem of control theory both from a

practical and theoretical point of view. For systems

governed by ordinary differential equations the notion

of jlatness [3, 8] provides a constructive solution to this

problem. As noticed in [8], the idea underlying equiv-

alence and flatness –the existence of a one-to-one cor-

respondence between trajectories of systems– is not re-

stricted to ordinary differential equations and can be

adapted to delay differential systems [9, 4] and partial

differential equations [5, 1, 6] with boundary control.

In this paper we study in this spirit the heat equation

with one space dimension and control on the boundary.

We give an explicit parameterization of the trajectories

as a power series in the space variable with coefficients

involving time derivatives of the “flat” output. This

series is convergent when the flat output is restricted

to be a Gevrey function (i.e., a smooth function with

a “not too divergent” Taylor expansion). This param-

eterizat ion provides a new proof of approximate con-

trollability, and above all an explicit open-loop control

achieving the desired motion, We then extend some of

these results to the general linear diffusion equation.

Our approach is quite different from more “established”

theories (see, e.g., [2] ) and is more related to older

works by for instance Holmgren and Gevrey [12, 7].

2 Gevrey functions

The Taylor expansion of a smooth function is not con-

vergent, unless the function is analytic. The notion of

Gevrey order is a way of estimating this divergence.

Definition. A smooth

Gevrey of order a if

3ibf, R>O, VnE IX,

*Corresponding author

function t E [a, II] + y(t) is

By definition, a Gevrey function of order a is also of

order ~ for any ~ ~ a. A classical result (the Cauchy

estimates) asserts that Gevrey functions of order 1 are

analytic (entire functions if a < 1). Gevrey functions

of order a > 1 have a divergent Taylor expansion; the

larger a, the “more divergent” the Taylor expansion.

Important properties of analytic functions generalize

to Gevrey functions of order a > 1: the scaling, in-

tegration, addition, multiplication and composition of

Gevrey functions of order a >1 is of order a [7]. But

contrary to analytic functions, functions of order a > 1

may be constant on an open set without being constant

everywhere. For example the “bump function”

is of order 1 + l/v whatever -y >0 [10]. Similarly,

that will be used for motion planning, has order 1+1/7.

3 The heat equation is ‘(flat”

axwo,f) = o
+1 (3(X,t) e(l, t) = u

o x 1

Consider the heat equation

{

dto(z, t) = dcco(z,t), % E [0,1]
(1) dzo(o,t)= o

0(1,t) = u(t),

where O(X, t) is the temperature and u(i) is the control

input. We claim this system is “flat” [3, 8] with

y(t) := L9(o,t)
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as a “flat” output. In other words, we will show there

is (in a certain sense) a 1 – 1 correspondence between

arbitrary functions t~y(t) and solutions of (l).

Noticing the “inverse” system

{

dcco(z,t) = t+o(z, t)

(2) M(o, t) = o
0(0,t) = y(t),

is in Cauchy-Kovalevskaya form, we first seek a for-

ma] solution o(x, t) = ~~=~ a;(t)~, where the ai are

smooth functions. Using (2), we find

Vi> O,

{

az~(t) = y(i)(t)

~zi+l(f) = 0,

so that

(3) e(x, t) = & (t)<
(22)!

i=o

+@ JO (~)
(4) ‘(t) = ~ (2i)! .

i=O

We give a meaning to this formal solution by restricting

t x y(t) to be Gevrey of a suitable order a. Indeed,

the radius p of convergence in x of (3) is given by

where we have used the fact that (n!)* /~ne asan

immediate consequence of the Stirling formula. Hence,

p is greater than 2R~ if a >2 and infinite if a <2.

We have therefore established that (1) is flat in the

following sense: any Gevrey function t + y(t) of

order a < 2 uniquely defines a smooth trajectory

t I-+ (O(x, t), u(t)) of (1) which is analytic in z and

such that t + 0(0, t ) is Gevrey of order a. Conversely

any trajectory of (1) which is analytic in & and such

that t M 0(0, t) is Gevrey of order a < 2 defines a

unique Gevrey function t ++ y(t) := 6’(0, t) of order

a. For a = 2, this 1–1 correspondence holds between

trajectories with a radius of convergence >1 and func-

tions t +) y(t) with R > 1/4 (this indeed ensures the

convergence of (3) on [0, 1]).

4 Motion planning

The previous developments provide a simple and ex-

plicit solution to the problem of (approximate) motion

planning. Assuming the initial temperature profile is

V% e [0,1], O(z,o)= o,

we want to find an open-loop control [0, T] 3 t A u(t)

such that at time T the final temperature profile is

“arbitrary close” to

Vz g [0,l], O(x,q = e(x), G3EL2(0,1).

Of course @ does not in general have a convergent Tay-

lor expansion on even powers of x. Nevertheless, as a

direct consequence of the Miintz-Szasz theorem (see,

e.g., [11, chap. 15]), the set of polynomials of even de-

gree is dense in C(O, 1), hence in L2(0, 1). This means

that for all & >0 there exists a polynomial

such that ]]@ – HIILZ s c. On the other hand

tion

~(t,:=(:Pi(’;:)i) @.(;)

the func-

is Gevrey of order ~ 2 when y ~ 1 (see section 2) and

satisfies

y(i) (o)= o, i~O

y(~) (T) = p~, i=(l ,. ... n

y(i)(q = l), i>n,

which corresponds to 19(z, O) = O and O(Z, 2“) = II(x).

Since the solution of (1) starting from a given initial

condition is unique, the open-loop control (4) will steer

the temperature from O at time O to H at time T. We

can thus reach at any given time T an arbitrary small

neighborhood of ~. In other words we have proved

with elementary and constructive arguments that (1)

is approximately controllable for every time T.

T.nlpmture proms (y Gev,ey 2)
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The figure displays the evolution of the temperature

with the control generated by y(t) = 01 (t), made to

steer the system from the uniform profile @= O at t = O

to the uniform profile d = 1 at t = 1.
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5 The linear diffusion equation

We can generalize some of the previous results to the

linear diffusion equation

where g and h are analytic functions, We first show

that y(t) := 0(0, t) is again a “flat” output. As before,

the “inverse” system

{

8..0 = 8,(3 –g(z)c?.b’ –IL(Z)O

(6) dzd(o,t)= o
O(o,t) = y(t),

is in Cauchy-Kovalevskaya form, and we seek a for-

mal solution O(Z, t) = ~~=~ ai (t) ~, where the ai are

smooth functions.

Theorem. The formal solution of (6) is convergent

when y(t) is Geurey of order 1 ~ Q ~ 2.

Proof. Notice we can assume g = O by the resealing

Writing h(x) = ~k>o hi ~, we easily find the ak are

recursively defined b;

[

a~+~(t) = ti~(t) – $ ~!(kk~ ~)! hk-~ a~(t)

(7) i=o

so(t) = y(t)

( a,(t)= o,

and we have to show that ]akl < ~k! for some ~,p >0.

The proof is adapted from the classical method of ma-

j’orants: we first replace (lemma 1) the sequence ak by

a “majorizing” sequence Ak such that

This sequence is initialized with AO = AI = A, where

with m, r > 0. A obviously satisfies

A(k) = m k!

# (1 – ;)k+l

and enjoys a nice differential property (lemma 2).

We then estimate the growth of the Ak in terms of the

derivatives of A (lemma 3),

We finally conclude Iazk [ , Iazk+l I < &(2k)!, which

proves the claim. Here and in the sequel we denote

me, ra, . .. by fi. ?,.... ❑

Lemma 1. ‘da ~ 1,

[

AO=A

AI=A

is a majorant problem of (7) in the sense that

a~) < (A~)(0))a .Vk, n~O, _

Proof. The claim is true at steps O and 1 since y is by

assumption Gevrey of order a. Assuming it is true till

step k + 1, we prove it is true at step k + 2; indeed,

since h is analytic,

= (4?(0))”.

Proof. As D(t) := ~ ~ 1 on [O, r[,
r

A(~+n) = m (j+ n)!

r.i+n@+n+l

<
m (j+ n)!

— rj+n Dk+n+l

_ (~+ ‘)! ~k-jA(k+n)—

(k+n)!

< #rk-~A(k+”) ❑

where ~ := max(& 1 + rfi, rfi~).
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Proof. The claim is obvious at step O since A. = Al =

A. Assume then it is true till step k. By definition,

A(n) ‘k ill

E
()

(2k)! * A(n)~(~) + — —
z(k+l) = 2k R2k-i i! ‘

‘=0 ~

Using successively the induction assumption, lemma 2

and p < R2/r, we find

Similarly,

On the other hand the induction assumption implies

Hence,

< (z~)!+A(k+l+~)
— k! ~lt+l

< (2k + 2)!: A(k+l+n)

- (k+l)! p~+l

Notice k I-+ * is increasing when Q <2.

The proof is the same for the odd terms A~~l.

5.1 Rest-to-rest motion

The general problem of motion planning using flatness

is still under study and will be developed elsewhere.

Here, we will simply sketch how to use the previous

result to steer the diffusion equation from a rest profile

to another rest profile.

Clearly, a rest profile @is characterized by

~(z) = Ml)(o),

where ,4 ~ R and 6’0 is the solution of

d:(z) +g(z)oo’’ (z) +60(%) = o, l%(o)= 1, e~(o)= o.

This is equivalent to all the ak @) in (7) being constant

or alternatively to all the derivatives of y(t) being O.

Hence the open-loop control u(i) := ~k ~ o ~ built

from the Gevrey function

y(t) := ~ + (p – ~) ~@v(f/T), 721,

will steer the system from the rest profile d(x) = M’O (x)

at time O to the rest profile 6’(x) = pL90 (x) at time T.
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