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Abstract— We consider the problem of boundary
stabilization of 3 × 3 linear first-order hyperbolic
systems with one positive and two negative transport
speeds by using backstepping. The main result of the
paper is to supplement the previous works on how
to choose multi-boundary feedback inputs applied on
the states corresponding to the negative velocities to
obtain finite-time stabilization of the original system
in the spatial L2 sense. Our method is still valid for
boundary stabilization of general n × n hyperbolic
system with arbitrary numbers of states traveling in
either directions.
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I. INTRODUCTION

In this paper, we are concerned with the problem
of boundary stabilization for a 3 × 3 system of
first-order hyperbolic linear PDEs with one positive
and two negative transport speeds. We consider
feedback actuation on the boundary corresponding
to the negative velocities.

This problem has been previously investigated
by Li and Qin (see [12] and [13]) for even n× n
homogeneous quasilinear hyperbolic systems by
using explicit computation of the solution along
the characteristic curves in the framework of C1

norm. Later on, Coron et al. developed a so-called
control Lyapunov functions method to analyse the
dissipative boundary condition for this kind of
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nonlinear hyperbolic systems in the content of both
C1 norm and H2 norm (see [1], [2] and [3]).
Recently, Coron and Nguyen showed in [4] that
the exponential stability depends strongly on the
norm considered, i.e. a previous known sufficient
condition for exponential stability with respect to
the H2 norm is not sufficient in the framework of
C1 norm.

For inhomogeneous hyperbolic systems, the
study can be dated back to Rauch and Taylor
[14] and Russell [15]. Using Lyapunov functions
method, Diagne et al. addressed the sufficient
boundary conditions for the exponential stability
of linear hyperbolic systems of balance laws (see
[7]). For the nonlinear cases, Gugat and Herty [9]
and Gugat et al.[8] analyzed the boundary feedback
stabilization of gas flow in fan-shaped networks
governed by isentropic Euler equations. All of
these results impose restrictions on the magnitude
of the coupling coefficients, which are responsible
for potential instabilities.

Coron et al. [5] designed a full-state feedback
control law, with actuation on only one end of the
domain, which achieves H2 exponential stability of
the closed-loop 2 × 2 quasilinear hyperbolic sys-
tem by using backstepping method. Moreover, this
method can vanish the corresponding linearized
hyperbolic system in finite time. With the same
backstepping transformation, Di Meglio et al. [6]
showed a feedback controller for the hyperbolic
system with n positive and one negative transport
speeds, and the feedback actuation only on the
state corresponding to the negative velocity in the
linear case. These results hold regardless of the
(bounded) magnitude of the coupling coefficients.
Unfortunately, the method presented both in [5]
and [6] can not be extended when several states
convecting in the same direction are controlled.

Our contribution in this paper fills the gap in [5]
and [6] on how to choose multi-boundary feedback
inputs in order to obtain finite-time stabilization
of the original system in the spatial L2 sense.
We consider a system of two controlled transport

2015 European Control Conference (ECC)
July 15-17, 2015. Linz, Austria

978-3-9524269-3-7 ©2015 EUCA 67



equations coupled with one uncontrolled one. This
problem has remained unsolved because the tradi-
tional backstepping approach of, e.g., [6] yields un-
solvable kernel equations. The main contribution of
this paper is a novel form of the target system that
renders the classical Volterra backstepping trans-
formation well-posed. More precisely, the target
system features potentially destabilizing coupling
terms that are canceled by a predictor feedback-like
boundary condition. Our method can be extended
to fully general n×n hyperbolic system with much
more technique involved (see [11]).

The rest of this paper is organized as follows. In
Section II, we introduce the system under consider-
ation. In Section III, we detail our choice of target
system. In Section IV, we derive the backstepping
kernel equations and prove their well-posedness in
Section V. Finally, in Section VI we present the
main stabilization result.

II. SYSTEM DESCRIPTION

Consider the following 3 × 3 hyperbolic systems

wt(t, x) + Λwx(t, x) + Σ(x)w(t, x) = 0 (II.1)

where, w = (w1, w2, w3)T is a vector function of
(t, x), Λ is a 3× 3 diagonal matrix as follows:

Λ = diag(−λ1,−λ2, λ3), (II.2)

where λi(i = 1, 2, 3) are positive constants satis-
fying

−λ1 < −λ2 < 0 < λ3 (II.3)

The matrix of coupling coefficients Σ(x) is a 3×3
matrix with C0 elements σij(x), (i, j = 1, 2, 3)
and without loss of generality (see Remark 2.1),
we assume that σii(x) = 0, (i = 1, 2, 3).

The boundary conditions are as follows

x = 0 : w3(t, 0) = pw1(t, 0) + qw2(t, 0) (II.4)

and

x = 1 : w1(t, 1) = h1(t),

w2(t, 1) = h2(t).
(II.5)

where H = (h1, h2)T are boundary controls, p
and q are constants. Our objective is to design a
feedback control law for H(t) in order to ensure
that the closed-loop system vanishes in finite time.

Remark 2.1: In general, one can make the
following coordinate transformation

w̃i(t, x) = ϕi(x)wi(t, x) (II.6)

with ϕi(x) := exp(
∫ x
0
σii(s)
−λi

ds), i = 1, 2

and ϕ3(x) := exp(
∫ x
0
σ33(s)
λ3

ds) . Then the original
control system w is transformed into the following
system expressed in the new coordinates:

w̃t(t, x) + Λw̃x(t, x) + Σ̃(x)w̃(t, x) = 0, (II.7)

in which Σ̃ := (σ̃ij)3×3 ∈ (C0[0, 1])3×3 with
σ̃ii(x) = 0(i = 1, 2, 3).

III. TARGET SYSTEM

As mentioned in the introduction, the main con-
tribution of this paper is a novel form of the target
system. More precisely, our approach to design
H(t) will be seek a mapping that transforms (II.1),
(II.4)–(II.5) into

γt(t, x) + Λγx(t, x) +G(x)γ(t, 0) = 0 (III.1)

with the boundary conditions

x = 0 : γ3(t, 0) = pγ1(t, 0) + qγ2(t, 0) (III.2)

and
x = 1 : γ1(t, 1) = 0,

γ2(t, 1) = f(γ2(t, ·)),
(III.3)

where f(γ2(t, ·)) is chosen as the following
predictor-based feedback

f(γ2(t, ·)) =

∫ λ−1
2

0

g22(1− λ2τ)γ2(t, λ2τ)dτ

−
∫ λ−1

2

0

∫ τ

0

g22(1− λ2τ)l(τ, s)γ2(t, λ2s)dsdτ

(III.4)

where l(·, ·) is implicitly defined by the following
Volterra equation of the second kind

l(τ, s) = g22(λ2τ − λ2s)

−
∫ τ

s

g22(λ2τ − λ2ν)l(ν, s)dν (III.5)

and G ∈ (C0[0, 1])3×3 has the following form

G(x) :=

 0 0 0
g21(x) g22(x) 0
g31(x) g32(x) 0

 . (III.6)

where the gij will be determined in § IV. The
following Proposition guarantees finite-time con-
vergence of the cascade system (III.1)–(III.5).

Proposition 3.1: Let g21, g22, g31 and g32 be
C0([0, 1]) functions. The mixed initial-boundary
problem (III.1)–(III.5) with initial condition

t = 0 : γ(0, x) = γ0(x), (III.7)
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in which γ0 := (γ01, γ02, γ03) ∈ (L2(0, 1))3

admits a C0([0,∞); (L2(0, 1))3) solution γ =
γ(t, x), which vanishes to equilibrium γ ≡ 0 in
finite time t ≥ tF , where tF is given by

tF =
1

λ1
+

2

λ2
+

1

λ3
(III.8)

Proof. To show finite-time convergence to the
origin, one can find the explicit solution of (III.1)-
(III.3) as follows. The explicit solution of γ1, by
noting (III.1) and (III.3), is given by

γ1(t, x) =

{
γ01(x+ λ1t) if t < 1−x

λ1
,

0 if t ≥ 1−x
λ1
.

(III.9)

Notice in particular that γ1 is identically zero
for t ≥ λ−11 . From (III.1) and (III.6), we obtain
that γ2(t, x) satisfies the following equation

γ2t(t, x)− λ2γ2x(t, x) + g22(x)γ2(t, 0) = 0.
(III.10)

Similarly, the explicit expression of γ2(t, 0) is
given, for t > λ−11 + λ−12 , by

γ2(t, 0) = γ2(t− λ−12 , 1)

−
∫ λ−1

2

0

g22(1− λ2τ)γ2(t− λ−12 + τ, 0)dτ

Thus, choosing the following form for γ2(t, 1)

γ2(t, 1) =

∫ λ−1
2

0

g22(1− λ2τ)γ2(t+ τ, 0)dτ

(III.11)

ensures

γ2(t, 0) = 0 ∀t ≥ λ−11 + λ−12 . (III.12)

Unfortunately, Equation (III.11) uses future values
of γ2(·, 0) and is not implementable as such. How-
ever, one can obtain the prediction of γ2(t+ τ, 0),
for τ ∈ [0, λ−12 ] implicitly defined by characteristic
method as follows

γ2(t+ τ, 0) +

∫ τ

0

g22(λ2τ − λ2s)γ2(t+ s, 0)ds

= γ2(t, λ2τ), (III.13)

which is a Volterra equation of the second kind in
the unknown γ2(t+·, 0) on [0, λ−12 ]. Since g22(·) ∈
C0[0, 1], we can see from [10] and [16] that (III.13)
has the following solution

γ2(t+ τ, 0) = γ2(t, λ2τ)−
∫ τ

0

l(τ, s)γ2(t, λ2s)ds

where the inverse kernel l(·, ·) is defined by (III.5),
which yields (III.4). Besides, given (III.12), γ2
satisfies, for t ≥ λ−11 +λ−12 , the following equation

γ2t(t, x)− λ2γ2x(t, x) = 0, ∀t ≥ λ−11 + λ−12

(III.14)

with the boundary

γ2(t, 1) =

∫ λ−1
2

0

g22(1− λ2τ)γ2(t, λ2τ)dτ

−
∫ λ−1

2

0

∫ τ

0

g22(1− λ2τ)l(τ, s)γ2(t, λ2s)dsdτ

which is identically zero thanks to (III.13). This
yields

γ2(t, x) ≡ 0 ∀t ≥ λ−11 + 2λ−12 . (III.15)

Similarly, when t ≥ λ−11 + 2λ−12 , γ3(t, x) satisfies
the following equations

γ3t(t, x) + λ3γ3x(t, x) = 0. (III.16)

and the explicit solution of (III.16) and

x = 0 : γ3(t, 0) = 0, t ≥ λ−11 + 2λ−12 (III.17)

is

γ3(t, x) = (III.18)
γ3
(
λ−11 + 2λ−12 , x− λ3(t− λ−11 − 2λ−12 )

)
if λ−11 + 2λ−12 ≤ t ≤ λ−11 + 2λ−12 + λ−13 x,

0 if t > λ−11 + 2λ−12 + λ−13 x.

(III.19)

Thus, when t ≥ λ−11 + 2λ−12 + λ−13 , we have

γ3(t, x) ≡ 0. (III.20)

Thus, one has γ(t, x) ≡ 0, which concludes the
Proof.

As will appear in the next two sections, this
particular choice of the target system makes the
backstepping kernel equations relatively straight-
forward to solve.

IV. BACKSTEPPING TRANSFORMATION AND
KERNEL EQUATIONS

To map the original system (II.1) into the target
system (III.1), we use the following transformation

γ(t, x) = w(t, x)−
∫ x

0

K(x, y)w(t, y)dy (IV.1)

We point out here that this transformation yields
that w(t, 0) ≡ γ(t, 0) (∀t > 0), which is crucial
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to design our feedback law. Utilizing (II.1) and
straightforward computations, one can show that

γt + Λγx =

−
∫ x

0

[
Ky(x, y)Λ + ΛKx(x, y)

−K(x, y)Σ(y)
]
w(t, y)dy

+
(
K(x, x)Λ− ΛK(x, x)− Σ(x)

)
w(t, x)

−K(x, 0)Λ(0)w(t, 0)

The original system (II.1) is mapped into the target
system (III.1) if K and G satisfy the following
equations

g21(x) = −λ1k21(x, 0) + pλ3k23(x, 0) (IV.2)
g22(x) = −λ2k22(x, 0) + qλ3k23(x, 0) (IV.3)
g31(x) = −λ1k31(x, 0) + pλ3k33(x, 0) (IV.4)
g32(x) = −λ2k32(x, 0) + qλ3k33(x, 0) (IV.5)

and

ΛKx(x, y) +Ky(x, y)Λ−K(x, y)Σ(y) = 0
(IV.6)

with the boundary conditions

k11(x, 0) =
λ3
λ1
pk13(x, 0),

k12(x, 0) =
λ3
λ2
qk13(x, 0),

k12(x, x) =
σ12(x)

λ1 − λ2
,

k13(x, x) =
σ13(x)

λ1 + λ3
,

k21(x, x) =
σ21(x)

λ2 − λ1
,

k23(x, x) =
σ23(x)

λ2 + λ3
,

k31(x, x) = − σ31(x)

λ1 + λ3
,

k32(x, x) = − σ32(x)

λ2 + λ3

(IV.7)

In particular, the choice of boundary conditions
for k21(1, ·), k22(1, ·) and k33(·, 0) is free. We
chose the following structures

k21(1, y) = M1(y)

k22(1, y) = M2(y)

k33(x, 0) = M3(x)

(IV.8)

where the Mi(·), i = 1, 2, 3 can be chosen as
desired with

M1(1) =
σ21(1)

λ2 − λ1
. (IV.9)

The equations evolve in the triangular domain T =
{(x, y) : 0 ≤ y ≤ x ≤ 1}. By Theorem 5.1, under
the assumption that M1(·), M2(·), M3(·) and σij(·)
are C0[0, 1] and (IV.9) holds, One finds that there
is a unique L∞ solution K(x, y) to (IV.6)-(IV.8),
which is continuous for kij(·, ·) for any i 6= 1.

V. WELL-POSEDNESS OF THE KERNEL
EQUATIONS

In this section, we investigate the existence and
uniqueness of the solution to system (IV.6) with
boundary conditions (IV.8) as follows.

Theorem 5.1: Let M1, M2, M3 and
σij(x)(i, j = 1, 2, 3) be functions of C0[0, 1].
Suppose that (IV.9) holds. For the system
(IV.6) with boundary conditions (IV.7)–
(IV.8), there exists a unique L∞ solution
K(x, y) = (kij(x, y))3×3 on the domain

T = {0 ≤ y ≤ x ≤ 1}. (V.1)

Moreover, we have

kij(x, y) ∈ C0(T )(i 6= 1). (V.2)
Proof: The kernel equations consist of three

decoupled systems, more precisely, for each i =
1, 2, 3, the equations for ki1, ki2 and ki3 are
coupled together, and decoupled from the other
kernels. Besides, consider the following change of
variables

χ = 1− y, η = 1− x (V.3)

and

k̂21(χ, η) = k21(x, y) = k21(1− η, 1− χ),

k̂22(χ, η) = k22(x, y) = k22(1− η, 1− χ),

k̂23(χ, η) = k23(x, y) = k23(1− η, 1− χ).

Then, the system for k̂21, k̂22 and k̂23 rewrites

λ1
∂k̂21
∂χ

(χ, η) + λ2
∂k̂21
∂η

(χ, η) =

3∑
j=1

k̂2j(χ, η)Σj1(1− χ) (V.4)
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λ2
∂k̂22
∂χ

(χ, η) + λ2
∂k̂22
∂η

(χ, η) =

3∑
j=1

k̂2j(χ, η)Σj2(1− χ)

(V.5)

− λ3
∂k̂23
∂χ

(χ, η) + λ2
∂k̂23
∂η

(χ, η)

=

3∑
j=1

k̂2j(χ, η)Σj3(1− χ) (V.6)

with boundary conditions

k̂21(χ, χ) =
σ21(1− χ)

λ2 − λ1
k̂21(χ, 0) = M1(1− χ)

k̂22(χ, 0) = M2(1− χ)

k̂23(χ, χ) =
σ23(1− χ)

λ2 + λ3

(V.7)

and the domain for (χ, η) is also T = {0 ≤
η ≤ χ ≤ 1}. Then the well-posedness of k̂2j(j =
1, 2, 3) guarantees the well-posedness of k2j(j =
1, 2, 3).

The following Lemma studies existence and
uniqueness of a generic form of kernels that en-
compasses all three systems.

Lemma 5.1: Consider the following system

ε1F
1
x (x, y) + ε1F

1
y (x, y) =

4∑
j=1

c1j(x, y)F j(x, y)

ε2F
2
x (x, y) + ε3F

2
y (x, y) =

4∑
j=1

c2j(x, y)F j(x, y)

µ1F
3
x (x, y)− µ2F

3
y (x, y) =

4∑
j=1

c3j(x, y)F j(x, y)

µ1F
4
x (x, y)− µ3F

4
y (x, y) =

4∑
j=1

c4j(x, y)F j(x, y)

where ∀i εi, µi > 0, c(x, y) ∈ C0(T ) and ε2 > ε3.
Consider also the following set of boundary

conditions

F 1(x, 0) = f1(x) + p1F
3(x, 0) (V.8)

F 2(x, 0) = f2(x) + p2F
3(x, 0) (V.9)

F 2(x, x) = g2(x) (V.10)

F 3(x, x) = g3(x) (V.11)

F 4(x, x) = g4(x) (V.12)

where pi are constants and fi, gi ∈ C0([0, 1]). This
system has a unique solution F = (F1, F2, F3, F4)
in L∞(T ). Moreover, if

g2(0) = f2(0) + p2g3(0) (V.13)

holds, we have that F1, F2 F3 and F4 are contin-
uous on T .
This Lemma is classically proved using the method
of successive approximations, which is identical to
the one in [5]. For this reason and brevity purposes,
we will not detail it here.

VI. THE INVERSE TRANSFORMATION AND
MAIN RESULT

The existence and unicity of the kernels K is
simply obtained by applying Lemma 5.1 with,
respectively
• For k11, k12, k13, we suppose that

F1 = k11, F2 = k12, F3 = k13, F4 = 0,

c4i(x, y) ≡ 0 (i = 1, 2, 3, 4),

ε1 = ε2 = λ1, ε3 = λ2,

µ1 = λ1, µ2 = µ3 = λ3,

f1(x) = f2(x) = g4(x) ≡ 0,

p1 =
λ3
λ1
p, p2 =

λ3
λ2
q,

g2(x) =
σ12(x)

λ1 − λ2
, g3(x) =

σ13(x)

λ1 + λ3
.

• For k̂21, k̂22, k̂23, noting the transforma-
tion (V.4)–(V.6), we suppose that

F1 = k̂22, F2 = k̂21, F3 = k̂23, F4 = 0,

c4i(χ, η) ≡ 0 (i = 1, 2, 3, 4),

ε1 = ε3 = λ2, ε2 = λ1,

µ1 = λ3, µ2 = µ3 = λ2,

f1(χ) = M2(1− χ), p1 = p2 = g4(χ) ≡ 0,

f2(χ) = M1(1− χ), g2(χ) =
σ21(1− χ)

λ2 − λ1
,

g3(χ) =
σ23(1− χ)

λ2 + λ3
.

• For k31, k32, k33, we suppose that

F1 = k33, F2 = 0, F3 = k31, F4 = k32,

c2i(x, y) ≡ 0 (i = 1, 2, 3, 4),

ε1 = ε2 = ε3 = λ3,

µ1 = λ3, µ2 = λ1, µ3 = λ2,

f1(x) = M3(x), p1 = p2 = f2(x) ≡ 0,

g3(x) = − σ31(x)

λ1 + λ3
, g4(x) = − σ32(x)

λ2 + λ3
.
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Noting that (IV.9) guarantees (V.13).

Besides, transformation (IV.1) is a classical
Volterra equation of the second kind, one can
check from [10] and [16] that there exists a matrix
function R ∈ (L∞(T ))3×3 such that

w(t, x) = γ(t, x) +

∫ x

0

R(x, y)γ(t, y)dy. (VI.1)

From the transformation (IV.1) evaluated at x = 1
and noting γ(t, 0) ≡ w(t, 0), one gets the following
feedback control laws

h1(t) =

∫ 1

0

3∑
j=1

K1j(1, x)wj(t, x)dx (VI.2)

h2(t) =

∫ 1

0

1

λ2
φ(1− x)w2(t, x)

+

∫ 1

0

3∑
j=1

[K2j(1, x)−

1

λ2

∫ 1

x

K2j(s, x)φ(1− s)ds
]
wj(t, x)dx (VI.3)

Where φ(·) is defined by

φ(u) = g22(u)−
∫ u

0

1

λ2
g22(u− ν)φ(ν)dν

(VI.4)

and satisfies l(τ, s) = φ(λ2τ − λ2s), where l(·, ·)
is defined by (III.5). This yields the following
stabilization result.

Theorem 6.1: The mixed initial-boundary
problem (II.1) with the boundary conditions (II.4),
the feedback control law (VI.2)–(VI.3) and initial
condition

t = 0 : w(0, x) = w0(x), (VI.5)

in which w0 ∈ (L2(0, 1))3, admits a
C0([0,∞); (L2(0, 1))3) solutions w = w(t, x),
which vanishes in finite time t ≥ tF , where tF is
given by (III.8).
Proof. We obtain the explicit solutions of w from
the direct and inverse transformation, as follows

w(t, x) = γ∗(t, x) +

∫ x

0

R(x, y)γ∗(t, y)dy,

where γ∗(t, x) is the solution of the system (III.1)-
(III.3) with initial condition

γ0(x) = w0(x)−
∫ x

0

K(x, y)w0(y)dy. (VI.6)

From Proposition 3.1, we know that γ goes to zero
in finite time t = tF , therefore w also share this
property.
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