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ABSTRACT
We investigate how the concept of multiresolution analysis
can be adapted in order to handle nonlinear operators. Under
reasonable assumptions this question has a unique answer,
which we caracterize and build explicitely here.

1. MOTIVATION

1.1. General background

Given a non linear operator ¥ on a functional space E, and a
basis B of E, we may be interested in the relationship which
exists between the coordinates of a signal = and that of Fz
in B. After all, this is where the actual computations should
take place. For instance, we study the wavelet coefficients of
the square of a signal as a function of the wavelet coefficients
of the signal (see [3], [1] for classics on wavelets). Two criteria
can be loosely used to qualify the fithess of the basis with
respect to F: the structure of the coordinates of z should
be preserved as much as possible in the coordinates of Fz,
and, transversally, the nonlinear structure of F' should be
preserved as much as possible in its coordinate-to-coordinate
version.

Because wavelets provide a nice approximation of a local
time/{requency analysis, they appear more qualified than the
Fourier transform to analyse nonlinear operators, espacially
dynamical systems. Unforunately, they do not satisfy the
previous requirements. We study here how to find a more
suitable environment for combined signal analysis and non-
linear operations.

Potential applications are all classical nonlinear processes,
whether they be static (like 3-D image processing, for in-
stance}), or dynamic (like nonlinear input-output systems).
They also include the modelization of non classical systems,
which could be a mixture of fractals and dynamical and/or
nonlinear systems.

1.2, An example where things work out fine

Let hi = ligeriays @ Tescaled Haar basis, and define the
assaciated projection ITs by Ilsz = 3, cphy with ¢, =

1/6 f, o(s)hy(s)ds. Now consider a polynomial Q, a signal
z, its projection e = [z, and its remainder w = z —e. Then
we can compute [[;(Q(z)) using the following formula:

k=00 ®
) Q) = Y 9 k!(e)nﬁ(wk)
k=0

The interesting fact is that, in this formula, the polynomial is
only applied to the projection e, while the projection is only
applied to the powers of w. This can be traced back to the
following two properties of the Haar basis:

P1 each resolution is an algebra

P2 the product of an element of an oscillation (or wavelet)
space will an element of a slower resolution is an ele-
ment of the oscillation space

The last property makes the left product an (almost) block
triangular linear operator over the wavelet analysis. Hence
the signal’s decomposition is rather well preserved through
basic (e.g. polynomial) nonlinear operations {diagonalization
is out of reach).

- Unfortunately, these properties do not generalize to other
multiresolution analysis. In particular P1 is always false un-
less the projection commutes with the product in the image
FEs of Ils.

2. STUDY OF PROPERTY P1

In the rest of the paper Ej will be a subspace of L7, spanned
by the family ¢si(t) = @(t/6 — k), and (p,¢*) will be a
biorthogonal system; ¢, will denote 1/&p* (¢/6 — k), Hs will
be the projection Tsz = Y~ <x,1/8¢}, > wsr.

2.1. Step 1: making F; an algebra

We begin with the simpler problem of making one resolu-
tion stable by product. To achieve this, we shall replace the
inadequate classical product law with another one which ap-
prozimates it al an optimal order. We recall the first the
Stang and Fix conditions:



446  TFTS' 96

Theorem 1 (Strang & Fix [2]) Given an integer p, the
two following propertics are equivalent:

Hence, the optimal order for approximating the product is
87", We can caracterize such optimally approximating prod-
uct laws. To do so, we assume that Es have an algebra, struc-
ture (Es, +,%5,.) for § close to 0. We also assume that, for
z and y in Ey, one has x (¢/8) 5 y (£/8) = (z 0 y) (¢/6), that
there exists L > 0 such that z(¢t— L)*yy(t — L) = (z %y y) (¢ —
L), and that there exists some threshold M such that, for
compactly supported elements of F,, Dist(Dom(z), Dom({y)) >
M= 2zxy=0

2) 30 (vf € H*'(R)) (V6 < 1)

WPsf — fll2 < C6°1

l drif

dzrtl

(3) (Vp S {07 . ,P}) P (zp) =z’

Theorem 2 (Approximation of the product) Let p the
order of the Strang and Fiz conditions for the space E. The
two following conditions are equivalent:

(4) (3K, M,N)(Vz,y € C*"'(R))

sup [zy — (Ils) z x5 (Tsy)]

tefa,b]
< K&+ sup (|I(r+1)\Jr Iy(u-l)l + l(my)(rﬂ)D

ja~M,b+ M)

(5) st =t 4fi+i<p

Proof: it is similar to the proof of theorem 1. The necessary
condition is obtained by letting z(¢) = ¢ in (2). The sufficient
condition can be drawn from lemma 1 hereafter, and using
P75z instead of z l

A similar theorem can be proved for the differentiation,
with the difference that one order of approximation has to be
dropped.

There remains to find such a product law. To that end,
we generalize the Lagrange interpolation theorem in order
to identify polynomials from their coordinates in Eg. We will
denote by R,{¢] the space of polynomials of degree lower than
p, 75 will denote the projection on Ejp = span(pg, ... ,¢p),
and F' the canonical linear isomorphism between R[t] and

R(®)

Theorem 3 (Polynomial representation) Pj def Tso 48
a linear space isomorphism between R,[t] and Esp.

Proof: Let T} = ms0(t'), and let us write T; as T; = Zk_c Ay Pk

We have ax; =< @}, t* >=< g, (¢t + k)* >

Define A = (a;;), and B as the matrix that expresses the
basis (1,(t +1),...(t + 1)) of R[¢] in the basis (1,¢,...t7),
that is, B = (b;;) with b;; = i:; ifi <jandb; =0

if ¢ > j. D is invertible, and the matrix that changes the
basis (1,(t + k),... (¢t + k)?), k € Z, into (1,¢,...t") is equal

to B If we denote by M the vector matrix of the p + 1 first
moments of ¢, then we have:

T
MT o ... 0 .
L . : B
) Al o
: T -
0 . 0 MT B?

Let us now denote by B a matrix that is obtained from B
by substituting each of its element by the outer product of it
with the identity matrix that is the size of B. Then we have

d Id

B B-1Id
(7 R =BT

BP (B - 1d)

B — Id is nihilpotent; more precisely, (B — Id)* has its first
k columns equal to zero (as well as its last &k rows). On the
other hand, we can see that the product of the large MT-
diagonal matrix by BT is in fact equal to BTMT, so that we
have, in the end:

Id
B-1d
(8) A=BTMT

(B - 1dy

Considering the structure of (B—Id)*, we see that the product
of M7 with the large matrix on the right is upper triangular,
with ones on the diagonal. Since B is regular, this proves
that A has full rank #l

Now let us make R, [¢] an algebra; to do so, we define the
product x over R,{t] as the expansion of the usual product
at the order p and at point 0. We define the differential D
as the usual one. Through Py, this expands Fjy into a dif-
ferential ring (Esp,+, %50, Dso). The latter can be extended
to the whole of Es by using the shift operator o5 of length
(p +1)8. This can be summed up as (Esy, +, %5k, Dsx) =
o15(Esp, +, %50, D50 )o-ks.

Then the global ring (Fs,+,+s, Ds) is identified to the
tensorial product ® (E'5 &+ %5k, Dsg), which is itself defined

by ismorphism to ® (& t —k(p+1)8],+,%,D).

Remark that we can define another piecewise polynomial
representation of = using a sequence of Taylor expansion. Let
Tk = k(p + 1) and denote by Zzz the function with value
S (2P (8T)) (¢-6T )/t over the interval [6T,, 6Tk [ Then
PsTsx approximates x:

Lemma 1 there exist two constants C and b such that, for
any functions x of class CP*' and any real number a,

(9)  sup |z(t) -

t€fa,a+1)

Py (t)]

<C& sup |20 (t)l
tela—b,a+b+1]

Proof: because of theorem 1, we can replace z with Isz

above. Let wsy = ofmsgo5*; then Il — P57 =



> e Tox(ld = Tpg). But each msp(Id — Ts) is localized, and
of order 671 B

Let us show now that *; satisfies the conditions of the-
orem 2. In fact, we can caracterize the product law x5 as
follows:

Theorem 4 Consider a candidate product law xxs on Fs and
XX a candidate product law on R,[t]. Both product are as-
sumed to associative, and distibutive over +. The two follow-
ing properies are equivalent:

a) xxg satifies condition (), and the following diagram
commultes:

(Br,+,#0) — @ Rylt— Thl,+, xx)

ke

nél R,,l

(10) (Bs b o) " © Rylt— 6TL(0)], +,x)
€

V&J/ ”Jl
(B, +,#08) — oy @ (Ryft — 6T4), 4+, x x)
kel
where Rs denotes the resaling operator ((Rsz)(t) = x(6t))

b) xx is the Taylor expansion of classical product at the
order p, e.g., ¥xg = *5.

Proof: Necessary condition: if we take z(¢) = t' and y(t) =
) in (4), with ¢ 4+ j < p, then the right handside is 0, and
we recover condition (5), e.g., t¢ x xst/ == ¢ for ¢ -+ 5 <
p. Now, the product law xx is entirely determined by the
decomposition Y ;¢ oyt of £ x xt along the basis 1,¢,... 1.
So, let us consider z(t) = # and y(t) = ¢ in (4). Following
lemma 1, we shall use Ps7s(zy) in place of zy. It has the
following piecewise polynomial representation:

(1) PR -Y ( pii ) (t— KA (RAPH ¢

in R,[t — 6T}

with A = (p + 1)§. Because the polynomials of degree < p
are unchanged by the various transformations, the expression
of t* x x¢ in Ryt — 6T ) is (t — kA + kA x x (t — kA + kA).
After expanding the previous formula, we get

(12) ‘2( ; ) (8 = RAY (kA
=0
+Z ( zf 1 ) (t — kAY (EAYH 4 :;::%(t NG
i1 —

The difference between Ps7s5(zy) and z * *sy is equal to
(ZZZ oyt — kA)i)kE,}5 %/ 2. It can be expressed as the

rescaling of a 6 independant function. More precisely, we
have:

(13)  2=TR;s {Eaiéi (maet — B(p + 1))’);@}

i=0
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Assume that there is a non-zero o, and the iy the smallest
index for which ; # 0. Then the term with coefficient oy,
dominates the others in P, 'z when ¢ tend to 0. Hence, z is of
order §; but on the other hand, it should be locally smaller
than som K671, This implies that all of the «; are equal to
0, and the result

Sufficient condition:

Commutation: we have to show mainly the polynomial
representation commutes with rescaling. Let us consider z &
By, which we write as z = Zkez }:3 zipp(t — T — 2), and
let y(t) = z(¢/6). Denote by As the matrix that we used in
the proof of theorem 3. We have

(14) Ag = Ay ¥ [Diag (5"“1)} “ A

1<i<pit
Let us write now P’ as (Zzg ot — T"’)é)kez' Then

[Pity] 1) =(11,..., (t — 6T0)") D5 A

T
[Q:O,ki oo 3zP;k] )k'GZ

i=p
= (}: 8 0 (8 — 5Tk))£>
keZ

=0

t
_[pt M
=[P4 (5)
Approximation: this comes from the commutation result,
and the generalized Strang and Fix condition of theorem 2 I

Remark: a similar (though simpler) result exists for the
differentiation.

2.2. Step 2: building Fjs into a multiresolution anal-
ysis .

It follows the lines of the classical theory, except that the
rescaling is done towards the larger steps, and that the rescal-
ing is performed in the piecewise polynomial representation,
then tranported to Fs. This is because the nonlinear struc-
ture is truly defined in @R, [t — 67}]. The reader will check
that the two rescaling are different. If we denote by P the
functional image (as piecewise polynomial functions with step
{p+1)6) of ®R,[t — T;], then we essentially manipulate the
subspaces

(15) 7= {p(27t), peP} >0

2.3. Step 3: checking property P1

Unfortunaly, property P1 does not extend to the case j > 0,
except for the Haar basis. It is a consequence of the following
theorem:

Theorem 5 Let Q a subalgebra of P using the previous Tay-
lor expansion product law, and D its domain, that is, the
union of the domains of all elements of Q. Assume that Q
includes the restrictions to D of the polynomial functions of
degree 0 and 1.

Then Q is the restriction of P to D.

Proof: because of the structure of P, we can represent its
domain by the sequence of indices k; such that [6T},,6T5.41] C
D. The T, increase with 4.
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We are going to show that, for any N and M, Q includes

the restriction of P to D, = U;jxﬁLM?l[érl}Ez,éTk;H], This
will show that Q is algebraically equal to the restriction of P
to the domain of Q.
Since @ is stable by product, it includes the restrictions
to D of the monomials 8¢ % (*...xt). Now let us consider
N e

I times

a sequence of a; such that Zzgﬂpﬂ)‘l a;0° =0 over D;; and
let us define (pi)rez s the representation of the previous in
®R, [t — 6T, ]. If we use the classical differentiation’ on the
linear space R, [t — 8T}, ], then we check that, for 0 < j < p,
p,(f) (0) is equal to the j* derivative of the classical polynomial
plt) = ZZZ(])M(PH)—I a;t' at the point 6T;,. All these values are
zero; hence p = 0, and the a; are zero. The restriction of ¢
to Dy is then of maximal dimension (p+ 1)M, and equal to
the restriction of P to D; B

Though property P1 does not seem to extend beyong the
Haar basis, property P2 has an interesting extension.

3. STUDY OF PROPERT P2 FOR THE TAYLOR
PRODUCT

‘We consider the product law s as caracterized in theorem 4.
A necessary and sufficient condition for property P2 to hold
is the existence of an absorbing innovation space, as described
below:

Definition 1 A subspace Oy of Py is an absorbing innova-
tion subspace of Py if the three following properties are satis-

fied

e Dy=P @ Q.

e the product of an element of Py and of an element of
Oy is an element of Q.

e O in invariant under the action of the shifts of length
2(p+1)8

If we define Qg ; = {g(2791¢), ¢ € O;}, then Py = P; 07 Q,
and the second property is actually equivalent to P2. We can
give two examples of generic absorbing innovation spaces:

Theorem 6 Let Py the space of elements of Py with a do-
main in the interval (6T, 8Ty 1]. Define Q5 and Q5° as

e Of = & Poarn
kEZ

e OF = @ Poa
keZ

Then Qf and Q5 are absorbing innovation spaces for all ten-
sorial product laws on Pj.

It turns out that these are the only possible absorbing innova-
tion spaces when using the Taylor expansion of the product.

Lemina 2 The assumptions are the same as in theorem 5.

Then Q; is an ideal of P.

L¢hat is, we do not take the “jumps” into account

Proof:  because O is absorbing over Py, it is absorbing
over the algebra generated by P;. Because of theorem 5, this
algebra is equal to P. This implies that Q) is an ideal of P

We consider here that the product law on P is #*s, e.g.,
the Taylor expansion of the classical product up to degree p,
or, equivalently, the functional image of %s.

Theorem 7 Q5 and Q§° are the only absorbing innovation
subspaces of (P, +,#%).

Proof: For a non zero polynomial p(t), val(p) will denote
the lowest power of ¢ which has a non zero coefficient. The
innovation subspace @ is entirely determined by its subspace
Q_1p of its elements with zero value outside of 0,675). Tt is
of dimension p+1. Let us consider an element ¢ of Q_; o with
value g1 (t) (resp. qalt — &T1)) on (0,871) (resp. (8T1,6T3)).
Such an element exists becauses of the absorbing property;
moreover g; or g, must have a non zero constant because
Py == Q10Py. Let us assume that it is p;. Then ¢; isinvertible
in (Po, *#+5) (use the Taylor expansion of the classical inverse).
Hence we can assume that p; = 1. We can see that the family
(g, g+ xst, g¥xst%, ...  q*xst°) is a basis of Q_; . Now assume
that ¢ # 0. Then we can see that val(gy x5 (¢ + 6T1)") does
not depend on i. This implies that g * st*"! is not zero. But
it has a zero value on (0,67}). By computing its ccordinates
in the basis (g, q* *5t, g ¥ *s12,. .. , g% x4t7), we see on the left
interval that these coordinates should be 0, and hence, that
p*5tP*1 = 0. This contradiction shows that ¢, is necessarily
0, and that Q; = Q. Qi is obtained by assuming that g
has a non zero constant instead B

Corollary 1 Let S; = ©2JQ;. Then

o cither S; = {z € Py s.i. {t) = 0 over (§T49-,0T4o-i41)
keZ}if Q=9
o or S ={z€Py st z(t) =0 over (6Typ-i_1,6Tp0),
keZ}if Q)= Q5
and 8; is an algebra.

Proof: Left to the reader B
Now let us turn to the equivalent of formula (1).

Corollary 2 (Commutation formula) Let P; the opera-
tor on Py defined by setting to zero the components in S; in
the decomposition Py = P; @ S;.

Let @ a polynomial and = an element of P, e = P;z and
w=z —e. Then

(16)

. {IP]« Q(z)] = P; [Q(e)]
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