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Abstract

The approximation conditions of Strang and Fix are first recalled.
An elementary result on the differentiation of a finite elements approxi-
mation is proved, followed by a result by Lemarié on the differentiation
of a wavelet decomposition. Daubechies’ spline example is detailed.

1 The Strang and Fix conditions

1.1 Main result

The following theorem relates the approximating properties of a discrete shift
invariant operator to its ability to reproduce polynomials.

Theorem 1 (Fix-Strang [1]) Let K ∈ L2
Loc(R × R) such that

K(t + 1, s + 1) = K(t, s) a.e. (1)

∃M s.t. K(t, s) = 0 if |t − s| ≥ M (2)

and, for δ > 0, define Pδ as

Pδf(t) =
1

δ

∫
R

K
(

t

δ
,
s

δ

)
f(s)ds (3)

Then the two following statements are equivalent:
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• For any f ∈ HN+1(R) and δ ≤ 1,

‖Pδf − f‖L2(R) ≤ CδN+1
∥∥∥f (N+1)

∥∥∥
L2(R)

(4)

• For any integer p, 0 ≤ p ≤ N ,∫
R

K(t, s)spds = tp (5)

A proof of this theorem is available at [2].

1.2 Example

Building an operator K which satisfies (1) is rather straightforward: assume
that k(t, s) is an L2 compactly supported function. Then

K(t, s) =
∑
i∈Z

k(t − i, s − i) (6)

is locally L2 and satisfies (1) and (2).
Wavelet bases are constructed using scaling functions. Related approxi-

mation results are obtained by setting

k(t, s) = φ(t)φ∗(s)

where φ and φ∗ are conjugare scaling functions. The seed kernel k is then
separable.

2 Differentiation of shift generated approx-
imations

The kernel K is now assumed to have the structure

K(t, s) =
∑
i∈Z

k(t − i, s − i)

It is assumed that k is differentiable with respect to t, that it is compactly
supported and that its derivative has a finite energy. Then

k1(t, s) =
j=+∞∑

j=0

∂k

∂t
(t − j, s) (7)
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is well defined because the sum is finite at every point. Hence

k̃(t, s) =
∫ s+1

s
k1(t, σ)dσ (8)

is also defined because k1 is compactly supported and has a finite energy
with respect to s. Define K̃ as

K̃(t, s) =
∑
i∈Z

k̃(t − i, s − i) (9)

and P̃δ by (
P̃δx

)
(t) =

1

δ

∫
K̃(t, s)x(s)ds

Theorem 2 K̃ has locally a finite energy. If K satisfies (5) for p = 0, then
K̃ satisfies (2) for some M ≥ 0. The following commutation formula holds:

d

dt
Pδx = P̃δ

dx

dt
(10)

and, if K satisfies (5), then K̃ satisfies∫
R

K̃(t, s)spds = tp if 0 ≤ p ≤ N − 1 (11)

Proof. Since k is compactly supported with a finite energy,

k̃1(t, s) =
∫ s+1

s

∂k

∂t
(t, s)ds

is compactly supported with a finite energy. Hence

k̃(t, s) =
∑
i∈Z

j=+∞∑
j=0

k̃1(t − i − j, s − i)

has locally a finite energy because the summations are locally finite. Moreover, if
the support of k is in [a, b] × [α, β], then k̃(t, s) is non zero only if t − b − j ≤ i ≤
t − a − j and s − β ≤ i ≤ s − α, which is impossible if s − t > β − a. Hence

K̃(t, s) = 0 if s − t > β − a (12)

On the other hand, the Strang and Fix conditions for p = 0 imply

1 =
∑
j∈Z

∫
k(t − j, s − j)ds

=
∑
j∈Z

∑
i∈Z

∫ s+1

s
k(t − j, σ + i − j)dσ

=
∑
j∈Z

∑
i∈Z

∫ s+1

s
k(t − i − j, σ − j)dσ
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which implies

0 =
∑
j∈Z

∑
i∈Z

∫ s+1

s

∂k

∂t
(t − i − j, σ − j)dσ (13)

For some values of t−s, the summation i is restricted to i ≥ 0. Indeed, the integral
is non zero only if s−β ≤ j ≤ s+1−α. On the other hand, ∂k/∂t(t− i− j, s− j)
is non zero only if a+ j ≤ t− i ≤ b+ j. There exists an index j which satisfies the
previous conditions with s−β ≤ j ≤ s+1−α only if a+s−β ≤ t−i ≤ b+s+1−α.
If t − s ≥ b + 1 − α, this implies i ≥ 0, and hence

0 =
∑
j∈Z

i=+∞∑
i=0

∫ s+1

s

∂k

∂t
(t − i − j, σ − j)dσ

= K̃(t, s) if t − s ≥ b + 1 − α (14)

which proves that

K̃(t, s) = 0 if |t − s| > max(|β − a|, |b + 1 − α|)
Since

Observe that the commutation formula holds if and only if its is valid for δ = 1.
In this case

d

dt

∫
K(t, s)x(s)ds =

∑
i∈Z

∫
∂k

∂t
(t − i, s − i)x(s)ds (15)

Equation (7) implies

∂k

∂t
(t, s) = k1(t, s) − k1(t − 1, s) (16)

Substituting (16) into (15) yields

d

dt

∫
K(t, s)x(s)ds =

∑
i∈Z

∫
(k1(t − i, s − i) − k1(t − i − 1, s − i))x(s)ds

=
∑
i∈Z

∫
(k1(t − i, s − i) − k1(t − i, s − i + 1))x(s)ds(17)

Using (9) in (17) yields

d

dt

∫
K(t, s)x(s)ds = −

∑
i∈Z

∫
∂k̃

∂s
(t − i, s − i)x(s)ds

=
∑
i∈Z

∫
k̃(t − i, s − i)

dx

ds
(s)ds

=
∫

K̃(t, s)
dx

ds
(s)ds

Finally, one can verify that (11) is a direct consequence of the commutation for-
mula (10) applied to (5). ✷
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3 Differentiation of wavelet decompositions

3.1 Wavelet decomposition

Theorem 2 is extended to the decomposition of a signal on a wavelet basis.
A signal x is represented as

x(t) =
1

δ

∑
k∈Z

∫
R

φ
(

t

δ
− k

)
φ∗

(
s

δ
− k

)
x(s)ds (18)

+
j=−∞∑

j=0

1

2jδ

∑
k∈Z

∫
R

ψ
(

t

2jδ
− k

)
ψ∗

(
s

2jδ
− k

)
x(s)ds (19)

where φ and φ∗ are conjugate scaling functions and ψ and ψ∗ the related
wavelets.

The first part (18) of the decomposition is a particular case of the approx-
imation (3) with (6) with

k(t, s) = φ(t)φ∗(s). (20)

Scaling functions verify a scaling equation:

φ
(

t

2

)
=

∑
k∈Z

hkφ(t − k) (21)

or, in the Fourier domain:

φ̂(2ω) =
1

2
ĥ(ω)φ̂(ω)

where the Fourier transform of the sampled data filter h is given by

ĥ(ω) =
k=+∞∑
k=−∞

hke
−ikω (22)

h is called the synthesis low pass filter. The Fourier transform of φ is

φ̂(ω) =
1

2

j=+∞∏
j=1

ĥ
(
2−kω

)
φ̂(0).

A similar equation exists for φ∗ with a filter h∗ which is called the analysis
low pass filters. Wavelets also satisfy a scaling equation:

ψ
(

t

2

)
=

∑
k∈Z

gkφ(t − k) (23)
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where g is generally taken as

gk = (−1)k−1h∗
1−k (24)

and g∗ as
g∗

k = (−1)k−1h1−k. (25)

g is the synthesis high pass filter and g∗ is the analysis high pass filter (actu-
alling, they are band pass filters). The decomposition (18,19) is performed
by a cascade of FIR filters whose coefficients are those of h−k and g−k; the
reconstruction of the signal is performed using FIR filters whose coefficients
are those of h∗

k and g∗
k. This algorithm is given by theorem 4 of section 3.5.

3.2 Main result

Lemarié [3] has extended theorem 2 and has given the related transformations
on the low pass filters h and h∗:

Theorem 3 (Lemarié) Let φ and φ∗ two conjugate scaling functions such
that φ is Cε for some ε > 0. Then there exist two conjugate scaling functions
φ̃ and φ̃∗ such that:

φ′(t) = φ̃(t) − φ̃(t − 1) and φ∗(t + 1) − φ∗(t) = φ̃∗′ (t) (26)

Moreover, the trigonometric polynomials h̃ and h̃∗ and the biorthogonal wavelets
ψ̃ and ψ̃∗ related to φ̃ and φ̃∗, the projectors P̃δ related to k̃(t, s) = φ̃(t)φ̃∗(t)
and the projector Q̃δ = Id − P̃δ satisfy

̂̃
h(ω) =

2

1 + e−iω
ĥ(ω) (27)

̂̃
h∗(ω) =

1 + eiω

2
ĥ∗(ω) (28)

ψ̃(t) =
1

4
ψ′(t) and ψ̃∗′ (t) = −4ψ∗(t) (29)

d

dt
◦ Pδ = P̃δ ◦

d

dt
(commutation formula) (30)

d

dt
◦ Qδ = Q̃δ ◦

d

dt
. (31)

Equation (26) proves that the new scaling functions φ̃ and φ̃∗ define a new
kernel seed k̃ which is related to k by (7) and (8); hence the commutation
formula (30) is a consequence of theorem 2.
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3.3 Filter computations

3.3.1 Low pass filters

Proposition 1 The low pass filters h̃ and h̃∗ satisfy

h̃k = 2
p=+∞∑

p=0

(hk−2p − hk−2p−1) (32)

and

h̃∗
k =

h∗
k + h∗

k+1

2
(33)

Proof. Equations (27) and (28) lead to the time representation of the filters h̃
and h̃∗. Using (22) in (27) yields

h̃k + h̃k−1 = 2hk

which implies
h̃k − h̃k−2 = 2(hk − hk−1)

and hence

h̃k = 2
p=+∞∑

p=0

(hk−2p − hk−2p−1)

The filter h̃ has a finite impulse response if φ has a compact support since the
length of h̃ is equal to 1 plus the length of the support of φ̃, which is itself finite.

Using (22) in (28) yields

h̃∗
k =

h∗
k + h∗

k+1

2
✷

3.3.2 High pass filters

Proposition 2 The high pass filters g̃ and g̃∗ satisfy

g̃k =
g∗

k − g∗
k−1

2
(34)

and

g̃∗
k =

p=+∞∑
p=0

(g∗
k+2p + g∗

k+2p+1) (35)
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Proof. Equations (24) and (33) gives the expression of g̃:

g̃k = (−1)k−1 h∗
1−k + h∗

1−k+1

2

=
g∗k − g∗k−1

2

Equations (25) and (32) gives the expression of g̃∗:

g̃∗k = (−1)k−12
p=+∞∑

p=0

(h1−k−2p − h1−k−2p−1)

= 2
p=+∞∑

p=0

(g∗k+2p + g∗k+2p+1)

✷

Propositions 1 and 2 provide an explict computation of the “derivative”
analysis and reconstruction filters from the original filters.

3.4 Coefficient computations

Proposition 3 If a differentiable signal x is decomposed as

x(t) =
1

δ

∑
k∈Z

ckφ
(

t

δ
− k

)
+

j=−∞∑
j=0

1

2jδ

∑
k∈Z

dj,kψ
(

t

2jδ
− k

)

then

dx

dt
=

1

δ

∑
k∈Z

ck − ck−1

δ
φ̃

(
t

δ
− k

)
+

j=−∞∑
j=0

1

2jδ

∑
k∈Z

4dj,k

2jδ
ψ̃

(
t

2jδ
− k

)
(36)

Proof. The derivative of a signal x can be decomposed on the biortogonal system
φ̃, φ̃∗, ψ̃, ψ̃∗.

If
Pδx =

∑
k∈Z

ckφ

(
t

δ
− k

)
then

P̃δ
dx

dt
=

∑
k∈Z

γkφ̃

(
t

δ
− k

)
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with

γk =
1
δ

∫
R

φ̃∗
(

t

δ
− k

)
dx

ds
ds

= − 1
δ2

∫
R

dφ̃∗

ds

(
t

δ
− k

)
x(s)ds

=
1
δ2

∫
R

(
φ∗

(
s

δ
− k

)
− φ∗

(
s

δ
− k + 1

))
x(s)ds

=
ck − ck−1

δ

Similarly, if

Qδx =
∑
k∈Z

dkψ

(
t

δ
− k

)
then

Q̃δ
dx

dt
=

∑
k∈Z

δkψ̃

(
t

δ
− k

)

γk =
1
δ

∫
R

ψ̃∗
(

t

δ
− k

)
dx

ds
ds

= − 1
δ2

∫
R

dψ̃∗

ds

(
t

δ
− k

)
x(s)ds

=
4
δ2

∫
R

ψ∗
(

s

δ
− k

)
x(s)ds

=
4dk

δ

✷

Together with propositions 1 and 2, proposition 3 provides an explicit scheme
to differentiate a signal given its wavelet decomposition.

3.5 Discrete computations

A discrete signal x[k] is given with a sampling interval δ. This discrete data
x[n] is assimilated to the scaling coefficients of a continuous time signal x,
e.g.

x[n] =
1

δ

∫
R

x(s)φ∗
(

s

δ
− n

)
ds (37)

Given a discrete signal x, denote by x̄ the signal defined by x̄[n] = x[−n] and
by x̌[n] the signal defined by

x̌[n] =

{
x[p] if n = 2p
0 if n = 2p + 1

.
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The scaling and wavelets coefficients of x are denoted by

cj[n] =
1

2jδ

∫
R

x(s)φ∗
(

s

2jδ
− n

)
ds

dj[n] =
1

2jδ

∫
R

x(s)ψ∗
(

s

2jδ
− n

)
ds

The following theorem [4, 5] computes the scaling and wavelet coefficients
recursively along the scales:

Theorem 4 (Mallat) At the decomposition

cj+1[p] =
+∞∑

n=−∞
h∗[n − 2p] cj[n] = cj ! h̄∗[2p], (38)

dj+1[p] =
+∞∑

n=−∞
g∗[n − 2p] dj[n] = cj ! ḡ∗[2p]. (39)

At the reconstruction,

cj[p] =
+∞∑

n=−∞
h[p − 2n] cj+1[n] +

+∞∑
n=−∞

g[p − 2n] dj+1[n]

= čj+1 ! h[n] + ďj+1 ! g[n]. (40)

2

2

g*

h* 2

2

g*

h*

2 g

2 h

2 g

2 h

2
is a oversampling filter
which inserts zero between
every two samples

x

x

2
is a subsampling filter
which selects every other
sample

Figure 1: The decomposition and recontruction in a wavelet basis is imple-
mented by a cascade of filter banks.

Important signal features, notably local regularity, can be described using
wavelet coefficients. Manipulating these coefficients can perform denoising
or local regularization. These manipulations typically occur between the
analysis and reconstruction cascades, e.g. in the middle of figure 1.

The derivative of x is computed using the same decomposition, suitable
coefficients manipulations as described in proposition 3 and reconstruction
using the filters h̃ and g̃, as illustrated by figure 2. Denoising and/or lo-
cal regularization can be performed just before the coefficients manipulation
which performs the differentiation.

10



2

2

g*

h* 2

2

g*

h*

2 g

2 h

2 g

2 h

2
is a oversampling filter
which inserts zero between
every two samples

x

dx
dt

2
is a subsampling filter
which selects every other
sample

~

~

~

~

1-z-1

4δ

4
4δ

4
2δ

Figure 2: The derivative is reconstructed from finite differences on the scaling
coefficients and scaled wavelet coefficients using the synthesis filters given by
propositions 1 and 2. This example uses two cascades.

3.6 The spline case

Faure [6] has proved that the differentiation scheme of Lemarié transforms a
spline biorthogonal basis into another one.

Spline biorthogonal bases are defined by their synthesis low pass filters:

ĥ(m, ω) =
(
cos ω

2

)m
if m = 2l̃ (41)

ĥ(m, ω) = e−i ω
2

(
cos ω

2

)m
if m = 2l̃ + 1 (42)

and their analysis low pass filters

ĥ∗(m, n, ω) =
(
cos ω

2

)n ∑l+l̃−1
i=0

(
l + l̃ − 1 + i

i

) (
sin2 ω

2

)i
if n = 2l and m = 2l̃ (43)

ĥ∗(m, n, ω) = e−i ω
2

(
cos ω

2

)n ∑l+l̃
i=0

(
l + l̃ + i

i

) (
sin2 ω

2

)i
if n = 2l + 1 and m = 2l̃ + 1(44)

It can be verified that the synthesis scaling function φ is a B-spline. Hence
signal approximations are splines of the same order. The scaling equation
(23) implies that the detail signals are also splines.

Proposition 4 Assume that h and h∗ are two low pass filters defined by (41)
and (43) (resp. (42) and (44)). Then the corresponding “derivative” filters
h̃ and h̃∗ defined by (32) and (33) satisfy

̂̃
h(ω) = eiωĥ(m − 1, ω)̂̃

h∗(ω) = eiωĥ∗(m − 1, n + 1, ω)

 if m = 2l̃ and n = 2l (45)

11



and

̂̃
h(ω) = ĥ(m − 1, ω)̂̃

h∗(ω) = ĥ∗(m − 1, n + 1, ω)

 if m = 2l̃ + 1 and n = 2l + 1 (46)

Hence h̃ and h̃∗ can be computed using (41) and (43) (resp. (42) and (44))
with a suitable change of parameters m and n and a possible shift.

Proof. If m = 2l̃ then

̂̃
h(ω) =

2
1 + e−iω

(
cos

ω

2

)m

=
2

1 + e−iω
eil̃ω

(
1 + e−iω

2

)2l̃

= eil̃ω

(
1 + e−iω

2

)2l̃−1

= ei ω
2

(
cos

ω

2

)2l̃−1

= eiωĥ(m − 1, ω)

If m = 2l̃ + 1 then

̂̃
h(ω) =

2
1 + e−iω

e−i ω
2

(
cos

ω

2

)m

=
2

1 + e−iω
eil̃ω

(
1 + e−iω

2

)2l̃+1

= eil̃ω

(
1 + e−iω

2

)2l̃

= ĥ(m − 1, ω)

On the analysis side, if m = 2l̃ and n = 2l then

̂̃
h∗(ω) =

1 + eiω

2

(
cos

ω

2

)n l+l̃−1∑
i=0

(
l + l̃ − 1 + i

i

) (
sin2 ω

2

)i

= ei ω
2

(
cos

ω

2

)n+1 l+(l̃−1)∑
i=0

(
l + (l̃ − 1) + i

i

) (
sin2 ω

2

)i

= eiωĥ∗(m − 1, n + 1, ω)

12



If m = 2l̃ + 1 and n = 2l + 1 then

̂̃
h∗(ω) =

1 + eiω

2
e−i ω

2

(
cos

ω

2

)n l+l̃∑
i=0

(
l + l̃ + i

i

) (
sin2 ω

2

)i

=
(

cos
ω

2

)n+1 (l+1)+l̃−1∑
i=0

(
(l + 1) + l̃ − 1 + i

i

) (
sin2 ω

2

)i

= ĥ∗(m − 1, n + 1, ω)

✷
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