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Nested Monotony for Variational Inequalities 
over Product of Spaces 

and Convergence of Iterative Algorithms I 
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Abstract. The auxiliary problem principle has been proposed by the 
first author as a framework to describe and analyze iterative algorithms 
such as gradient as well as decomposition/coordination algorithms for 
optimization problems (Refs. 1-3) and variational inequalities (Ref. 4). 
The key assumption to prove the global and strong convergence of such 
algorithms, as well as of most of the other algorithms proposed in the 
literature, is the strong monotony of the operator involved in the 
variational inequalities. In this paper, we consider variational 
inequalities defined over a product of spaces and we introduce a new 
property of strong nested monotony, which is weaker than the ordinary 
overall strong monotony generally assumed. In some sense, this new 
concept seems to be a minimal requirement to insure convergence of 
the algorithms alluded to above. A convergence theorem based on this 
weaker assumption is given. Application of this result to the computation 
of Nash equilibria can be found in another paper (Ref. 5). 
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1. Introduction 

For classical optimization problems, Cohen (Refs. 1 and 2) and Cohen 
and Zhu (Ref. 3) introduced the so-called auxiliary problem principle as a 
general framework to describe and analyze computational algorithms rang- 
ing from ordinary gradient to decomposition/coordination algorithms. This 
principle has been further extended to deal with more general (nonsym- 
metric) variational inequalities (Ref. 4). Generally speaking, to prove the 
global convergence of such algorithms, one needs to assume that the operator 
involved in the variational inequality (be it considered directly or derived 
from the optimization problem under consideration) is monotone (strong 
monotony is even needed to prove strong convergence in infinite- 
dimensional Hilbert spaces). 

One noticeable exception is the case of saddle-point problems. In this 
case, the classical assumption is that the corresponding saddle function, 
which is defined over the product of two spaces, is convex-concave. This 
is equivalent to the fact that its partial derivative with respect to the first 
argument (or more generally its subdifferential) is monotone (or monotone 
positive) when the first argument only is allowed to vary, and the derivative 
with respect to the second argument is monotone negative (that is, its 
opposite is monotone) when this latter argument varies. For twice-differenti- 
able saddle functions, the two blocks on the diagonal of the Hessian are 
respectively positive and negative. Of course, the off-diagonal blocks are 
adjoint to each other, which will not be the case for nonsymmetric variational 
inequalities. As we shall see later on, this case of saddle-point problems 
appears to be a very specific case where the magnitude of the off-diagonal 
terms can be, in some sense, arbitrarily large and where the (positive or 
negative) monotony of the block-diagonal terms is sufficient to prove conver- 
gence of algorithms such as those of Uzawa, Arrow-Hurwicz or other more 
general algorithms (Ref. 2). 

For the other situations, but still for operators defined over a product 
of spaces, it is easy to convince oneself that the monotony of the block 
operators on the diagonal is not a sufficient assumption to insure stability 
of the commonly used computational algorithms. On the other hand, assum- 
ing the monotony of the global operator, as generally done, may prove to 
be a too strong and not very natural assumption in some situations. This 
is, for example, the case of Nash problems as discussed in Ref. 5. The main 
contribution of this paper is to propose a new notion of (strong) nested 
monotony that will allow us to prove a general convergence theorem, and 
that is weaker than the usual monotony assumption. Some simple examples 
suggest that, in some sense, this requirement is minimal to insure conver- 
gence. 
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2. Basic Results on Variational Inequalities 

2.1. Monotone Operators. We recall some results on existence of  
solutions to variational inequalities based on monotony assumptions. They 
are drawn from Ekeland and Temam (Ref. 6). We notice that other types 
of  existence results are based on continuity (rather than monotony) assump- 
tions on compact sets [see Aubin and Ekeland (Ref. 7)], but this latter 
approach is not generally the way in which computational algorithms are 
obtained. In Ref. 7, the case of multivalued (point-to-set) operators is also 
discussed. We shall not consider this case in this paper, and we shall limit 
ourselves to ordinary (single-valued) operators. 

Let • be a mapping from a reflexive Banach space U into its dual 
U*, and let ~o be a proper convex 1.s.c. function from U into R. Let U s be 
a closed convex subset of  U. One looks for u*~ U s such that 

( ' ~ ( u * ) ,  u-u*)+~(u)-~(u*)>~O, Vu~ U( (1)  

In Ref. 6, one can find the following existence theorem. 

Theorem 2.1. Assume the following: 
(A1) W is weakly continuous over every finite-dimensional subspace 

of U; 
(A2) W is monotone over U y, that is, 

(q~(u)-q~(v), u-v)~O, Vu, v6 Uf; (2) 

(A3) there exists w~ dom ~ such that 

(~ ' (u ) ,  u - w ) +  ~ ( u )  - ,p(w) 
lim - +m. (3) 

, < > + ~  llult U ~  U f 

Then, there exists a solution u* to (1). 

Assumption (A3) is of  course useless if U f is bounded. Moreover, it 
is also met if we strengthen the monotony assumption (A2) by requiring 
strong monotony of '-It over U y (with modulus a), which means that the 
following assumption is satisfied: 

(A4) 3a>O:(~(u)-~(v) ,u-v)~al tu-v l l2 ,  Vu, v~UJ~ (4) 
Under (A4), u* is unique. When W is the derivative of  a function J 

[which is convex, from (A2)], then u* minimizes ( J +  ~)(u)  over U y. When 
J is not differentiable, W must be identified with the subdifferential OJ that 
is now a point-to-set mapping. When W is not a derivative or a subdifferen- 
tial, problem (1) cannot generally receive an interpretation in terms of  a 
minimization problem. Pang (Ref. 8) gives examples of such problems. 
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2.2. Operators over a Product of  Spaces. When the space U is the 
product of N subspaces, we introduce the following notations. U, without 
subscript, denotes the whole space; Ui denotes the ith component subspace; 
and 

u=(u l , . . . , uN)E  U, ui~ Ui, 
N N 

u = H u,, u ~= H u( ,  u ( ~  w~, (5) 
i = 1  i = 1  

where U (  is a closed convex subset. To shorten notations, we shall write 
u-i instead of  (Ul , . . . ,  uH ,  ui+l, . . . ,  uN), and we shall identify (ui, u_i) 
with u. Similarly, u<~ will stand for ( u ~ , . . . ,  ui-1), u~>i for ( u i , . . . ,  u~), u>~ 
for (u~+~,.. . ,  uN), etc. Since • maps U into its dual space U* which is 
the product  of  { U*; i = 1 , . . . ,  N}, ~ i  will denote the composition of  
and of  the canonical projection onto U*. Hence, 

, / , (u)  = ( , I , , ( u ) , . . . ,  ' I , ~ (u ) ) .  

Finally, we shall always assume that ~0 is additive, that is, 

N 

~0(u)-= E ~p~(u,). (6) 
i = 1  

Lemma 2.1. Under (5)-(6), the variational inequality (1) is equivalent 
to the following system of N coupled variational inequalities: find u* ~ U f 
such that, for j = 1 , . . . ,  N, 

(~j(u*), uj-u*)+~oj(uj)-~oj(u*)>~O, Vuj~ U f. (7) 

The proof  is straightforward. 
Assume that • is differentiable, and let ~,~(u) denote the partial 

derivative of  ~ i  with respect to uj evaluated at point u. This is a linear 
operator from Uj to U*. Then, we say that • is symmetric iff ~ ( u )  is the 
adjoint of  ~ j i (u )  for all u and all pair (i,j). 

Consider now the case N = 2 and ~ = 0, for simplicity. We consider 
the following four particular situations. 

Situation (a). qt is symmetric and monotone. Again, this is the case 
when u* is a global minimum over U f of  a cost function of  which • is 
the derivative. 

Situation (b). • is symmetric but not monotone. However, for all i, ~ i  
is monotone as a function of ui alone, u-i being considered as a parameter. 
Then, u* can be interpreted as what is called a person-by-person minimum 
in team theory, but this may not be a global or even a local minimum of 
the above cost function. 
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Situation (c). We keep the same assumptions about monotony as 
above, but qr is no longer assumed to be symmetric. However, we still 
assume that ~l i (u)  is self-adjoint for all u and i. Then, u* can be interpreted 
as a Nash equilibrium (the cost function of  player i is such that q~i is equal 
to the partial derivative of  this cost function with respect to ui). 

Situation (d). ~ is symmetric but not monotone. Indexj  in (7) assumes 
two values only. For j = 1, 41 is monotone as a function of ul. For j = 2, 
the corresponding inequality (7) keeps the same left-hand side but it is 
written with ~<0 instead of/>0.  Moreover, - ~ 2  is assumed monotone as a 
function of  u2 (we say that ~2 is negative monotone). Then, u* can be 
interpreted as a saddle point. 

Example 2.1. Consider the case when U1 = U2 = R and q~ is linear 
and thus representable by a (2, 2)-dimensional matrix. We give four matrices 
corresponding to the four particular situations described above: 

(b) [12 21]; 

~ [31 ~]~ 

Recall that, for case (d), the sign of the second line should be reversed to 
fit into (7). 

3. A General Class of Computational Algorithms: Nested Monotony 
and Convergence 

In Ref. 4, the following class of algorithms, based on the so-called 
auxiliary problem principle, have been proposed to compute the solution 
of  (1). Let us consider a differentiable auxiliary functional K :  U--> R and 
a positive number e. 

Algorithm 3.1. (i) At k = 0, start with some initial u °. 
(ii) At step k, solve the auxiliary problem 

min K(U)+(C3XI~'(uk)-- K'(uk) ,  U)+Eq~(U). (8) 
ucU f 

Let u k+~ denote the solution of this problem (assume that it does exist and 
that it is unique). 
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(iii) Stop if [[u k + l -  uk[] is below some threshold. Otherwise, go back 
to Step (ii) with k ,'-k + 1. 

The following theorem is proved in Ref. 4. 

Theorem 3.1. (i) Assume (A1), (A4) and that ~:  U-~R is a proper 
convex l.s.c, functional. Then, there exists a unique solution u* to (1). 

(ii) Assume that K : U - ~ R  is a proper  convex and differentiable 
functional and that its derivative K '  is strongly monotone with modulus b 
over U y. Then, there exists a unique solution u k+l to (8). 

(iii) Assume that xI t is Lipschitz with modulus L over U I, that is, 

3 L >  0: I[ttt(u) - ~ ( v ) [ [  ~< Lllu - vii, Vu, v c U j, (9) 

and we take 

0 < e < 2 a b / L  2. (10) 

Then, the sequence {u k} strongly converges toward u*. 
If we are in the situation (5)-(6), it is natural to choose a functional 

K that is also additive with respect to the decomposition of  U [ K ( u ) =  
Y~ Ki(ui)], so that the auxiliary problem (8) splits up into N independent 
subproblems. 

Theorem 3.1 essentially covers situation (a) considered in. Section 2.2 
(strong monotony should replace monotony, the latter weaker assumption 
being considered in Ref. 2) and the situation when • is not symmetric but 
still strongly monotone as a whole. It also covers situation (d) as shown by 
the following lemma. But it does not cover situations (b) and (c), nor does 
it cover more general situations without symmetry assumptions. The purpose 
of the next sections is to give a new and less restrictive convergence theorem. 
But let us come back to the saddle point case with the following lemma, 
which is well known but for which we provide a proof  for the sake of 
completeness. 

Lemma 3.1. Let J :  (u, v) ~ J(u, v) be an R-valued smooth functional, 
convex in u [respectively, strongly convex in u with modulus a uniformly 
in v] and concave in v [respectively, strongly concave in v with modulus 
b uniformly in u]. Then, the operator ( u , v ) ~ ( J ' u ( U , V ) , - J ' ( u , v ) )  is 
monotone [respectively, strongly monotone with modulus min(a, b)]. 

Proof. We only need to consider the strong version of the lemma; the 
weak version follows by making a = b = 0. Strong convexity in u with 
modulus a uniform in v means that there exists a > 0 such that, for all 
v, u, u' and a~[O,  1], 

J ( a u  + ( 1 - a ) u ' ,  v)<~ aJ(u,  v ) + ( 1 - a ) J ( u ' ,  v) 

- aa(1 - a)[] u - u'[[2/2. 
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This is also equivalent to the strong monotony of J" (. ,  v). Similar definitions 
stand for strong concavity. One has 

J(u, v ) - J ( u ' ,  v ')= [J(u, v ) - J ( u ' ,  v)]+[J(u' ,  v ) - J ( u ' ,  v')] 

<~(J',,(u, v), u - u ' ) - a J l u - u ' I f / 2  

÷(J ' (u ' ,  v'), v -  v ' ) -  b l l v -  v'Hz/2, 

the inequalities being a consequence of the strong convexity and of the 
strong concavity (see Ref. 2). Similarly, 

J(u, v ) - J ( u ' ,  v') = [J(u, v ) - J ( u ,  v')] +[J(u, v')-.1(u' ,  v')] 

(J"  ( u, v) ,  v - v') + bllv - v'112/2 

+ , , _ u , > + a [ i u _ u , l l Z / 2 .  ( Y u ( u ,  v ' ) ,  u 

Combining the inequalities above yields the result. [] 

4. Strong Nested Monotony 

For an operator • defined over a product of sets as described in Section 
2.2, we introduce the following definition. 

Definition 4.1. We say that an operator W is strongly nested monotone 
relatively to the variational inequality (1) and to the decomposition (5) iff 
the following holds true. 

(i) Initialization. The operator 

UN ~ f~ N ( UN ; U< N ) ~= ~ N ( U< N , UN ) 

is strongly monotone in UN over U ~  uniformly in U<N ranging in UY<N . 
According to Theorem 2.1, and modulo a continuity assumption of the type 
(A1), the variational inequality in UN (parametrized by U<N) 

+ ~(vN)-  ~(uN) ~ 0, VvN ~ U~,  

has a unique solution denoted by u~(u<N). We also set WN(U<N) equal 
to this solution. 

(ii) Stage j (repeat for j = N, . . . .  1; for j = 1, u<j must be omitted). 
The operator 

uj--,x~j(uj; u<~)---a ~t'j (u<~, uj, wj+~(u<~, uj)) (11) 



376 JOTA: VOL. 59, NO. 3, DECEMBER 1988 

is strongly monotone in uj over U~ uniformly in u<~ ranging in UY<j. Again, 
modulo a continuity assumption, the variational inequality in u~ (param- 
etrized by u<j) analogous to the above has a unique solution, denoted by 
u 7 (u<~). We further set 

N 

~(u<j)~{uT(~<~), wj+~(u<j, uT(u<j))}e 1-I u{.  
k=j 

There are several possible sets of assumptions that would ensure 
property (A1) for the successive ~j. We shall not discuss further this point, 
because, for algorithmic purposes, we shall consider even stronger assump- 
tions later on. 

Definition 4.1 introduces recursively a sequence of nested operators 1)~ 
and of associated variational inequalities, the definition of rank j operator 
incorporating the solutions of downstream inequalities (through Wj+~), 
whereas the upstream u<j appears as a parameter. Alternatively, and for a 
given i, 1 ~< i < N, one may consider the set of parallel and coupled vari- 
ational inequalities (7), based on ~j  but for j  ranging from this i to N, this 
set being parametrized by u<~. It is easy to realize that W~(u<i) is indeed 
the solution of this set of inequalities. This is stated as a proposition 
hereafter. Therefore, anticipating the fact that strong nested monotony is a 
weaker assumption than strong monotony, and modulo the continuity 
assumptions alluded to above, we see a way of ensuring the existence and 
uniqueness of the solution to a variational inequality defined over a product 
of sets without dwelling upon the usual assumption of strong monotony. 

Proposition 4.1. Let us consider the following (system of) variational 
inequalities (with obvious notations) 

u~, ~ U~,  : ('t'~i(u<i, u~i), v ~ -  u~)  

N 

+ Y [,pj(vj)-~j(uj)]~O, Vv~ie u~,. (12) 
) - i  

Then, W~(u<~) as introduced in Definition 4.1 is a solution of (12). 
Coming back to Definition 4.1, we notice first that u f+l might be 

nonunique if we assume llj+l only simply monotone instead of strongly 
monotone and then l%j might be a point-to-set operator even if ~ is an 
ordinary operator. This is one reason why we have given directly a definition 
of strong nested monotony (for the solution uniqueness, strict monotony 
would have been enough, but strong nested monotony will be required for 
algorithmic purposes). Definition of simple nested monotony is possible at 
the price of dealing with multivalued operators. 
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Provided that the burden caused by the complexity of notations be 
overcome, this new notion of nested monotony is simple conceptually. 
However, it might be ditficult to check in some practical situations, since 
from the definition it involves the solutions u~ of partial variational prob- 
lems parametrized by u<s. Nevertheless, looking for it may serve as a 
guideline in circumstances when global monotony (or saddle point interpre- 
tation) cannot be expected. 

It should be realized that many factors may affect this property. A first 
factor is not only the decomposition (5) itself, but even the order in which 
the set {1, . . . ,  N} is considered in the definition (we have considered the 
order from N to 1, but any other permutation of this set might have been 
considered as well). A second factor is the presence of constraints (repre- 
sented here by the feasible sets U{) and of the functionals ¢~, since these 
elements affect obviously the value of u ~ entering the definition of f~-l- 
Finally, a third factor, which is even more subtle, will be explained directly 
through the second example below. These observations show that nested 
monotony is not an intrinsic property of • alone, but rather of • considered 
within the framework of the variational inequality (1), the decomposition 
(5), etc. 

Example 4.1. We consider the case 

N = 2 ,  U, = U =R, Us= U{=R 2, 

and • linear and represented by the following matrix: 

[ 112 3"] [ A 

,.c [ 4io 2J 
A straightforward application of Definition 4.1 leads to checking for 

the strong monotony (or the positive definiteness) of 

f l l  = A -  B D - 1 C ,  

which is indeed equal to 1 in this case. If we consider the reversed order 
(j = 1 then 2), we are led to check for the strong monotony of 

~2 = D - CA-1B ,  

or equivalently for the positive definiteness of (fl2 + 1~*)/2, which is given 
by 

Thus, the property does not hold with this reversed order, whereas it does 
with the former order. 
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Example 4,2. Consider the same situation as above, but with a one- 
dimensional u2 and with W given by matrix (b) of Example 2.1. It is easily 
checked that W is not nested monotone, whichever order is considered. 
However, we can allow the following renumbering that will not change the 
system of  linear equations to which (1) or (7) reduces. By simply writing 
Eq. (7) for j =  2 above (and not below) the same equation f o r j  = 1, matrix 
(b) of Example 2.1 is converted into matrix (a). The latter is positive 
definite; thus, as we shall see hereafter, it is nested monotone for all 
decomposition and ordering of the variables. What we have done actually 
is to renumber the subspaces in the range space of W, namely U*, without 
performing the same permutation among the component subspaces of the 
domain space, namely, U. This is conceivable only when the Us's are of 
the same nature and thus interchangeable, and also because we do not pay 
attention to any symmetry consideration, a property that is not preserved 
by such manipulations. 

Let us now show that nested monotony is weaker than classical 
monotony. 

Proposition 4.2. If • is strongly monotone over U :  with modulus a, 
and if we assume that, at every stage of the successive variational inequalities 
introduced in Definition 4.1, Assumption (A1) can be ensured (existence 
of u~), then strong nested monotony holds true with uniform modulus a. 

Proof. For all i and for all ui and v/in U,:, we must prove that 

(t~,(u,; u < , ) -  ~ , (v , ;  u<s), u , -  v,)>I a II Us- v, [I 2, (13) 

uniformly in u<, ranging in uS<,. To shorten notations, let us set 

S = W~+,(u<,, us) and T = W i + , ( u < i ,  v,). 

Then, from the strong monotony of W over U:, we have that 

(~i(u<i,  ui, S) - ~ i ( u < i ,  vs, T), ui - v~) 

+(,I,>~(u<,, u,, s)-,~>,(u<~, v,, T), s -  73 

>1 a ( l t u -  vii2+ I l s -  TII2) ~> at tu-  vii ~ 

From the definition of S and from Proposition 4.1 [see Eq. (12)], we have 

(~>,(u<,,  us, S), T -  S)+ ~o>s(T) - ~o>,(S)/> O. 

A similar inequality holds true by substituting vi for u~ and by exchanging 
the roles of S and T. Adding these two inequalities to the previous one and 
remembering the definition (11) of f~ yield the result. [] 
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To show that the converse statement of  Proposition 4.2 is not true, 
consider again the situation of Example 4.2, but with W given by the matrix 
(c) of Example 2.1. It is easily seen that strong nested monotony does hold, 
but W is not even monotone (its symmetric part is not definite). It turns 
out, however, that, in the situation when there is no constraint (U f =  U), 
when ~0 =- 0 and when W is both linear and symmetric, nested monotony is 
equivalent to monotony. But this result is no longer true if we relax either 
the assumption of symmetry (as just shown) or that of linearity as shown 
by the following example. 

Example 4.3. We consider again the situation of Example 4.2, but 
with a nonlinear W given by 

a~ ~( ul , u2) = 3( u O1/3 + 2Ul -- 2u2, 

' t ' 2 (u l ,  u2) = - 2 u l  + (u2) 3 + u~. 

It can be checked that W is symmetric, in the sense that its Jacobian matrix 
is symmetric. Moreover, this Jacobian is not everywhere definite [check it 
at (ul, u2)=(1,0) ,  for example], so that W cannot be monotone. On the 
other hand, if we solve the equation W2(ul, u2) = 0 for u2 by using Cardan's 
formula, we get 

U~(Ul)  = [U 1 "{'- (U2d¢" 1t27)~/211/3+ [u, - (u2+ 1/27) 1/2] 1/3. 

Then, it can be checked that xtrl(u~, u~(uO) is strongly monotone in ul 
(that is, here, that it is strictly increasing). 

Since strong nested monotony does not imply in general strong 
monotony, it cannot be expected that, if strong nested monotony holds true 
for some decomposition (5), it also does so in general for a coarser decompo- 
sition. The converse statement is true: if the property holds true for some 
decomposition, it does so for all finer decompositions. Since the order in 
which component subspaces are considered is important as shown by 
Example 4.1, we must be specific in what we mean by a finer decomposition 
than (5). 

Definition 4.2. Given a decomposition as (5), all finer decompositions 
are obtained by decomposing some components Ui into two or more 
subcomponents Uu, j = 1 to Nf (for each i, the order in which the U0's are 
numbered is arbitrary), and then by renumbering the new components 
sequentially (from 1 to N ' >  N )  following the lexicographic order. Of 
course, U f [respectively, ~o] must be decomposable with respect to this 
finer decomposition [see (5) and (6) respectively]. 
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Proposition 4.3. Strong nested monotony related to some decomposi- 
tion (5) implies the same property for all finer decompositions. 

Proof. Let I c { 1 , . . . ,  N} be the set o f ind ices j  of the initial decompo- 
sition for which Uj has indeed been subdivided. Let k be the largest index 
in I. To each index i of the initial decomposition, there corresponds an 
index (if i ~ I)  or a set of  indices (if i ~ I)  in the new numbering, that we 
denote by v(i). Let m be the larger index in l,(k). While checking for 
Definition 4.1, starting with the larger index N '  of the new decomposition, 
there is no difference with the initial decomposition before the index m is 
reached by moving backward (the correspondence is one to one between 
the indices of the two decompositions until that stage). Then, since 
f~k(Uk ; U<k) was assumed to be strongly monotone in the old decomposition 
by Definition 4.1, this is true for all D,, t c v(k), in the new decomposition, 
as implied by Proposition 4.2 applied to operator ~'~k and to the overall 
space Uk and its decomposition, whatever this decomposition may be (here, 
u<k is just a parameter). Once we finished with the old index k and the 
new indices in u(k), the situation is again the same in both cases (down- 
stream ui's have been replaced by functions u~ of upstream variables, these 
functions being intrinsically defined as shown by Proposition 4.1). Hence, 
the same reasoning as above can be repeated for the next index in I (moving 
backward) and the corresponding indices of the new decomposition and 
so on. [] 

5. Convergence Theorem Based on Strong Nested Monotony 

In this section, our purpose is to give a new convergence theorem for 
a special case of Algorithm 3.1 when the auxiliary cost function K is additive 
with respect to the decomposition (5); this is of  course a desirable feature 
in this situation, since then problem (8) splits up into N-independent  
subproblems. Unlike Theorem 3.1, this new theorem will not require strong 
global monotony of ~ ,  but only strong nested monotony. 

As we shall see, the proof  of this new theorem is rather involved. 
Therefore, we shall restrict ourselves to the case of N = 2 in (5) and we 
shall redefine completely our notations in this section in order to avoid 
subscripts as far as possible. 

5.1. New Notations. Table 1 gives previous notations on the left-hand 
side and their present counterparts on the right-hand side. Moreover, about 
operator f/1 introduced in Definition 4.1, we now set 

O(u)  a_ A(u, v *(u)) =- f/l(Ul) --- ~1(ul ,  u~(ul)).  (14) 
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Table 1. Notations. 

~ t ( u l , u 2 ) : A ( u , v )  ~2 (u l ,u2 ) :B(u , v )  q~l(ul):f(u) 

~2(U2) i g(u) KI(Ul)  : K ( u )  K2(u2) : L(v) 

5.2. Algorithm. For the sake of completeness, we rewrite Algorithm 
3.1 with these new notations. We use two different steplengths ~ and p 
(standing for el and ~2) in the two auxiliary subproblems. At stage k, 
knowing u k and v k, one has to solve 

min K ( u ) + @ A ( u  k, vk)- -K'(uk) ,  U)+~f(u),  (15) 
u~ U f 

rain L( v) + (pB( u k, vk) -- L'( vk), V) + pg( v). (16) 
I)E V f 

The corresponding solutions are denoted by u k+l and v k+l, respectively. 
Notice that this scheme corresponds to parallel decomposition. Sequential 
decomposition would correspond to solving (16) first and then using its 
solution v k÷l instead of v k in (15); we consider here the subproblems in 
this order to stick to the order introduced in Definition 4.1. Essentially, we 
expect the following results to apply to sequential schemes too. 

5.3. Assumptions and Convergence Theorem. We require the following 
Lipschitz and strong monotony assumptions. There exist positive constants 
such that, for all u, u' in U s and all v, v' in V s, 

a(u,  v ) -  a (u ' ,  v)ll <<- Xllu- u'll, 

A(u, v ) - A ( u ,  v')t I <~ YIIv-v'Ir ,  

n ( u ,  v ) -  n (  u ' ,  v)ll ~ Z l l u  - u'lt, 

n(u,  v ) - n ( u ,  v')ll ~< Tl l v - v ' t l ,  

g ' ( u )  - g ' ( u ' ) l l  ~< C l l u -  u'lt, 

Z' (  v )  - Z'(v')ll <~ O l l u  - u'tl, 

< g ' ( u )  - g ' (u ' ) ,  u - u'> >1 cll u - u'lt =, 

< t ' ( v ) -  Z'(v'), v - v')>t d II v - ¢11 =, 

(B(u, v ) -  n(u,  v'),  v -  v')>- t l]v-v'{I z, 

<a(u)  - a ( u ' ) ,  u - u'> >~ rll u - u'll =. 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Notice that (25)-(26) are nothing else than the strong nested monotony 
assumption. 
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Remark 5.1. Consider the following variational inequality in v param- 
etrized by u: 

w e  v f :  (B(u, w), v - w ) + g ( v ) - g ( w ) > ~ O ,  V v ~  V y. (27) 

We see that all of the assumptions of Theorem 2.1, including (A1), are 
satisfied by the assumptions above. Therefore, the solution w or v*(u)  does 
exist and it is unique. 

We also state the following lemma about the Lipschitz property of fL 

Lemma 5.1. Under the above assumptions, for all u, u' in U y, one has 

II v ~(u) - v~(u ') II ~ s i n  - u'll, (28) 

l l n ( u ) -  n(u')II  <~ R II u - u'll, (29) 

where 

S = Z~ t and R 2 = ( X  2 + Y2)(1 + $2). 

Proof. Let us again set w = v * ( u )  and likewise for w'. Adding 
Inequality (27) with v set equal to w' with the same inequality for w' with 
v set equal to w, one gets 

(B(u', w ) -  B(u', w'), w -  w') <~ (B(u, w ) -  e(u' ,  w), w ' -  w). 

Using (25) to get a lower bound of the left-hand side and (19) to get an 
upper bound of the right-hand side, one proves (28). Then, 

IIf~(u)- ~(u')ll2 ~ [llA(u, w ) - m ( u ' ,  w)ll + I[a(u', w ) - a ( u ' ,  w')ll] 2 

<~ (X2+ y2). (llu - u'll=÷ I Iw-  w'l12), 

using the definition (14) of f~, and then successively the triangular 
inequality, (17)-(18) and the H61der inequality. The proof is completed by 
using (28). [] 

Remark 5.2. Considering the variational inequality in u, 

u* ~ u f  : (l~(u*), u - u*)+ f ( u ) - f ( u * )  >i O, Vu ~ U f (30) 

we see that all the assumptions of Theorem 2.1 are now satisfied. Therefore, 
there exists a unique solution u*. Let v*= v~(u*). From Proposition 4.1, 
we know that (u*, v*) is the unique solution of the original variational 
inequality in (u, v) involving (A, B,f, g). 
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Theorem 5.1. Under the previous assumptions, starting from any 
(u °, v °) in u f ×  V f algorithm (15)-(16) generates a well-defined sequence 
(u  k, vk) .  Moreover, if 

O < p < 2 d t / T  2 and 0 < ~ < h ( p ) ,  (31) 

where h is a certain positive function of p for positive values of the argument, 
then the sequence (u  k, v k) converges (in norm) toward (u*, v*). 

Remark 5.3. Notice that the upper bound of p is the exact analog of 
the bound of ~ in Theorem 3.1 [see (10)]. More will be told about h ( p )  
and the respective choices of • and p at the end of the proof. 

Proof. For the sake of simplicity, we set w k = v ~ ( u  k) throughout this 
proof. The auxiliary subproblems (15)-(16) are equivalent to the following 
variational inequalities (see Ref. 6), which have unique solutions u k÷~ and 
v k+l, respectively, from Theorem 2.1 and the assumptions 

( K ' ( u  k+l) - K ' ( u  k ) + e A ( u  k, vk) ,  u - U k+x ) 

+ e ( f ( u ) - f ( u k + ~ ) ) ~ O ,  V u ~  U I, (32) 

(L ' (  v k+l) - L ' (  v k ) + p B ( u  k, v k), V - / 2  k+l ) 

+ p ( g ( v ) - - g ( v k + ~ ) ) > - O ,  V V ~  V y. (33) 

Set u equal to u* in (32), and combine it with (30) multiplied by e, in which 
u has been set equal to u k+~. This yields 

( K ' ( u  k) - K ' ( u k + l ) ,  u* - u k+') 

<~ e ( A (  u k, v k) - Ut( u*) ,  u* - u k+l) 

= e ( A ( u  k, v k ) - A ( u  k, wk) ,  (U* -- U k ) + (U k -- uk+l)) 

+ ~ ( ~ ( U  k) --~'~(U*), U :g -- uk)"~ e ( ~ ( U  k) -- ~'~(U@), U k -- U k+l) 

<_ , Y I I v  k - wkll(ll u* - ukll + II nk - u~÷, II) 

- , r l t  u~ - u* l[= + ,RII  uk - u*ll Hu ~ - u k+~ [1, (34) 
where we have used (26) for the second term above, the Schwarz and the 
triangular inequalities, and then (18) for the first term, the Schwarz 
inequality and (29) for the last term. Similarly, set v equal to w k in (33), 
and combine it with (27) multiplied by/9, and where u, w, v are set equal 

/ ) k + l  to u k, w k, respectively. This yields 

( L ' ( v  k) - L'(vk+l), wk -- V k+l ) 

<~ p(  B (  u k, v k ) - B (  u k, wk) ,  wk -- v k+') 

= p ( B ( u  k, v k) - B ( u  k, wk) ,  W k -- V k ) 

+ p ( B ( u  ~, v ~ ) - l ~ ( u  ~, w k ) ,  v ~ - v~+,) 

-p t l l  v " -  w ~ 112+ v T I I  v k - w k It II vk - vk+'ll, (35) 
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where we have used (25) for the former term above, and the Schwarz 
inequality, and then (20) for the latter. 

On the other hand, let us consider the following functional: 

A(u, v)  a_ K ( u * )  - K ( u )  - ( K ' ( u ) ,  u * -  u) 

+ , ~ [ L ( v ~ ( u ) ) -  L ( v ) - ( L ' ( v ) ,  v * ( u ) - v ) ] ,  

where a is a positive constant to be chosen later on. From the convexity 
of K and L, A takes only nonnegative values. Let us study the difference 
A ( u k + I ) - - A ( u k )  that we write symbolically K+aix, where K includes all 
terms from K and/z  all terms from L. After some manipulations, one gets 

K = [ K ( u  k)  - K ( u  k+l) - - ( K ' ( u k ) ,  U k -- Uk+l)] 

+ [ ( K ' ( u  k) - K ' ( u k + ' ) ,  U* -- Uk+')]. 

The latter expression in brackets already appeared in (34), whereas the 
former is bounded from above by -ell u k+~-  u k H2/2 [this is a consequence 
of (23), see Lemma 2.1 in Ref. 2]. Similarly, 

IX = [ L(  v k ) - L(  v k+') - ( L ' ( v k ) ,  V k -- Vk+')] + [ L (  w k+l ) - L(  wk)  ] 

.~ [(Lt(/)k)  -- L t (  l.)k+l), W k _ / ) k + l ) ]  + [ (L t (vk+l ) ,  W k _ wk+l)] .  

The third expression in brackets already appeared in (35), the first expression 
is bounded from above by - d l J v  k+~-  vkll=/2 as a consequence of (24), the 
second expression is also bounded from above by ( L ' ( w k ) ,  w k + ~ - - w k ) +  
DJJ w k+~- W ~ 1J2/2 [this is a consequence of (22), see Lemma 2.1 in Ref. 2]. 
Therefore, 

tx <~ - d  If vk+l -- vk I12/2 + D II Wk+l -- wk 112/2 - p t  I1 v k - wk  II 2 

+ pTII  v ~ -  w ~ II II v k - v ~+ '  II 

+ ( ( L ' ( w  k) - L ' ( v k ) )  + ( L ' ( v  k) - L ' (vk+I) ) ,  w k+' _ wk).  

In the last expression, we use the Schwarz and the triangular inequalities 
and also (22). We then collect all these inequalities for K + a/~, and we get 

K + a ~  ~ , Y I I v  k - wkll( l l  u ~ - u* l l  + tl u~  - u k + ' l l )  

- , r j l  u k - u*l t  2 -  clt u k + ~ -  uk  112/2 

+ , R  tl u ~ -  u * l l  ] lu  k - u k + ' l l  - a d  li v ~ + '  - v ~ 112/2 

+ ~ O l l w  ~+1 - w~ I I V 2 -  a p t I I v  k - w~li  2 

+ ,~P TII v k - w ~ II II v ~ - v ~+ '  II 

+ ,~Oll  w ~+ '  - w~ I1(11 w ~ - v~ll + IIv k÷ '  - v~ II)- 
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From (28), we know that 

tl w ~ ÷ ' -  w ~ II ~ s l l  u ~ ÷ 1 -  u ~ It, 

where S is given by Lemma 5.1. We make use of  this inequality in the 
expressions above. For all cross products, we also use systematically the 
fact that, for all numbers x, y, ~ (~ positive), 

xy  <~ (~x2 + y2/ ~)/2.  

Constants such as ~ will be denoted by ~, i from 1 to 6, since there are 6 
cross products above. These positive constants, together with oz, will be 
chosen later on (we have not found any strategy to fix them at this stage 
of  the proof).  After straightforward calculations, we finally get 

+ ~ 3 ~  II v k÷'  - v ~ II 2 ÷ */41L u k÷'  - u k 1123/2, ( 3 6 )  

with the following expressions of the ~i's: 

*/l = Y /  ~I + R~3 - 2r, 

*/2 = E Y ( £ I +  ¢ 2 ) / a  +pT£6+D£5-2pt, 

rl3 ---- p T / ~ 6 +  D~4 - d, 

rl4 = E( Y / ~ 2 +  R/~3)  + aDSZ(1 + 1/~4+ 1/~5) - c. 

Recall that K + a/~ represents the difference A(u k+~, v k+l) - A ( u  k, v k) 
and that A assumes nonnegative values. Then, suppose that we are able to 
choose positive values of a, ~ to ¢6, p, ~ such that ,71 and */2 are negative 
and such that T~3 and */4 are null. In view of  (36), this would mean that the 
sequence {A(u k, vk)} is nonincreasing and that, being bounded from below 
by zero, it converges. Therefore, the difference of two successive terms 
would tend to zero. From (36) and the assumptions made about the *//s, 
we could conclude that both ]lu k -  u* N and [Iv k -  w~ll tend to zero. Since 
w [that is, v*(u)]  is Lipschitz continuous in u (Lemma 5.1), we could 
conclude that w k tends toward v * ( u  *) = v* and that the same happens to 
v k, thus completing the proof. 

Therefore, it remains to prove that the assumptions on the ~7/s can be 
fulfilled by a proper choice of all the parameters left free until now. It is 
really difficult to choose them without having a guideline. The idea that we 
have followed is to minimize some linear combination of the *//s with 
arbitrary positive weights h~ under the constraints that */, and */2 be strictly 
negative and that 773 and */4 be null (nonpositive would be enough). This 
idea of minimization can be justified to some extent by the fact that we 
want to make the increase of the Lyapounov function A over any stage of  
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the algorithm as small as possible (or its decrease as large as possible). 
That this idea is heuristic does not affect the validity of the proof, since the 
only objective that we have to meet is to fulfill the conditions on the ~Ti's. 
For the same reason, we are not going to give the detailed calculations 
leading to a solution, but we shall simply exhibit this solution. 

These calculations, which are straightforward but cumbersome, consist 
in differentiating the expression E A ~  with respect to the variables a and 
~1 to ~6, and then in writing that these derivatives are null (again, that these 
stationarity conditions yield really a true minimum does not matter for our~ 
final purpose). Because of  the special structure of  the objective function 
(notice that all variables appear once linearly and once as a denominator),  
it is possible to get relations between the variables which are independent 
of  the weights A~. Using these relations and those provided by the conditions 
773 ~ ~74 = O, one can express all the other variables as the following functions 
of~2, E,p: 

st1 = ~:2(c~:2-2~Y)/~(R~2+ Y), 

~3 = E(R~2+ Y)/(cJ~2-2EY), 

~4 = dS~2 / ( DS~2 + pT),  

~6 = ( DS~2 + p T) / d, 

a = Yd(c£2+ ~R£2 - EY)/DS(R£2+ Y ) ( S ( D +  d)¢2+pT+ d). 

We let the reader check that indeed ~73 = ~74 = 0. Notice that, for ~:1 and £3 
to be positive, we must impose 

E < c~2/2 Y. (37) 

Placing the above expressions into those of  7/1 and 7/2, we get the conditions 

71 = e(R~z + Y ) 2 / ~ 2 ( c ~ 2  - 2EY) - 2r < 0, (38) 

r12 = [ DS2( D + d)t~2 + 2DS( d + p T)(z + p (pTZ-  2dt)]/ d <0.  (39) 

Condition (38) translates into the following condition on E: 

E < 2re~2/[(R~2 + y)Z + 4rYe2]. (40) 

This is stronger than (37), which will thus be a consequence of  (40). The 
right-hand side of (40) is an increasing function P(~2) (calculate the deriva- 
tive). Therefore, the larger ~:2 is, the larger the upper bound of  E can be. 
But, as we shall see, there is a tradeoff with the condition imposed by (39). 
Observe first that this latter condition cannot be met if p does not satisfy 
the condition in (31). If  it does so, then (39) can always be satisfied by 
choosing ~:2 small enough, but this may mean a small e too [to meet (40)]. 
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To be more specific, observe that the left-hand side of  (39) is a poly- 
nomial of degree 2 in ~2, the coefficients of which are functions of p. Under 
condition (31) on p, this polynomial has two real roots, one negative that 
we disregard (~2 must be positive) and one positive that we denote by q(p). 
Once p has been chosen to satisfy the condition in (31), in order to meet 
(39), ~72 must be strictly smaller than q(p); and then, in order to meet (40), 
since p is an increasing function, e must be smaller than h(p)a=p(q(p)) 
[this defines h appearing in (31)]. 

Finally, to make the tradeott between the value of p and the bound 
on e more precise, we must worry about the range of values of p for which 
q (and therefore h) is increasing or decreasing. It may be proved that q is 
increasing for values of p close to zero and decreasing for values close to 
the upper bound of p, that is, 2dt/T 2. Actually, it can be proved that q is 
always decreasing for values of p larger than dt/T 2, the exact value for 
which q reaches its maximum depending on the condition numbers c~ C 
and d/D. Heuristically, it may be said that p should always be chosen 
smaller than dt/T 2, although the algorithm still converges for values of p 
close to twice this latter bound, but then with e very small. [] 

6. Final Comments and Conclusions 

In this paper, we have introduced a new notion of strong nested 
monotony for variational inequalities defined over a product of spaces. 
Under this assumption, and other technical assumptions, existence of  a 
unique solution can be guaranteed, and this solution can be computed by 
Algorithm 3.1, provided that the auxiliary function K in (8) be chosen 
additive with respect to decomposition (5), which is assumed to hold 
together with (6). This general algorithm includes several algorithms already 
proposed in the literature, and it generalizes them to some extent [Pang 
(Ref. 8), Pang and Chan (Ref. 9), Glowinski and associates (Ref. 10)]. The 
decomposition aspects have been further developed in other papers (see 
Refs. 1-5). 

Strong nested monotony has the advantage over classical strong 
monotony in that it is a weaker requirement. Since the latter property is 
generally assumed in order to prove convergence of algorithms such as 
Algorithm 3.1, Theorem 5.1 seems to be an original and useful contribution 
to this field (see Ref. 5 for an application to the computation of Nash 
equilibria). 

Admittedly, nested monotony may not be so easy to check in some 
practical situations. Moreover, we have shown in Section 4 several factors 
affecting this property [decomposition into subspaces, although this may 
be imposed by the decomposability of U i and q~, see (5) and (6); order in 
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which subspaces are numbered in both the domain and the range spaces 
of ~ ,  the latter numbering having some flexibility with respect to the former 
when some U,. and Uj are identical, so that U~ may be associated with U s 
and conversely as discussed in Example 4.2, etc.]. More insight would be 
needed from this point of view. 

Nevertheless, we believe that this property is in some sense not only 
sufficient but also necessary in order to prove convergence of iterative 
algorithms such as Algorithm 3.1. Of course this fuzzy statement cannot be 
made more precise in general, but we shall show hereafter some simple 
situation where it can be proved. 

We consider again the linear two-dihlensional situation discussed in 
Example 4.2, but now with the general 2 x 2 matrix 

[: :] 
as operator 't r (recall that ~o is null and that there are no constraints, so 
that the problem consists in solving a system of 2 linear equations with null 
right-hand side; the solution is (0, 0)]. Using Algorithm 5.2 (we now use 
the notations of Section 5), with 

K ( u )  = u 2 / 2  and L (  v )  = v 2 / 2 ,  

one gets 

u k+l = u k _ a ( a u  k + b v k ) ,  

Vk+l= v k _ p ( c u k + d v k ) .  

It is easy to figure out that, for this algorithm to converge for ~ and p 
positive and small enough, it is necessary that a d -  b c  and e a  + p d  are 
positive, which means, for the latter condition, that at least a or d is positive 
(then, if, for example, d is positive, it is sufficient to choose the ratio a / p  

small enough). We recognize in these conditions those of strong nested 
monotony for the only possible decomposition here, and for one or the 
other out of the two possible orders. 

To close this paper, let us give another insight into the meaning of 
Theorem 5.1. To fix ideas, say that d is positive together with a d  - be. For 
a given ratio ~-= a / p  and for a close to zero, the discrete-time dynamic 
system above behaves asymptotically as the differential system 

fi = - a u  - by ,  

= - cu  - dv .  

Thus, making ~" small (that is, ~ small compared to p) corresponds to 



JOTA: VOL. 59, NO. 3, DECEMBER 1988 389 

creating a two-time-scale system that is stable: v quickly moves toward the 
curve v~* (u )=-cu /d  (this move is stable, because d is positive), while u 
slowly moves toward the equilibrium point u* = 0. We know that the reduced 
system (in the terminology of singular perturbation theory), obtained by 
making 7 = 0, namely, 

ft = - (  a - bc/ d)u,  

is stable by the assumption that a d -  bc is positive. But, coming back to 
the framework of  an iterative algorithm, sticking to the curve v~(u) is 
computationally costly because, for a frozen u k, a theoretically infinite 
number of  iterations on v would have to be performed. It is of course easier 
to let u and v evolve simultaneously. The two-time-scale property [which 
insures stability because one remains close to the path v~(u), which safely 
leads to the solution] is simply induced by the respective magnitude of e 
and p as expressed by Theorem 5.1 (it is not even necessary to perform 
several iterations on v for one iteration on u). This interpretation does not 
necessarily mean that, practically • should be smaller than p by several 
orders of magnitude. This depends, among other factors, on the relative 
degrees of stability of B, as an operator on v alone, and of ~ ,  as measured 
by the moduli t and r [see (25)-(26)]. 
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