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ABSTRACT 
We investigate how the concept of multiresolu tion analysis 
can be adapted in order to handle nonlinem operators. Under 
reasonable mumptions this question has  a unique answer, 
which we caracterize and build explicitely here. 

1/6 JR z(s)hk(s)ds .  Now consider a polynomial &, a signal 
2, its projection e = n62, and its remainder w = 5 - e .  Then 
we can conipute I I , (Q(x) )  using the following formula: 

1. MOTIVATION 

1.1. General background 

Given a non linear operator F on a functional space E ,  and a 
baris B of E,  we may be interested in the relationship which 
exists between the coordinates of a signal :c a.nd that of Fx 
in l?. After all, this is where the actual cornputations should 
take place. For instdance, we study the wavelet coefficients of 
thc square of a signal as a. funct>ion of the wavelet coefficients 
of the signal (see [3], [l] for classics on wavellets). Two criteria 
can be loosely used to qualify the filnws of the basis with 
respect to F :  the structure of the coordinat,es of z should 
be preserved as much as possible in the coordinates of Fx, 
and, transversally, the nonlinear structure of F should be 
preserved as much as possible in its coordinatetecoordinate 
version. 

Because wavelets provide a nice approximation of a local 
tirue/frequency analysis, they appear more qual&ed than the 
Fourier transform to analyse norhear  operators, espacially 
dynamical systems. Unforunately, they do not satisfy the 
previous requirements. We study here how to find a more 
suita,ble environment for combined signal analysis and non- 
linear operations. 

Potential applications are all classicat nonlinear processes, 
whether they he static (like 3-TI image processing, for in- 
stance), or dynamic (like nonlinear input-output systems). 
They also include the modelization of non classical systems, 
which could be a mixture of fractals arid dlyna,mical aiid/or 
nonlinear systems. 

1.2. An example where things work out fine 

Let, hh: = lk6,(kf1)6 a rescaled I-laar baqis, and defin'e the 
assmiat,& projection s16 by 116% = ~ k t a ~ c & ~ .  with c k  = 

The interesting fact is that, in this formula, the polynomial IS 

only applied to  the projection e,  while the projection IS only 
applred to the powers of 7 0  This can be traced back to  the 
following two properties of the Haar basis: 

P1 each resolution is an algebra 

P2 the product of an element of an oscillation (or wavelet) 
space will an element of a slower resolution is an el& 
ment, of the oscillation space 

The last property makes the left product an (almost) block 
t,riangular Linear operator over the wavelet analysis. Hence 
the signal's decmmposition is rather well preserved through 
basic (e.g. polynomial) nonlinear operations (diagonalization 
is out, of reach). 

Unfort nnately, these properties do not generalize to  other 
multiresolut,ion analysis. In particular P1 is always false un- 
less the projection commutes with the product in the image 
E6 of rI6. 

2. STUDY OF PROPERTY 

In the rest of the paper E6 will be a subspace of' L;m spanned 
by the family p6,k(t) = p(t/6 - k), and (p, p4) will be a 
b~orthogon,il system, p& will denote 1/6p*(f/d - k), will 
be the projection n6% = E, < ~,1/6p:,, > p6,k 

2.1. Step 1: making Ea an algebra 

We begin with the simpler problem of making one resolu- 
tion stable by product. To achieve this, we shall replace the 
inadequate classical product law with anothe1 one which up- 
yroxzzmutes e t  at an optzmal order. We recall the first the 
Stang and Fix conditions: 
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Theorem 1 (Strang & Fix [ 2 ] )  Gzven an znteger p, /he 
1100 follo roeng propertees are equzvalent . 

( 3 )  (Vp t CO,. . . , p } )  P* (x") = x" 

Hence, the optimal order for approximating the product is 
6pt' We can caracterize such optimally approximating prod- 
uct laws To do so, we m u m e  that E6 have an algebra struc- 
ture (E6,+,*6, ) for 6 close to 0 We also assume thal, for 
z and y in Eo, one has 3: ( t / 6 )  * 6  y ( t / 6 )  - (z to y) ( t / 6 ) ,  that 
there exlsts L > 0 such that x( t -L)*oy( t  - L )  = (z W O  y)  ( t -  
L) ,  and that there exlsts some threshold M such that, for 
compactly supported elements of Eo, Dist(Dom(z), Dom(y)) 2 
M ===+ z *o y = 0 

Theorem 2 (Approximation of the product) Let p the 
order of the Strang and Fex condztwns for the space E .  The 
two follounng condataom are eguavalent. 

(4) ( 3 K  M ,  N )  (Vz, Y E (W) 
SUP b y  - (GI x *6 (E6Y) l  

tEIa,bl 

if2 + j  I p ti *6 t3 = ti+3 (5) 

Proof: it is similar to  the proof of theorem 1. The necessary 
condition is obtained by letting x ( t )  = tZ in (2). The sufficient 
condition can be drawn from lemma 1 hereafter, and using 
P J ~ X  insteizid of x 

A similar theorem can be proved for the differentiation, 
with the difference that one order of approximation has to  be 
dropped. 

There remains to  find such a product law. To that end, 
we generalize the Lagrange interpolation theorem in order 
to  identify polynomials from their coordinates in E6. We will 
denote by &[t] the space of polynomials of degree lower than 

Af p ,  r g , O  will denote the projection on = span(cpo,. . . , cp,), 
and F the canonical linear isomorphism between R[t] and 
W) 
Theorem 3 (Polynomial representation) P G , ~  de=f ~ 6 , ~  i s  
a linear space isomorphism between %[t] and EJ,o. 

Proofi Let T, = r 6 , 0 ( t i ) ,  and let us write 
We have a+ =< cp;, t' >=< cp;, (t + 

Define A = ( a i j ) ,  and B as the matrix that expresses the 
basis (1, (t + l), . .. ( t  + IF) of R[t] in the basis ( l , t , .  . .t"), 

that is, B = ( b i d )  with b i j  = ( 'I 1 : ) if i 5 j and bij = 0 

if i > j .  B is invertible, and the matrix that changes the 
basis ( 1 ,  ( t  + k),. . . ( t  + k)"), k t Z, into ( l , t , . .  . t p )  is equal 

as T, = ak,i$ck. 
> 

t~ Bk If KP dmote hy ,if the vector mat,rix of the p + 1 first 
moments o f  (o', then we have: 

Let us now denote by B a matrix that is obtained from H 
by substitiiting each of i f s  element by the outer product o f  it 
with the identity matrix that is the size of B. Then we have 

B - Id is nihilpotent; more precisely, ( B  - Id)& has its first 
k columns equal to  zero (as well as its last IC rows). On the 
other hand, we can see that the product of the large MT- 
diagonal matrix by BT is in fact equal to B T M T ,  so that we 
have, in the end: 

Considering the structure of (B-Id)k, wesee that the product 
of A@ with the large matrix on the right is upper triangular, 
with ones on the diagonal. Since B is regular, this proves 
that A has full rank I 

Now let us make &[t] an algebra; to  do so, we define the 
product x over %[t] as the expansion of the usual product 
a t  the order p and at  point 0. We define the differential D 
as the usual one. Through P6,0, this expands E6,O into a dif- 
ferential ring (&,o, +, *J,,,, D s , ~ ) ,  The latt,er can be extended 
to the whole of E6 by using the shift operator us of length 
(p + 1)6. This can be summed up as (&k, +, * g , k , D a , k )  = 

Then the global ring (Ea, +, *6,D6) is identified to the 
tensorial product I8 (&,A, +, *6&, &,A), which is itself defined 

by ismorphism to I8 ( ~ p [ t - k G , + 1 ) 6 ] , + , * , D ) .  

Remark that we can define another piecewise polynomial 
representation of x using a sequence of Taylor expansion. Let 
Tk = k ( p  + 1) and denote by zx the function with value 
E:2(d i ) (6Tk) ) ( t  - -6Tk) i / i !  over the interval [6Tk16Tk+l [. Then 
P6zx approximates x: 

Lemma 1 theye exist two constants G and b such that, f o r  
any functions x of class CP+' and any real number a,  

~ k S ( & , O ,  +,*6,0, a , o ) c - k 6 .  

ktZ 

kt6: 

(9) SUP I4t) - P67s.(t)I 
tE[Q,&l] 

5 CS'+' sup IX"+l ' ( t ) l  
t~[a-b,a+&tl] 

Proof: because of t,heorem 1 ,  we can replace 1c with I T d r c  
above. Let T6,k = d'?T6,0Vik; then rI6 - = 
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Let us show now that *6 satisfies the conditions of t h e  
urem 2. ln fact., we can carackrize t.he product law *& AS 

follows: 

Tlicorcm 4 Consrder a candrdatr product law **s on E& and 
x x a candzdate product low on Rp[jz] Both produri are as- 
sumed to assacctalzve, and dzstzbutave over k .  'The two jcollow- 
zn9 pmperz-zes ure equsvalent: 

a) **6 satzfies condztion (41, and the folklmng dzagrom 
commutes: 

4 (El ,+,**l )  ----- 8 (Rp[[t --Ti:],+, x x )  
k € Z  

where R.6 denotes the resaling operator ((?i'se)(t) = z((5t)) 

order p ,  e.g., **6 = *6. 

Proof: Necessury condition: if' we take x ( t )  = t; and y ( t )  = 

ti in (4), with i + j  5 p ,  then the right handside is 0 ,  and 
we recover condition (s), e.g., t i  * *& = ti+] lor i -1 j 5 
p .  Now, the product law x x  is entirely det,erimined hy the 
decomposition a$ of tp  x x t  along the b a i s  1, t ,  . . . t p .  

So, let us  consider z ( t )  = t p  and y ( t )  = t in (4). Following 
lemma 1, we shall use P6x(zy) in place of ey. It has the 
following piecewise polynomial representation: 

b)  x x is the Taglor expansion of classical product at the 

/ 

in Ir$[t - 6Tk] 

with A = Cp + 1)s. Because the polynomials of degree 5 p 
are unchanged by the various transformatiois, the expression 
of t p  x x t  in &[t - 6Tk] is (t - kA + kA)p x x ( t  - kA + kA). 
After expanding the previous formula, we @;et 

/ <=O 

The difference between P ~ z ( z y )  and x * *6?J is (equal to  
(xsai(t - kA)i)ktz 5 z .  It can be !expressed as the 
rescaling of a S independant function. More precisely, we 
have: 

(13) z = '72.6 { 2 n i 6 '  ( z l , k ( t  - k ( p +  l))i)kcz 1 i=O 

Assume that  there is a non-zero ai, and t.he i o  the smallest 
index for which c y i  # 0. 'r'heri the term with cot?fficic?nt, ajo 
d~niinat~es the others in PL1z when 6 tend to 0. Hence, z is of 
order 6$"; but on t,he other hand, it should be locally smaller 
than soin KB+'.  This implies that all of the ai are equal to  
0 ,  aid the result 

Suj$c?,ent conditiori.: 
Comnnutation: we have to show mainly the polynomial 

representation coiiimutw with rescaling. Let us consider :c E 
El, which we write as x = ck,,xiz xi,l;p(t - T k  - i), and 
let y ( t )  = z(t/6). Denote by A6 the matrix that we used in 

Then 

= [Po-'.] (i) 
Approximation: this comes from the commutation result, 
and the generalized Strang and Fix condition of theorem 2 W 

Remark: a similar (though simpler) result exists for the 
differentiation. 

2.2. Step 2: building in to  a multiresolution anal- 
ysis 

It follows the lines of the classical theory, except that the 
rescaling is done towards the larger steps, and that the rescal- 
ing is  performed in the piecewise polynomial representation, 
then tranported to E6. This is because the nonlinear struc- 
ture is truly defined in @31$[t - bT'& The reader will check 
that the two rescaling are different. If we denote by P the 
functional image (as piecewise polynomial functions with step 
(p + 1)6) of @&[t - T k ] ,  then we essentially manipulate the 
subspaces 

(15) ?\ = ( p ( 2 3 ,  p t "} j 2 0 

2.3. Step 3: checking property P1 

Unfortunaly, property P1 does not extend to the case j > 0, 
except for the Haar basis. It is a consequence of &he following 
theorem : 

Theorem 5 Lei Q a subalgebra of P using the previous Tay- 
lor expansion product law, and D i ts  domain, that is, the 
union of the domains of all elements of &. Assume that Q 
includes the restrictions to D of the polynomial functions of 
degree 0 an,d 1. 

Then, 8 is th,e restriction of P to D .  

Proof: because of the structure of P ,  we can represent its 
domain by the sequence of indices ki such that [ 6 T k s ,  STkz+l] c 
D. The T k ,  iricrease with i .  



We are going to show that, for any N and M, Q inrliides 
the restriction of P t,o 111 "1 u~~~+'-1[67i8 , 6 7 i ~ , 1 ] .  This 
will show bhat Q is algebraically eqiial t.o t,he rc?strict,ion of P 
to the domain of &. 

Since (2 is stable hy product, it includes the restrictions 
to U of the monomials 0' 5 (t * . . . * t ) .  NOW let us consider 

a, sequence of ai such t#hat> c:?rb'~l)-l ai@ : 0 over D I ;  and 
let u s  define (pk)&n as  the reppreaent,a.tion of the previoiis in 
@Rp[t ~ 6Ti,]. If we use the classical differentiation' on the 
linear space q [ t  - 6T,,], then we check that, for 0 5 . j  p ,  
pt) (0) is equal to the j t h  derivat,ive of the classical polynomial 
p ( t )  = c::Fln-t')-l a,ti at the point ST,, . A11 these values are 
zero; hence p = 0, and the ai are zero. The restriction of Q 
to Dl is then of maximal dimension (p- t  1 ) M ,  and eqna1 to 
the rcxstriction of P to  D1 

Though property P1 does not seem to extend beyong the 
1-Iaa.r basis, property P2 has an interesting extension. 

- 
1; times 

UDY OF PROPERT P2 FOR THE TAYLOR. 
P R O D U C T  

We consider the product law *6 as caractenzed in theorem 4. 
A necessary and sufficient condition for property P2 to hold 
is the existence of an absorbing innovation space, as described 
below: 

Definition 1 A subspace Q1 of Fo i s  an absorbing innova- 
t ion subspace of Po if the three following properties are satis- 
fied 

(8 Po =PI @ &1. 

e the product of an eleme,nt of PI a7~d or a7~ elerner~t o j  
&I is an  element o,f Q1. 

B Q1 in invariant under the action of the shifts o,f length 
2(p + 1)6 

If we define Q, 
and the second property is actually equivalent to P2. We can 
give two examples of generic absorbing innovation spaces: 

= { q ( 2 - j + ' t ) ,  q t &I}, then 'Po = Pj 

Theorem 6 k t  pO,k the space of elements oipo with a do- 
main in the interval [6Tki6Tk+1]. Define &; and Qy as 

&; = @ P0,2k+l 

QT = a3 PO,% 
k t Z  

k t Z  

Then QE and Q are absorbing innovation. spaces for all ten- 
sorial product laws o r ~  Po. 

It turns out that these are the only possible absorbing innova- 
tion spaces when using the Taylor expansion of the product. 

Lemma 2 The assumptions w e  the same as in tho-rem 5. 
Then Q I  is an ideal of P.  

'that is, we do not take the "jumps" into account 

Proof: Iwaiise Ql is aI>sorbing over P I ,  it is absorbirtg 
over (,lie algebra generated hy PI. Because of theorem 5 ,  this 
algebra is equal to T'. This implies that Q1 is an ideal of P 

We consider here that the product law on Po is * * 5 .  e.g., 
the Taylor expansion uf the classical product up to degree 11, 
or, cqui\Talently, the functional image of "6 

Theorem 7 QE and Qp" are the only absorbing innovatto7~ 

Proof: For a non zero polynomial p ( t ) ,  val(p)  will denot,e 
the lowest power of t which has a non zero coefficient. The 
innovation subspace &I is entirely determined by its subspace 
Q-l,o of its elements with zero value outside of (0, oT2). It is 
of dimensionpt 1. Let us consider an element q of with 
value q l ( t )  (resp. qz(t ST')) on (0,62;) ( r a p .  (62'1,6Tz)). 
Such an element exists hecauses of the absorbing property; 
moreover q1 or ga must have a non zero constant because 
Po - &l@Pl. Let us assume that it ispl. Then q1 is invertible 
in (Po, **s) (use the Taylor expansion of the classical inverse). 
Hence we can assume t,hat p1 = 1. We can see t,hat the family 
(q ,q**&q**6t2, .  . . 1 q * * 6 t p )  is a basis of Now assume 
that 42 # 0. Then we can see that val(q2 *6 ( t  + 6Tl)i) does 
not depend 011 i. This implics that q *st*' is not zero. But 
it has a zero value on (0, 6Tl). By computing its ccordinates 
in the basis (q ,  q * * 6 t ,  q * e s t 2 , .  . . , q * *at"), we see on the left 
interval that these coordinates should be 0, and hence, that 
p *  = 0. This contradiction shows that q2 is necessarily 
0, and that Q1 = Q;". Qt is o ned by assuming that 42 
has a non zero constant instead 

Corollary 1 Let Sj 1 @iI{Qj. Then  

subspaces 0.f (Po,+,**). 

e eathers, = {z E 

e or S, = { T  E Po s t .  x ( t )  = 0 over (KZ'kz-j~l,6Tkz-j), 

s.t. x ( t )  = 0 Over (bT,,-j,6Tk,-~+,), 
k E Z} zf &I QYC 

k t Z} d &I = &E 
and S, as an algcbra. 

Proof: Left to the reader 
Now let us turn to  the equivalent of formula (1) 

Corollary 2 (Commutation €ormula) Let PI the opera- 
tor on Po defined by settang to zero the components zn s, zn 
the decomposztzon Po = PJ @ S, . 

Let Q a polynomzal and x an element of V ,  e = p,x and 
w = x - e .  Then 

(16) 1 p3[Q(r)l = p3 [Q(e)I I 
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