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a b s t r a c t 

We propose a simple model of two-phase gas–liquid flow by imposing a quasi-equilibrium on the mix- 

ture momentum balance of the classical transient drift-flux model. This reduces the model to a single 

hyperbolic PDE, describing the void wave, coupled with two static relations giving the void wave velocity 

from the now static momentum balance. Exploiting this, the new model uses a single distributed state, 

the void fraction, and with a suggested approximation of the two remaining static relations, all closure re- 

lations are given explicitly in, or as quadrature of functions of, the void fraction and exogenous variables. 

This makes model implementation, simulation and analysis very fast, simple and robust. Consequently, 

the proposed model is well-suited for model-based control and estimation applications concerning two- 

phase gas–liquid flow. 

© 2016 Elsevier Ltd. All rights reserved. 

I

 

o  

p  

p  

t  

(  

i  

c

 

v  

w  

s  

b  

s  

t  

f  

b  

L  

p  

l

 

p  

a  

m  

y  

h

0

ntroduction 

Multi-phase flow simulation models have evolved significantly

ver the last couple of decades. With the increase in computational

ower and sophistication of numerical schemes, simulating two-

hase pipe flow no longer suffers the same limitations on compu-

ational size, and state of the art high-fidelity models such as OLGA

 Bendiksen et al., 1991 ) and LedaFlow ( Danielson et al., 2011 ) typ-

cally run many times faster than real-time on a standard desktop

omputer. 

Before this development, however, significant efforts were de-

oted to obtaining simplifications of multi-phase flow models

hich could ease implementation and increase their simulation

peed. The Drift Flux Model (DFM) ( Ishii, 1977 ) was first proposed
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y Zuber and Findlay (1965) as a correlation for predicting steady-

tate void-fraction profiles and later used in transient represen-

ations of two-phase flow ( Pauchon and Dhulesia, 1994 ). In this

orm it is a simplification of the transient two-fluid model obtained

y relaxing (i.e. imposing immediate steady-state on ( Flåtten and

und, 2011 )) the dynamic momentum equation of each phase, re-

lacing them with a mixture momentum equation and a static re-

ation typically called a slip law . 

Further simplification can be achieved by using a similar ap-

roach to other parts of the dynamics deemed insignificant for the

pplication at hand. Specifically, by imposing steady state on the

omentum balance, the pressure wave dynamics are neglected,

ielding so-called “No Pressure Wave” (NPW) models or “Reduced

FMs”. This simplification is motivated by applications for which

low gas propagation dynamics are more critical than fast pres-

ure wave propagation. Furthermore, it has been shown that the

alidity of the drift-flux models representation of the fast pres-

ure dynamics is imprecise in many scenarios due to the relax-

tions involved in obtaining the DFM from the full formulation of
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Baer and Nunziato (1986) , which lowers the sonic velocity ( Flåtten

and Lund, 2011; Linga, Submitted ). Thus, if the “medium” complex-

ity DFM representation of the pressure waves is imprecise, the ar-

gument can be made that they could be discarded. 

This approach was used by Taitel et al. (1989) where the result-

ing model was described by a single transient PDE of the liquid

continuity, obtained by assuming incompressible liquid, and a set

of steady-state relations. The resulting model was further investi-

gated by Minami and Shoham (1994) where it was found to be

amenable for certain scenarios. The approach was expanded upon

by Taitel and Barnea (1997) , where the assumption of incompress-

ible liquid was dropped, yielding two transient equations. A sim-

ilar model was investigated by Masella et al. (1998) , here called

the “No Pressure Wave” (NPW) model. More recent additions to

the literature on models using quasi-equilibrium momentum bal-

ance include ( Choi et al., 2013; Aarsnes et al., 2015; Ambrus et al.,

2015 ). 

Interestingly, many of these recent studies have not been mo-

tivated by the desire to reduce computational complexity. Rather,

the advent of computerized automation and optimization in the oil

and gas industry has created new applications for various forms of

simplified models, causing renewed interest in these models. 

Application 

Modern advances in the theory of dynamic systems have the

potential of improving robustness and performance in the moni-

toring, optimization and control of dynamic processes which can

be described by an amenable mathematical model. By intelli-

gently combining predictions from the mathematical model with

information from multiple sensors one can estimate unmeasured

quantities, optimize automatic control procedures, predict future

behavior, and plan countermeasures for unwanted incidents. Such

design techniques, often referred to as model-based estimation and

control ( ̊Aström and Murray, 2010; Anderson and Moore, 1990 ),

require a mathematical model with the proper balance between

complexity and fidelity, i.e. the complexity must be limited to facil-

itate the use of established mathematical analysis and design tech-

niques, while the qualitative response of the process is retained. 

Models that achieve such balance between complexity and fi-

delity are sometimes referred to as fit-for-purpose models. Obtain-

ing such models often proves difficult for gas–liquid two-phase dy-

namics due to the significant complexity and distributed nature of

multi-phase pipe flow ( Aarsnes et al., 2014; 2016 ). 

If the appropriate model can be developed, however, it could

see a wide range of uses in model-based control and estimation

applications where two-phase pipe flow is encountered, such as

underbalanced drilling of oil and gas wells ( Pedersen et al., 2015 ),

well control (both in conventional and Managed Pressure Drilling)

( Carlsen et al., 2008 ), riser gas handling ( Hauge et al., 2015 ), hydro-

carbon production monitoring ( Bloemen et al., 2006; Teixeira et al.,

2014 ) and mitigating severe slugging during hydrocarbon produc-

tion ( Eikrem et al., 2008; Esmaeil and Skogestad, 2011; Di Meglio

et al., 2010a ). 

The drift flux model 

A popular model for representing one-dimensional two-phase

flow dynamics in drilling and production at an acceptable fidelity

is the classical three-state transient Drift Flux Model (DFM), see

e.g. ( Lage and Time, 20 0 0; Fjelde et al., 20 03; Aarsnes et al., 2014 ).

For certain boundary conditions, the existence of solutions has

been proven ( Evje and Wen, 2013; 2015 ), and it is well known

that the DFM is, in most practical situations, hyperbolic, with three

(two fast and one slow) characteristic velocities ( Di Meglio, 2011 ).

The two fast characteristics represent the fast pressure dynamics in
he pipe, while the slow characteristic velocity is associated with

he transport of matter, also sometimes referred to as the void

ave ( Lorentzen and Fjelde, 2005; Masella et al., 1998 ). 

In this section we restate the classical equations of the transient

rift-flux model and then cast the system in canonical form using

he eigenvectors of the transport matrix, which poses the model

s a single Riemann invariant governing the propagation of the

oid wave, coupled to the pressure dynamics, given by two PDEs,

hrough the gas velocity. We then show how the approximation

mployed by e.g. ( Masella et al., 1998; Choi et al., 2013 ), using a

tatic relation in place of a dynamic momentum balance, is related

o relaxing both of the two PDEs describing the pressure dynamics.

oth approaches lead to a mixed hyperbolic/parabolic system with

 single hyperbolic PDE with a finite eigenvalue. 

he drift flux model equations 

We start the development of the proposed two-phase model

rom the classical Drift Flux Model (DFM) formulation, described

y the following equations ( Gavrilyuk and Fabre, 1996; Evje and

en, 2015 ): 

∂(αL ρL ) 

∂t 
+ 

∂(αL ρL v L ) 
∂x 

= �L , (1)

∂(αG ρG ) 

∂t 
+ 

∂(αG ρG v G ) 
∂x 

= �G , (2)

∂(αL ρL v L + αG ρG v G ) 
∂t 

+ 

∂(P + αG ρG v 2 G + αL ρL v 2 L ) 

∂x 
= S, (3)

here the independent variables t, x represent time and position

long the pipe, respectively, and the momentum source term, S is

ypically given as 

 = −ρm 

g sin θ (x ) − 2 fρm 

v m 

| v m 

| 
D 

(4)

ith the mixture relations 

m 

= αG ρG + αL ρL , v m 

= αG v G + αL v L , (5)

nd where αi , v i , ρ i , �i denote the volume fraction, velocity, den-

ity and mass source term, respectively, of phase i = G, L (gas or

iquid). Finally, f is the friction coefficient, D the hydraulic diam-

ter, g is the acceleration of gravity and θ is the pipe inclination

ngle (relative to the horizontal). For the remainder of this section

e will assume �L = �G = 0 . 

Eqs. (1) –(2) represent the mass balance for the liquid and gas

hases, while (3) is the conservation of momentum for the gas–

iquid mixture. 

The following closure relations are needed to complete the sys-

em: 

L + αG = 1 , P = c 2 G (T ) ρG , (6)

here P is the pressure, and c G ( T ) is the speed of sound in the

as as a function of the temperature T , while the liquid density is

ssumed constant. Finally the slip law 

 G = 

v m 

1 − α∗
L 

+ v ∞ 

= C 0 v m 

+ v ∞ 

(7)

here the profile parameter αL 
∗ ∈ [0, 1), usually given as the

istribution parameter C 0 = 1 / (1 −α∗
L 
) , and drift parameter v ∞ 

≥
 determine the relative velocity between the phases. These pa-

ameters typically depend on factors such as superficial velocities

nd inclination ( Shi et al., 2005 ). Multiple correlations for obtain-

ng α∗
L , v ∞ 

exist in the literature, see e.g. ( Zuber and Findlay, 1965;

hagwat and Ghajar, 2014; Choi et al., 2012 ). 
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anonical form 

The goal of the following derivation is to show that when the

istributed pressure dynamics are relaxed, the remaining dynamic

quation is a single PDE describing the propagation of a void wave

ith a velocity given by a static relation. This is an interesting re-

ult because it helps focus the search for a simplified model by

oting that, by discarding the distributed pressure dynamics, the

odel essentially only requires two parts: 

1. A first-order PDE describing the void wave advection. 

2. A set of closure relations giving pressure and velocity as a func-

tion of the state used in 1. 

This result will motivate the approach taken in Section 3 . 

ariable change 

To better highlight interesting features of the model, we rewrite

1) –(3) using a transformation in accordance with Gavrilyuk and

abre (1996) to obtain a new set of variables 

(χL , ρ, v G ) = 

(
(αL − α∗

L ) ρL 

ρm 

− α∗
L 
ρL 

, ρm 

− α∗
L ρL , v G 

)
. (8)

he resulting equations allow the quasilinear formulation 

2 

∂u 

∂t 
+ A (u ) 

∂u 

∂x 
= Q (u ) , u = 

⎡ 

⎣ 

χL 

ρ
v G 

⎤ 

⎦ , (9)

ith A ( u ) given as 

 (u ) = 

⎡ 

⎣ 

v G 0 0 

0 v G ρ

A 31 (u ) A 32 (u ) A 33 (u ) 

⎤ 

⎦ , (10) 

 31 (u ) ≡ c 2 G 

ρG (u ) − ρL 

αG (u ) ρL 

− (v G − v L (u )) 2 , (11) 

 32 (u ) ≡ c 2 G 

(1 − α∗
L ) ρG (u ) 

αG (u ) ρ2 
− (v G − v L (u )) 2 

χL 

ρ
, (12) 

 33 (u ) ≡ v G − 2 χL (v G − v L (u )) , (13) 

nd 

 (u ) = 

⎡ 

⎣ 

0 

0 

Q(u ) 

⎤ 

⎦ , (14) 

(u ) = −
(

1 + 

α∗
L ρL 

ρ

)

×
(

g sin θ + 

2 f ((1 − α∗
L ) v G − v ∞ 

) | (1 − α∗
L ) v G − v ∞ 

| 
D 

)
, (15) 

here all dependent variables are in boldface. 

The first state χ L is a Riemann invariant : it satisfies a pure

ransport equation with the velocity v G . The eigenvalues of the

ransport matrix, A ( u ), are ( Di Meglio, 2011 ): 

 

 

λ1 

λ2 

λ3 

⎤ 

⎦ = 

⎡ 

⎣ 

v G 
v G + χL (v L (u ) − v G ) + c M 

(u ) 

v G + χL (v L (u ) − v G ) − c M 

(u ) 

⎤ 

⎦ , (16) 
2 This relation, and other derivations in this section, are best found using sym- 

olic computation software. 

i  

n  

E  

a

ith the mixture sound velocity 

 M 

(u ) = 

√ 

χL (χL − 1)(v G − v L (u )) 2 + 

(1 − α∗
L 
) c 2 

G 
ρG (u ) 

αG (u ) ρ
, (17) 

nd the left eigenvectors 

 

 

l 1 

l 2 

l 3 

⎤ 

⎦ = 

⎡ 

⎢ ⎣ 

1 0 0 

A 31 (u ) 
A 32 (u ) 

1 

ρ
χL (v G −v L (u ))+ c M (u ) 

A 31 (u ) 
A 32 (u ) 

1 

ρ
χL (v G −v L (u )) −c M (u ) 

⎤ 

⎥ ⎦ 

. (18) 

We note from this derivation that v G shows up as an eigenvalue

n the transport matrix and that the void wave dynamics are rela-

ively simple due to our state transformation. The relations for the

ast pressure dynamics are much more complicated and challeng-

ng to work with. In particular, finding a diagonalizing transforma-

ion of the system is not feasible, if at all possible. 

elaxation of the distributed pressure dynamics 

Multiplying (9) with the left eigenvectors yields: 

 1 (u ) 
[ 
∂u 

∂t 
+ λ1 (u ) 

∂u 

∂x 
− Q (u ) 

] 
= 0 (19) 

 2 (u ) 
[ 
∂u 

∂t 
+ λ2 (u ) 

∂u 

∂x 
− Q (u ) 

] 
= 0 (20) 

 3 (u ) 
[ 
∂u 

∂t 
+ λ3 (u ) 

∂u 

∂x 
− Q (u ) 

] 
= 0 . (21) 

ollowing ( Di Meglio, 2011 ), we proceed to a model reduction anal-

gous to singular perturbation techniques. Indeed, eigenvalues λ2 

nd λ3 correspond to sound wave propagation (see, e.g. Masella

t al., 1998; Lorentzen and Fjelde, 2005 ) and are at least one order

f magnitude greater than λ1 , which corresponds to the transport

f the pseudo-holdup χ L . This suggests that the fast transport dy-

amics corresponding to (20) and (21) can be relaxed when con-

erned with the slower time-scale of the void–wave Eq. (19) . Im-

osing instantaneous steady state for (20) and (21) yields: 

 1 (u ) 
[ 
∂u 

∂t 
+ λ1 (u ) 

∂u 

∂x 
− Q (u ) 

] 
= 0 (22) 

 2 (u ) 
[ 
λ2 (u ) 

∂u 

∂x 
− Q (u ) 

] 
= 0 (23) 

 3 (u ) 
[ 
λ3 (u ) 

∂u 

∂x 
− Q (u ) 

] 
= 0 , (24) 

here by inserting for the eigenvectors and eigenvalues we can

rite the resulting system as 

∂χL 

∂t 
+ v G 

∂χL 

∂x 
= 0 (25) 

∂ρ

∂x 
= − A 31 (u ) 

A 32 (u ) 

∂χL 

∂x 
+ 

ρQ(u ) 

A 32 (u ) ρ − A 33 (u ) v G 
. (26) 

∂v G 
∂x 

= 

v G Q(u ) 

A 33 (u ) v G − A 32 (u ) ρ
(27) 

L is still a Riemann invariant in the reduced system propagat-

ng with velocity v G given implicitly by the relations (26) –(27) . We

ote that the remaining dynamics of the model are contained in

q. (25) , while (26) –(27) are static relations which can possibly be

pproximated with simpler closure relations. 
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Relation to the No-Pressure-Wave model 

In Masella et al. (1998) and Choi et al. (2013) a reduced DFM

referred to as the No Pressure Wave (NPW) model is obtained by re-

moving the time derivative term in (3) and computing the pressure

from the resulting static relation. Consider again the original set of

Eqs. (1) –(2) but in place of the mixture momentum Eq. (3) use the

static force balance 

∂P 

∂x 
= S. (28)

In Masella et al. (1998) it is noted that the resulting model has

a single finite eigenvalue, and that the remaining two states cor-

responds to eigenvalues that are infinite, which is similar to the

system of (25) –(27) . This means that using (28) in place of (3) ef-

fectively relaxes both the two characteristics associated with the

fast pressure waves. Hence, using a simpler approximation in place

of the expressions for ρ , v G it is possible to obtain a simple first-

order PDE of the two-phase flow dynamics. In the following we

exploit these facts to develop such a simple representation of the

void wave propagation that remains when the pressure dynamics

have been relaxed. 

New approach 

An approach to exploit the structure revealed by (25) –(27) was

suggested in Aarsnes et al. (2015) where a simplified model rep-

resentation of these relaxed dynamics was developed. The prob-

lem with this approach is that pressure is given implicitly in the

states (due to the source term) such that the resulting simulation

requires the solution of an ODE for every time-step. This problem

is avoided in the present paper by using αG as the distributed state

in place of χ L , which allows for finding an approximate relation for

the pressure gradient which yields pressure explicit in the states

and exogenous variables. 

More specifically the pseudo-holdup, 

χL = 

(αL − α∗
L ) ρL 

ρm 

− α∗
L 
ρL 

, (29)

changes according to: 

d χL = 

ρG (α∗
L − 1) d αG + αG (αG + α∗

L − 1) d ρG (
αG ρG − ρL (αG + α∗

L 
− 1) 

)2 
. (30)

Plugging (30) into (25) we get the equation: 

∂αG 

∂t 
+ v G 

∂αG 

∂x 
= −αG (αG + α∗

L − 1) 

ρG (α∗
L 

− 1) 

(
∂ρG 

∂t 
+ v G 

∂ρG 

∂x 

)
(31)

where ρG is given by the pressure. This motivates the approach

taken in the following section. 

Derivation of the new formulation 

The full three-state drift-flux model is too complicated for most

model-based estimation and control approaches ( Aarsnes, 2016 ),

hence simplification is desirable. Based on the analysis of the pre-

vious section we argue that when relaxing the fast pressure dy-

namics, it should be possible to reduce the model description to a

first-order PDE, while still retaining the qualitative dynamics of the

system. 

For this derivation we will again start with the classical Drift

Flux formulation (1) –(7) . First note the relation from the slip law

(7) : 

αL v L = (αL − α∗
L ) v G − (1 − α∗

L ) v ∞ 

. (32)

Following ( Gavrilyuk and Fabre, 1996 ), divide (1) by ρL , which we

recall was assumed constant, and insert (32) to get 

∂αL 

∂t 
+ 

∂(αL − α∗
L ) v G 

∂x 
= 

�L 

ρL 

(33)
 

∂αG 

∂t 
+ v G 

∂αG 

∂x 
= (αL − α∗

L ) 
∂v G 
∂x 

− �L 

ρL 

(34)

here the first term on the RHS of (34) is due to gas expansion

hich necessarily translates to acceleration of the gas. 

Employing the chain rule on (2) we have 

∂v G 
∂x 

= 

�G 

αG ρG 

− 1 

αG ρG 

(
∂αG ρG 

∂t 
+ v G 

∂αG ρG 

∂x 

)
(35)

= 

�G 

αG ρG 

− 1 

ρG 

(
∂ρG 

∂t 
+ v G 

∂ρG 

∂x 

)

− 1 

αG 

(
∂αG 

∂t 
+ v G 

∂αG 

∂x 

)
. (36)

nserting (36) into (34) 

∂αG 

∂t 

(
1 + 

αL − α∗
L 

αG 

)
+ v G 

∂αG 

∂x 

(
1 + 

αL − α∗
L 

αG 

)

= (αL − α∗
L ) 

�G 

αG ρG 

− (αL − α∗
L ) 

ρG 

(
∂ρG 

∂t 
+ v G 

∂ρG 

∂x 

)
. (37)

hus, defining the convenience variable E G : 

 G ≡ −αG (αL − α∗
L ) 

(1 − α∗
L 
) ρG 

(
∂ρG 

∂t 
+ v G 

∂ρG 

∂x 

)
, (38)

e have from (37) 

∂αG 

∂t 
+ v G 

∂αG 

∂x 
= E G + 

1 

1 − α∗
L 

(
(αL − α∗

L ) 
�G 

ρG 

− αG 
�L 

ρL 

)
. (39)

hen, defining the source terms �∗
G 
, �∗

L 
: 

∗
G ≡

αL − α∗
L 

(1 − α∗
L 
) ρG 

�G , �∗
L ≡

αG 

(1 − α∗
L 
) ρL 

�L , (40)

e have 

∂αG 

∂t 
+ v G 

∂αG 

∂x 
= E G + �∗

G − �∗
L . (41)

In (41) the source terms �∗
G 
, �∗

L 
can represent liquid or gas in-

ection sources, and also mass transfer terms. However, to prop-

rly account for gas dissolution into the liquid phase, an additional

ass balance for the dissolved gas would have to be added. With-

ut this, the model is limited to cases where gas solubility is low

r negligible. 

ressure profile 

The distributed, quasi-steady pressure is obtained from (28) and

he pressure boundary condition P (x = L ) = P L : 

 (x ) = P L + 

∫ x 

L 

S(ξ ) d ξ . (42)

his expression is implicit in that it is dependent on v m 

which

s in turn dependent on E G ( P ), and ρG ( P ). To avoid this complica-

ion a simplification should be used, e.g. by assuming v m 

uniform

n space when calculating the pressure profile. Essentially, what is

odeled is 

 (x ) = P L + F (x ) + G (x ) , (43)

here F ( x ), G ( x ) are the frictional pressure drop and hydrostatic

ressure. 

Let q L , q G denote the exogenous variables liquid, respectively

as, volumetric flow rates entering at the left boundary. Then, one

ossible approximation of (4) is 

(x ) ≈ −ρ̄m 

(x ) 

(
g sin θ (x ) + 

2 f (q G + q L ) | q G + q L | 
A 

2 D 

)
, (44)
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= ρL αL ( x ) + ρG αG ( x ) , (45) 

.e. a mean approximate gas density is used. This makes the source

erm S explicit in the state αG and the exogenous variables. The

pproximation gives good results for cases where the gas mass is

mall relative to the liquid mass, αG ρG 	 αL ρL . If this assumption

s not satisfied, any other approximation, explicit in the state and

xogenous variables, can be used. 

The approximation v m 

≈ q G + q L 
A 

will clearly cause an under-

rediction of frictional pressure drop when there is significant

mount of gas expansion causing acceleration of the gas phase.

his can to some degree be amended by tuning the friction co-

fficient f in (44) . 

It should be noted that by discarding the transient pressure

haracteristics, it can be difficult to enforce certain kinds of top

ide (right) boundary conditions. This is due to the fact that we

o longer have characteristics traveling from the right to the left

nd consequently, strictly speaking, no right boundary condition. In

articular a vertical pipe without flow at the boundaries, tending

o phase separation, would be difficult to replicate (e.g. a shut-in

il and gas well). 

oundary condition and velocity profile 

Defining at the inlet (at the left boundary) v G 0 ≡ v G (x = 0 , t) , we

ave from (7) : 

 G 0 = 

C 0 
A 

(q G + q L ) + v ∞ 

. (46) 

he left boundary condition of (41) is given as 

αG ( x = 0 , t ) = 

q G 
A v G 0 

. (47) 

The velocity gradient is obtained by combining (36) and (41) : 

∂v G 
∂x 

= 

E G + �∗
G − �∗

L + �L /ρL 

αL − α∗
L 

(48) 

 

E G + �∗
G 

αL − α∗
L 

+ 

1 

1 − α∗
L 

�L 

ρL 

. (49) 

Now note the relation for the gas density in (6) . In the following

e will limit the model to a more specific relation of the form 

ργ
G 

P 
= C, (50) 

hich is obtained by assuming adiabatic gas expansion with γ the

diabatic gas constant, and C a constant. In differential form, we

an write (50) as 

ργ −1 
G 

d ρG = C d P, (51) 

nd substituting the value of C from (50) , we further have: 

d ρG 

ρG 

= 

d P 

γ P 
. (52) 

ote that the term γ P is equivalent to the isentropic bulk modulus

f an ideal gas. Eq. (52) allows us to recast (38) in terms of the

ressure profile, P ( x ): 

 G = −αG (1 − C 0 αG ) 

γ P 

(
∂P 

∂t 
+ v G 

∂P 

∂x 

)
, (53) 

or deriving the velocity, we neglect the ∂P 
∂t 

term from (53) . This

ssumption may cause transient errors in the computed gas veloc-

ty, especially when large pressure changes occur at the boundary,

.g. due to the opening or closing of a choke valve. Then, inserting

40) and (53) , without the transient pressure term, into (49) 

∂v G 
∂x 

= C 0 

(
− αG v G 

P γ
S + 

c 2 G 

P γ
�G + 

1 

ρL 

�L 

)
, (54)
nd consequently, by defining the integral 

 v (x ) = 

∫ x 

0 

C 0 αG (ξ ) 

P (ξ ) γ
S(ξ ) d ξ , (55) 

he distributed velocity is obtained as 

 G ( x ) = e −I v ( x ) 

(
v G 0 + C 0 

∫ x 

0 

(
c 2 G ( ζ ) 

P ( ζ ) γ
�G ( ζ ) 

+ 

1 

ρL 

�L ( ζ ) 

)
e I v ( ζ ) d ζ

)
. (56) 

umped pressure dynamics 

For the case when the pressure at the topside boundary is ex-

genous, the equations in the previous sections give a complete

escription of the simplified two-phase flow model. In many cases,

owever, the topside boundary pressure (i.e. at x = L ) is indirectly

etermined by additional dynamics, e.g. when controlling pressure

ith a choke valve in a broad range of oil and gas related applica-

ions, e.g. Managed Pressure Drilling ( Godhavn, 2011; Kaasa et al.,

012 ), underbalanced drilling ( Pedersen et al., 2015 ), and hydrocar-

on production ( Di Meglio et al., 2010b ), to name a few examples. 

To model this scenario we use a lumped expression for the

ressure dynamics. Considering the pipe as a single control vol-

me, and applying the mass conservation law: 

∂P L 
∂t 

= 

βL 

V 

(
q L + q G + T E G − q c 

)
, (57) 

ith q c the volumetric flow rate through the choke, and T E G the ef-

ect of in-domain gas expansion on the lumped pressure dynamics.

he term T E G can be found by integrating the gradient of the gas

elocity along the well. Including the 
∂ρG 
∂t 

term in (38) , T E G can be

ritten as: 

 E G = A 

∫ L 

0 

E G + �∗
G 

αL − α∗
L 

+ 

1 

1 − α∗
L 

�L 

ρL 

d x. (58) 

e will now show that the total gas expansion, T E G , can be split

nto a term affecting the effective bulk modulus of the gas–liquid

ixture, β̄, and a remaining term, T XE , accounting for source terms

nd the gas expansion when propagating through the negative

ressure gradient. 

Express the gas expansion dynamics in the principal vari-

bles: 

 G = −αG (αL − α∗
L ) 

(1 − α∗
L 
) γ P 

(
∂P 

∂t 
+ v G 

∂P 

∂x 

)
, (59) 

∂P (x, t) 

∂x 
= S(x ) , (60) 

∂P (x, t) 

∂t 
≈ ∂P L 

∂t 
= 

βL 

V 

(
q L + q G + T E G − q c 

)
, (61) 

nd consequently the T EG term can be split into a term which in-

ludes 
∂P L 
∂t 

and a remainder 

 E G = T XE − A 

∫ L 

0 

C 0 αG 

γ P 
d x 

∂P L 
∂t 

, (62) 

 XE = A 

(
v G (L ) − v G 0 

)
, (63) 

here we have used the fact that the remainder equals the inte-

rated velocity gradient with the 
∂ρG 
∂t 

term excluded. 

Inserting the total gas expansion (62) into the pressure dynam-

cs (57) : 

∂P L 
∂t 

= 

βL 

V 

(
q L + q G − q c − T XE − A 

∫ L 

0 

C 0 αG 

γ P 
d x 

∂P L 
∂t 

)
, (64) 
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Fig. 1. Shock tube test with all source terms set to zero. The pressure dynamics, discarded in the relaxed model, causes the full model to oscillate around the trajectory of 

the relaxed model. With no source terms to drive the pressure dynamics to the equilibrium, these oscillations would in theory continue indefinitely, although here the effect 

of numerical diffusion can be seen. 
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∂P L 
∂t 

(
1 + 

βL 

L 

∫ L 

0 

C 0 αG 

γ P 
d x 

)
= 

βL 

V 

(
q L + q G − q c + T XE 

)
, (65)

hence 

∂P L 
∂t 

= 

β̄

V 

(
q L + q G − q c + T XE 

)
, (66)

β̄ ≡ βL 

1 + 

βL 

L 

∫ L 
0 

C 0 αG 

γ P 
d x 

, (67)

where we have defined the effective bulk modulus β̄ . 

The complete model is restated in Table 1 for convenience. 
Table 1 

The complete simplified two-phase model. 

Pressure dynamics: 

∂ 
∂t 

P L (t) = 

β̄(t) 
V 

(
q L (t) + q G (t) − q c (t) + T XE (t) 

)
, (68) 

T XE (t) = A 
(
v G (L, t) − v G 0 (t) 

)
, (69) 

β̄(t) ≡ βL 

1+ βL 
L 

∫ L 
0 

C 0 αG (x,t) 

γ P(x,t) 
d x 

, (70) 

Distributed dynamics: 

∂ 
∂t 

αG (x, t) + v G (x, t) ∂ 
∂x 

αG (x, t) = E G (x, t) + �∗
G (x, t) − �∗

L (x, t) , (71) 

αG (x = 0 , t) = 

q G (t) 
C 0 (q G (t)+ q L (t))+ A v ∞ . (72) 

�∗
G (x, t) ≡ 1 −C 0 αG (x,t) 

ρG (x,t) 
�G (x, t) , (73) 

�∗
L (x, t) ≡ C 0 αG (x,t) 

ρL 
�L (x, t) , (74) 

Closure relations: 

S (x, t) = −ρm (x, t)(g sin θ (x ) + 

2 f (q G (t)+ q L (t)) | q G (t)+ q L (t) | 
A 2 D 

) , (75) 

ρ̄m = ρL αL (x, t) + ρ̄G αG (x, t) , (76) 

P(x, t) = P L (t ) + 

∫ x 
L S̄ (ξ , t ) d ξ , (77) 

v G (x, t) = e −I v (x,t) (v G 0 (t) + C 0 
x ∫ 
0 

( 
c 2 G 

P(ζ ,t) γ
�G (ζ , t) + 

1 
ρL 

�L (ζ , t)) e I v (ζ ,t) d ζ ) , (78) 

I v (x, t) = 

∫ x 
0 

C 0 αG (ξ ,t) 
P(ξ ,t) γ

S̄ (ξ , t) d ξ , (79) 

v G 0 (t) ≡ C 0 
A 

(q G (t) + q L (t)) + v ∞ . (80) 

E G (x, t) ≡ − αG (x,t)(1 −C 0 αG (x,t)) 
γ P(x,t) 

(
∂ 
∂t 

P L ( t) + v G ( x, t) ̄S ( x, t) 
)
, (81) 
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ome numerical examples 

In this section two numerical examples are considered. The first

ne highlights the effect of removing the pressure dynamics, while

he second numerical example illustrates the feasibility of employ-

ng the model to a typical scenario from underbalanced drilling

described in the following). 

For both scenarios we consider a 10 0 0 m long domain with

 G = 300 m/s , ρL = 1000 kg/m 

3 , v ∞ 

= α∗
L = 0 . The full Drift-Flux

odel Eqs. (1) –(3) are implemented with the AUSM scheme of

vje and Fjelde (2002) and time step 
t = 
x/ 1500 , while the

DE of the simplified model is implemented with a first-order up-

ind scheme with time step 
t = 
x/ 100 and the integrals eval-

ated with trapezoidal quadrature. Different time steps are used

ue to the different requirements of the CFL condition with and

ithout the inclusion of the distributed pressure dynamics. In both

ases a grid size of 
x = 1 m is used. 

xample 1: shock tube 

We initially investigate the model in a so-called shock tube sce-

ario, see ( Evje and Fjelde, 2002 ). The source terms are set to

ero, corresponding to a frictionless horizontal tube, and the sim-

lation is initialized with the domain split in half with αG = 0 . 2

nd αG = 0 . 8 for the right and left domain respectively, and with a

ight boundary condition of P (x = L ) = 1 bar. 

The simulation results are shown in Fig. 1 , where the void wave

an be seen propagating towards the right while the faster pres-

ure waves in the full DFM travel back and forth in the domain,

eing reflected at the boundaries. These pressure oscillations cause

erturbations in the void fraction around the nominal trajectory

ollowed by the simplified model. 

xample 2: underbalanced drilling connection 

Next we consider a scenario relevant for the potential appli-

ation of the model to underbalanced drilling. In underbalanced

rilling the pressure in the lowermost section of the well (which

s exposed to the reservoir) is deliberately kept below the reser-

oir pressure thus allowing influx of fluid while drilling. While un-

erbalanced drilling has several benefits ( Bennion et al., 1996 ), it
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Fig. 2. Trends of the changing exogenous variables ( left ) and the topside and bottom-hole pressures ( right ) during the connection scenario. 

Fig. 3. Void fraction profiles before, during and after the connection. 
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lso entails challenges in the form of more complicated dynamic

ehavior due to the two-phase flow and well-reservoir interaction

 Aarsnes et al., 2016 ). 

When performing a pipe connection in a vertical well, the

iquid injection through the drillstring (at the left boundary) is

topped and the topside back-pressure choke valve opening is re-

uced so as to try to maintain a constant bottom-hole pressure

 Pedersen et al., 2015; Nygaard et al., 2004 ). Monitoring and con-

rolling this operation effectively is of importance both for main-

aining reservoir and well integrity, as well as for enabling char-

cterization of the reservoir productivity and pore pressure while

rilling ( Suryanarayana et al., 2007; Shayegi et al., 2012 ). 

For this scenario, we include the lumped pressure dynamics of

ection 3.3 where the flow out rate, q c , is found from the multi-

hase choke relation from Aarsnes et al. (2014) . On the left bound-

ry, a constant gas injection rate is applied while the liquid rate

nd choke opening are varied according to Fig. 2 . 

The pressure trends in Fig. 2 and void profiles in Fig. 3 show

he model’s ability to qualitatively represent the essential dynam-

cs for control and estimation applications in this scenario. We do,

owever, note the following errors and their causes: 
• The steady state error in the downhole pressure P (x = 0) is due

to the approximated momentum source term (44) , in partic-

ular the failure of the approximation to account for the in-

creased frictional pressure loss due to increase in gas velocity

towards the rightmost part of the domain. This error can easily

be amended by tuning the friction coefficient f . 
• A significant transient error can be seen during the time pe-

riods 5–15 min, and 20–30 min. This error seems to be con-

nected to the change in pressure at the right boundary which

is not taken into account when the velocity profile is com-

puted, see (54) . This means that the simplified model over-

and under-predicts the gas velocity, respectively in each of the

two time periods, and this could cause the observed transient

error. 

These two errors are both due to the approximations done to

nable the model to be cast in explicit form. For the time scales of

mportance in this scenario, the discarded pressure waves do not

ave significant impact on the accuracy of the results. 
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Discussion on simulation speed 

For the underbalanced drilling connection scenario the simula-

tion time for the full Drift-Flux model was 3630.7 s and for the

simplified model 661 s, when implemented in MATLAB and run on

a i7-5500U CPU @ 2.40 GHz. 

The slow run time of the full DFM is in large part due to

the small time step that must be used to accommodate the CFL-

condition with the large eigenvalues associated with the propaga-

tion of the pressure waves. The full DFM can also be implemented

with larger time steps by employing large time step schemes such

as proposed by Evje and Flåtten (2006) , or by treating the pressure

wave propagation implicitly through using semi-implicit schemes,

see e.g. ( Baudin et al., 2005; Bruce Stewart and Wendroff, 1984 ). 

The usability of the simplified model becomes more appar-

ent when implemented with a larger grid size. E.g. by setting


x = 20 meters the underbalanced drilling connection scenario runs

in 1.56 s which corresponds to 20 0 0 × real-time, and with some

code optimization yet faster run times would be expected. This is a

very desirable property when the model has to be run repeatedly

as part of a larger numerical algorithm, such as when employed in

Model Predictive Control. 

Summary and conclusions 

In this paper we have presented a simplified two-phase flow

model obtained by relaxing the distributed pressure dynamics,

equivalent to using a quasi-steady momentum balance. The re-

sulting model is a transport equation, with void fraction as the

distributed state. The gas travels with an exponentially increasing

(for negative pressure gradient), quasi-steady velocity driven by the

gas expansion, which is modeled as a source term in the trans-

port equation. The closure relations can be approximated as ex-

plicit functions and quadratures of the states and exogenous vari-

ables. This enables the implementation of simple, fast and robust

two-phase simulators, which is amenable for control and estima-

tion applications where simulation speed and robustness are of

importance such as Model Predictive Control ( Pedersen and God-

havn, 2013 ) and particle filters ( Lorentzen et al., 2014 ). 

To deal with cases where the right boundary condition is spec-

ified as a flow rate in place of a pressure, a relation is required to

describe the pressure at the boundary. This is done by assuming a

lumped pressure for the whole conduit, with dynamics modeled

by an ODE coupled with the PDE. The resulting first-order ODE

model describing the lumped pressure dynamics can for some ap-

plications enable the use of established model-based algorithms in

pressure control and estimation problems, where the full DFM is

too complicated ( Aarsnes, 2016 ). 

Further work on this topic should deal with the following

points not yet addressed: 

• More elaborate phase behavior models. 
• Integrate the model with more accurate closure relations for

the pressure drop (i.e. the momentum source term) and the slip

law. 
• Improve the approximations used to make the implementation

explicit. 
• Handle the phenomena of phase separation in a shut-in sce-

nario. 
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