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Abstract-Contradictory requirements on the precision 
in L” and L2 norms prevent the classical least square 
procedure from identifying two time scaled systems ac- 
curately, A new identification procedure, explicitly using 
the time scale structure of the system, is proposed here, 
and is proved to solve the problem of accurate param- 
eter estimation. Copyright @ 1996 Elsevier Science Ltd. 

I. Introduction and summary 

It is well known that systems that have a wide dispersion of 
poles and zeroes are hard to identify. Among those ‘wide band 
systems, we shall study two time scaled systems (see Luse and 
Khalil, 1985). The poles and zeroes of such systems can be 
grouped into two distinct sets, that we shall call the slower and 
faster parts of the system. 

The reason why the classical least squares method fails to 
give an accurate estimation of the parameters is that it has to 
deal with data that is very scattered in the frequency domain. 

To get around this, it is natural to identify separately the 
slow and fast parts of the system. The only trouble is that two 
independent identifications may lead to a couple of models 
that cannot be traced back to a unique two time scaled system. 
This is avoided by requiring that the static gain of the fast 
submodel must be equal to the high frequency gain of the 
slow one; it is a consequence of an approximation theorem on 
two-time scaled systems. 

The previous ideas suggest a new identification scheme for 
two time scaled systems, which can be outlined as follows. 
First, the signals are prefiltered twice in parallel, to provide 
the slow and fast components of the data. After a suitable 
time resealing, the prefihered signals are used to compute two 
partial excitation matrices. The two time scaled identifier then 
uses these matrices to minimize the sum of the slow and fast 
model prediction errors, under the previous equality constraint 
on the gains. 

Because it uses some transfer approximations, this method 
is not a model matching method for two time scaled systems. 
Hence, it has a worse performance than the classical least 
squares when there is not an important separation of time 
scales, and/or when the noise/signal ratio is small. 

Received 21 January 1994; revised I9 October 1994; re- 
vised 20 June 1995; received in final form 20 December 1995. 
This paper was not presented at any IFAC meeting. This pa- 
per was recommended for publication in revised form by As- 
sociate Editor Brett Ninness under the direction of Editor 
Torsten Sederstrom. Corresponding author Dr F. Chaplais. 
Tel. +33 1 64 69 48 71; Fax +33 I 64 69 47 01; E-mail chap- 
lais@cas.ensmp.fr. 
+ Centre Automatique et Systemes, Ecole Nationale Su@rieure 
des Mines de Paris, 35 rue Saint Honor& 77305 Fontainebleau 
Cedex, France. 

The situation is reversed, however, when the time scales are 
quite distinct and the data is corrupted. The reason is that each 
subsystem identifier works, at its own level, with homogeneous 
data. In that case, this seems to be more important than the 
issue of model matching. From a theoretical point of view, we 
show that the two time scaled identification method provides 
asymptotically exact parameters when the time scales ratio E 
tends to 0. We also show that, with suitable signals and filters 
it is possible to maintain a bounded modulus of continuity be- 
tween the two time scaled excitation matrices and the associate 
identified parameters, while E tends to 0. This proves that the 
two time scaled method is more robust than the classical least 
squares method. Such a result is achieved at the expense of 
the method’s optimal accuracy. 

A few numerical results then illustrate the compared per- 
formances of the classical least squares method and of its two 
time scaled equivalent. They have been obtained by using a 
MATLAB program; its source code can be obtained by E- 
mail on simple request to the author. 

2. %o time scaled systems and their identification by the least 
squares method 

In this section we define two time scaled systems, and explain 
briefly why the classical least squares method fails to give a 
robust estimation of the parameters for this class of systems. 
Technicalsettings. The identification problems will be expressed 
in continuous time. The reason for this is that it greatly sim- 
plifies the formulation of time resealing. The time scales will 
be the usual one and a slower one. While the tradition in the 
theory of singular perturbations is to consider a fast vs. nor- 
mal time scale decomposition, we made this choice because 
it is closer to the situation in discrete time: * in that frame- 
work, the basic time unit is that of the faster subsystem. Since 
we will consider plants with very small poles and zeroes, the 
identification horizon will be taken to be equal to infinity. 

2.1. Definition of two time scaled systems. 

Definition I. Following Luse and Khalil (1985), we define con- 
tinuous two time scaled systems to be systems with a rational 
transfer of the form 

TE(s) = K 5 T.(s) 
0 

where E is a (small) scaling parameter. 

Note that T, and c are, of course, assumed to be indepen- 
dent of E. 

Remark 1. 
 the poles and zeroes of Tn(s) are of order I, while those 

of T&/E) are of order E. Hence, for a small E, T” 

* As an aside we note that the two points of view exist in the 
theory of averaging. 
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describes (up to a constant) the behavior of 2” in the 
medium frequency range, while TV describes it in the low 
frequency range * 

 In fact, T’(s) is a rational fraction with two variables s 
and E. In general, E itself is not identifiable, because only 
one plant TE is available to the user. Hence the numerical 
value of E has to be drawn from some a priori knowledge, 
or perhaps from some recursive tuning of the identifier. 

2.2. Asymptotic degeneracy of the global least squares method 
We briefly show here why, in the case of the identification 
of two time scaled systems, the least squares method fails to 
provide accurate results. 

This is essentially due to the scattering of the input in the 
frequency domain. 

About the shape of the input. In order to excite both parts of 
the system, we shall assume that the input u is a two time 
scaled signal U(E, t), of the form 

U(E , t) =  U l(t) +  E % &). (2) 

The extra parameter sa is here to allow different amplitude 
ratios between the two components, a matter that we shall 
investigate in the next section. 

Remark 2. Since we use a continuous time, differential formu- 
lation, we shall have to assume, technically, that ut and uz 
are regular enough, e.g. that they belong to the Sobolev space 
H”-‘(R).+ 

2.2.1. The amplitude vs energy dilemma If we take 01 > 0, 
it is clear that the slow part of the signal will vanish at E = 0 in 
Lm norm; this a fortiori true for its derivatives. This means that, 
unless we compute with arbitrary precision, all that concerns 
the slow signals in the excitation matrix will be mistaken for 
0. If we take o( < 0, the same can be said for the faster part, 
if we restrict ourselves to the lower derivatives. 

We study next the case IX = 0, e.g. when the slow and fast 
signals are of equivalent magnitude. 

2.2.2. Asymptotic degeneracy of the excitation matrix. We 
assume now that (r = 0, e.g. u(t) = u](t) + u2(Et). 

Theorem 1. (Ill-conditioning of the excitation matrix). Let 
Ut(iw) and Uz(iw) be the Fourier transforms of ut and 
242. Assume that there exist nt > 0 and n2 > l/2 such 
that Ut (iw) I 101~1 in the neighborhood of 0, and that 
lUz(iw)l 5 lwl-“2 in a neighborhood of 00. 

Let y = TEu be the output of the plant (l), Z = 
(y(“-‘1,. . . , u,(“-‘) ,. . , ujT, and &CC(E) dz‘ $” Z(t)ZT(t)dt 
the corresponding excitation matrix of order n - 1. Then there 
exists a matrix Exe(0) such that 

 Exe(0) is degenerate and is independent of E. 

. Exe(E) = EXc(O) + O(E). 

Sketch ofproof Considering the assumptions on VI and Uz, the 
inner product < u!(t). uz(Et) > tends to zero with E. Extending 
this analysis to all of the elements of the excitation matrix, 
one sees that the dominating terms in Exc(E), for small E, 
are obtained by replacing ut by 0, replacing the derivatives 
of uz and T&z by 0, and replacing the response T&z by its 
slow approximation T,(O)T&. This defines the matrix Em(O), 
which is indeed degenerate. 

Remark 3. This proves that using a least squares method to 
identify a two time scaled system will give poor accuracy on the 

* If we refer to the notations of Luse and Khalil (198% we 
have H(s, E) = TV. This is because Luse and Khalil (1985) 
use a fast/medium time scale decomposition, which is classical 
in the theory of singular perturbations. 
+ HnV1(W) is the space of the functions whose n - 1 first 
derivatives, in the sense of distributions, belong to L’(W. Its 
norm is taken as the sum of the L2 norms of these derivatives. 

system parameters. From the structure of Exe(O), one can see 
that the only parameter that is asymptotically identifiable is the 
static gain. This is confirmed qualitatively by the experiments 
of Section 4. 

In the next section, we will expose a new scheme which, 
by explicitly modeling the time scales, eliminates this ill- 
conditioning problem when E is small. 

3. A bifocal method for identifying two time scaled systems 

Presentation. The problems described by Theorem 1 are essen- 
tially due to the inhomogeneity of the signals (some are slow, 
and some are fast), and of the system parameters (some are 
small, others are bigger). This homogeneity can be recovered 
by handling separately the slow and the fast parts of the sys- 
tem. While this will require some model approximations within 
each time scale, we will be nonetheless able to identify the 
parameters with a suitable accuracy when E is small enough. 

3.1. Local approximations for two time scaled systems. We 
have the following trivial (but useful) limit results. 

Lemma 1. 

lim,_sT,(io) = T,s(ibo)T&_o) dsf-r,,(iw) (3) 

lim,-aT,(Eiw) = T,V(iw)T.(0) $’ r,V(iw). (4) 

In what follows, T, will be called the fast transfer, and 
T ,~ the slow transfer. Note that the static gain of the fast 
transfer is equal to the high frequency gain of the slow transfer. 
Conversely, for a given E, and assuming that the static gain of 
T, is equal to the high frequency gain of T ,~. then there exists 
a unique TE of the form (1) which satisfies the approximations 
(3) and (4). 

Remark 4. 
 The important point in Lemma 1 is that the parameters 

of T n and T s do not depend on E. 
 Also, the kind of convergence in (3) and (4) is, with 

respect to w, a pointwise convergence, and not a uniform 
one. Indeed, we shall use the prefilters to eliminate the 
parts of the signals where the convergence fails to be 
uniform. 

Additional assumptions. For approximations (3) and (4) to give 
nontrivial results, we shall assume that the static gain of T, is 
defined and nonzero, and that the high-frequency gain of q, 
is neither zero nor infinity, which means that we shall assume 
that TS is biproper. If this was not verified, then either the slow 
or the fast transfer would be completely negligible with respect 
to the other. 

3.2. The two time scaled identtfication problem. An outline 
of the method. The previous considerations lead to the idea 
what we call a bifocal * method to identify the two time scaled 
system Te: 

 use a high-pass and a low-pass prefilter to generate data 
for which the approximations (3) and (4) are uniform. 

 using this data, identify separately T , and T ,r under the 
constraint that the static gain of the first transfer should 
be equal to the high frequency gain of the second one. 

Note that the identification of T ,~ involves a time resealing 
of the model, e.g. the use of an operator that is different from 
the one used to identify T ,. 

3.2.1. Prefilters requirements. Prefiltering has been known 
to increase the performance of identification schemes by trans- 
forming the shape of noises and reconditioning the excitation 
matrix (Middleton and Goodwin, 1986; Landau, 1988; Ljung, 
1987). We use it here to validate the use of the reduced models 
(3) and (4). 

* This is a reference to spectacles with bifocal lenses, which 
allow their user to see both the far and the close view. 
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From a theoretical point of view, we will require the follow- 
ing from the prefilters. 

Dejnition 2. A high-pass filter Fj is asymptotically suited to 
the identification of the fast subsystem if 

A low-pass filter Ft is asymptotically suited to the identification 
of the slow subsystem if F/(O) is defined and nonzero, and if, 
for 0 5 k < n,, 

limmax 1 (T,(EiW) - T,(O))u+fi(ico) 1 = 0. 
-0 IUEW (6) 

These asymptotic conditions can be achieved by taking 
. Fh(s) = tiff(s), with $, rational, causal, without pole 

or zero at 0, and k strictly greater than the number of 
poles or zeroes at 0 of TV. 

 Ft rational with relative degree greater or equal to n,r, 
and no pole or zero at 0. 

3.2.2. The two time scaled identificationproblem. The iden- 
tification procedure, as in the least squares method, will in fact 
be an optimization procedure. 

It will consist in the local identification of T , ,  and T .~  by 
minimization of the sum of their prediction errors, under the 
constraint that the high frequency gain of T ,~  is equal to the 
static gain of Tn. 

We denote by Y,,(s) the polynomial vector Y,,(s) = 
[s”_‘, s”-2,. , s, IIT, by n, the order of T,, and by n,% the 
order of r,. We parameterize T , ,  as 

(which is not classical, hut makes the constraint linear in the 
optimization problem), and we parameterize T ,~  as 

the parameters being 6,V, v,~, 6, and v,,. 
The identification problem is the following. 

Definition 3. (Two time scaled least squares). Let fi a suitable 
low-pass filter, Fk a suitable high-pass filter. The two time scaled 
identification problem is: 

min 

with 

d 2 
-v; f&  -  u ,y  ()I dT dr, 

Y.&) = fily(t/a)I, u,(t) = 4[u(t/s)], and 

1 
Jn(b,, vn) = 2 

llUnIIH”“-, 

X 

(9) 

(10) 

(11) 

 As we noticed after Lemma I, we can recover, for a 
given E, the parameters of TE from the solution of this 
problem. This conversion has a unique result. 

 J,, and J, are the prediction error costs on the reduced 
models yn = T , ,u , ,  and Y,~ = T ,~u ,~ ,  using the prefiltered 
signals. 

 The prediction errors are essentially linear with respect 
to the norm of the inputs in the Sobolev space H*n-‘; 
this is why we use the latter to normalize the cost. 

Aboutmodelmatching in the two time scaledmethod. The reader 
will notice that, for E + 0, the previous identification procedure 
is not a model matching one for systems of the form (I), that 
is, there exists no set of parameters that gives a zero cost in 
(9) for all inputs. If the converse were true, it would imply that 
we have two exact models with an order which is lower * than 
that of T,. We will show in Section 3.4 that, instead, the two 
time scaled method is asymptotically model matching when E  
tends to 0. 

3.23. Strong convexity and existence of persistent signals, 
In the least squares method, persistent excitation is another 
formulation for the strong convexity of the optimization cost. 
We study here some sufficient conditions, under which the slow 
and fast excitation matrices in problem (9) have a nonzero 
lower bound on their eigenvalues which is independent of E, 
that is, when we have a nonvanishing excitation property. 

Let us consider again the case where the input is of the form 
u = UIW + uz(Et). We assume that the Fourier transforms Ui 
and Uz of ur and uz satisfy 

Iw-“I Ui (iw) 1 “2’ 0 for some nr > 0, (12) 

]wn2U2(iw)] 5” Oforsomenz>l. (13) 

Because of the requirements that we made on the low-pass 
and high-pass filters, the terms coming from uz vanish in J,, 
and the terms coming from ui vanish in Jr when F tends to 0. 

Hence, the existence of persistent excitation in Jr and J. is 
asymptotically equivalent to the same question where one con- 
siders only the signals relevant to the corresponding time scale. 
As a consequence, persistent excitation for the two time scaled 
identification problem is satisfied if the slow part Ft[uz(t)] 
(resp. fast part fi[ui (t)]) of the input data provides persistent 
excitation with respect to the slow (resp. fast) subsystem. This 
condition does not involve F. It is satisfied if ur and uz are 
exciting persistently with respect to their subsystem, and if the 
filters, while eliminating the undesired part of the signal, still 
preserve this excitation. 

As a consequence, it is possible to design 4, 4, u1 and u2 
in order to give JV and J,, a strong convexity constant p that 
does not depend on F. 

3.3. An optimization-identt$cation algorithm. Here, we give 
an example of a solving algorithm for problem (9). 

Principle of the algorithm. A nice feature of problem (9) is that 
it is a quadratic problem with linear constraints; this is due to 
our special parameterization (7) of T , , .  Hence, it has a saddle 
point, and we can replace the constrained problem (9) by 

the Lagrangian L being defined by 

L(6.n V.v, 6,, Vmp) = &(6,, v,J + J,,(6,,, v,,) 

+P(V.Y(l) - v.(n, + I)). US) 

we can decompose 1 as L ,k%.  vs.  p) + L,(6,. v ,,, p) w i t h  

(16) 

(17) 
Y,,(t) = [FhY] (t), U,(t) = [fiul (t). 

Comments. * The prefilters cancel each other in the slow and fast transfers. 
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We can use then a Uzawa algorithm to solve (14) 
gradient algorithm on the max problem as follows: 

(@+I, $+I) = argminf,(b:, v,t,pk) 

(6:‘,4+‘) = argminL,(6i,&pk) 

P k+’ = pk + p(&l) - &n, + 1)) 

Brief Papers 

It uses a 

(18) 

(19) 

(20) 

The minimizing arguments are uniquely defined if we have 
the persistent excitation property for each reduced model. We 
have studied some study sufficient conditions for these excita- 
tion/convexity requirements in Section 3.2.3. 

Explicitation of the algorithm. Let us denote by Qs and Qf the 
excitation matrices (or Hessians) in the slow and fast prediction 
costs, and by R, and Rf the column vectors that define the parts 
of the costs which are linear with respect to the parameters. 

The Uzawa algorithm can now be written as follows. 

Algorithm 1. (Identification algorithm). 

(21) 

(22) 

k+’ P = Pk + P(& - v;.‘,. (23) 

Convergence of the algorithm. The algorithm converges if p is 
small enough. When the Hessian of the cost is a constant sym- 
metrical matrix A and the constraint is linear with a constant 
derivative D, a theoretical bound for p is given by the ratio 
h’(A)/IIDIj2 where A’(A) is the smallest eigenvalue of A (see 
Arrow et al. (1972) for details). 

3.4. Convergence results on the identification. We are going 
to show that, when E tends to 0, the plant’s parameters have a 
prediction error in (9) which tends to 0. 

We will then use the excitation assumption to show that 
the optimal parameters, as computed by solving (9), converge 
towards the plant’s parameters when E tends to 0. 

3.4.1. Convergence of the prediction costs when using the 
pIantS parameters. Notation and assumptions. We shall denote 
by 6,:. v,:, a,*, v,* the unique set of parameters in (7) and (8) 
such that 

Vet’&,, = N,,(s) 1 -s6, ” *r’Y,, (s) = D,(s) (24) 

v,;~‘T’~,~(s) = NJs) s”r - G,;TY&) = D.&l (25) 

where N,, and D, (resp. NV and D,V) are relatively prime. We 
will also define vj! = T,(O)v: and vf = T,(m)v,*. 

Finally, we shall assume that u is of the form U(E, t) = 
u’(t) + uZ(Et), with u’ and uz that satisfy (12) and (13). As 
mentioned in Section 3.2.3, we can asymptotically consider that 
u’ = 0 in Js, and us = 0 in J.. This is due to the prefilters’ 
design. 

Theorem 2. (Convergence of the slow cost). .J,(6,:, v,:) tends 
to 0 when E tends to 0. 

Proof: Let U be the Fourier transform of the input u. We 
first notice that the denominator of the cost, e.g. Ilu,&~,~_, , is 
equivalent to the norm of F/u2 as E tends to 0. We have 

1 
J#,v,“) = Ilu,ll;“z@ I  m I [WEiw) - G(O)1 _-oJ 

1 
__2_II [T,(EiW) - r,(O)1 Il4uzII~ 

xyn Ii [Tn(Eiw) - T,(O)1 ~kfi(i~)II~~IIv,*ll~ 
s 

x y;f: II [ WEiu) - G(O)1 wkfi(iw) II& llv,~ll’112m 
I 

which proves the convergence for a suitable low-pass filter, by 
definition of the latter property. 

Theorem 3. (Convergence of the faster cost). &(a:, vt) goes 
to zero with E. 

Proof: As we mentioned earlier, we can neglect 142 in the cost: 

2 
x Nn(i)W)Fk(iW)Ur(iW) dw 

xllv,*l12- 
IlFhUl II& 

which tends to zero with F. 
3.4.2. Convergence of the i&nt$ed parameters. Now that 

we have shown that the desired parameters are asymptotically 
optimal, a strong convexity argument is enough to show that 
the identified parameters will also converge towards the right 
values. 

Assumptions. We shall assume that u, fi and Fh are such that, 
if v is the outnut of u through the transfer r, of Section 
2.[, then JS and Jn are strongli convex with constant ~1, with 
/.I independent of E. This can be achieved by satisfying the 
conditions of Section 3.2.3. 

Theorem 4. (Convergence of the parameters). The identified 
parameters in (9) converge to the quadruplet S:, vf, 6:. 4 
as s goes to zero. 

Proof: We remark first that the proposed quadruplet forms 
an admissible set of parameters. Let us denote by 60 this 
quadruplet, and by 8(E) the (unique) minimizing argument of 
(9). A classical result from the convexity theory (Ekeland and 
Temam, 1976) says that 

pik%, - o(E)i? 5 J(oo) -J@(E)) - (J’@O), 60 - o(E)) 

= J(8o) - J(e(E)) 

5 Jceo, 
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Fig. 1. Results for the first transfer. 

with J = J, + J,,. This proves the result, thanks to the two 
previous theorems on the convergence of the costs. 
Comment. Since the parameters of TE can be uniquely recovered 
from the solution of (9), the previous theorem implies that 
the two time scaled method allows the asymptotically exact 
identification of TE when E tends to 0. 

3.5. About the robustness of the method. We have just seen 
that the identified parameters have a finite limit when E tends 
to 0. We have also seen that Fj, Fh, u1 and u2 can be designed in 
order to have a /J that is independent of E. Since the consistency 
constraint does not depend on E, one can see that the solution 
of (9) is continuous with respect to elementary perturbations 
of the identification data * , uniformly with respect to E when 
s is close to 0. 

Since the poles and zeroes of T, depend smoothly on those 
of TV and T,~, we see that the reconstructed parameters of TE, 
whether they are expressed in linear form or pole/zero form, 
depend smoothly on the filtered and time resealed identification 
data, uniformly in E. 

* That is, a perturbation of the matrices’ elements. 

Because of the design of the prefilters, the latter depends 
itself smoothly on the original input/output data; this proves 
that the accuracy of the two time scaled identifiers is robust 
to the small values of E. 

4. A numerical illustration 

4.1. Design of the two time scaled identifier. Before going 
into the details of the numerical experiments, let us give a view 
of the authors’ experience with the design of the two time 
scaled identifier. The reader may find other numerical examules 
in Alaoui (1992). 

If we omit the choice of the orders of the various systems, the 
identifier is defined by the choice of three design parameters: 
the time scales ratio E, the low-pass filter and the high-pass 
filter. 

4.1.1. Time scaling In addition to the time rescahng of the 
slow part of the data, as described in the theory, it may be 
helpful to rescale the fast part of the data, in the same way 
that it would help in the identification of a classical system. 

In the following experiments, we used for each subproblem 
a time step which was equal to 114 of the slowest time constant 
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’ Slow&a 

Fig. 2. Results for the second transfer. 

of each subsystem. The normalization factor of the theory was 
not actually used; we relied on a suitable time resealing to 
enhance the conditioning of the matrices. 

4.1.2. Filter design. The choice of the filters, on the other 
hand, is essential in order to make the two time scaled method 
work. They should legitimize the model approximations, with- 
out losing the exciting signals. Our experience is that, when 
the subsystems’ time constants are not too far away, it seems 
advisable to allow some overlapping of the prefilters, in order 
to avoid losing useful data. On the other hand, when the time 
scales are quite distant, disconnected filters help in the identi- 
fication of the subsystems. 

4.2. Summary of the experiments. Following the ideas of 
the previous sections, we wrote a simple MATLAB” program 
in order to compare, on a few examples, the performances of 
the least squares method against that of its two time scaled 
counterpart. * 

The plants we considered were second order systems, of the 
form 

T(s) = K 
s-z 

(s - Pfl))fs- P(2)) 

* Copies of the source program are available by contacting the 
first author, by E-mail, at chaplaisQcas. ensmp. f r. 

A random input was first generated to help excite the system. 
Its average was kept nonzero because this helped the two 
time scaled identifier without really affecting the classical least 
squares. 

The output was then computed using a model matching 
simulation. 

According to the value digits, a standard random noise, 
with a variance equal to lo- di s It* times the empirical variance 
of the input, was then added to the input; a similar data 
corruption was performed on the output. 

We then used the classical least squares method to identify 
the parameters. After setting an appropriate choice of prefilters 
and time resealing, we used the same corrupted data to identify 
the system by using the two time scaled method, as described 
in Definition 1. t 

The accuracies of the two methods were compared, using 
different time scales ratios and different levels of data corrup- 
tion. 

+ In this application, the continuous time differentiation is 
approximated here by the finite difference (++, - x,,)/step, 
where step corresponds to the time scale used respectively by 
the slow or fast subsystem identifier. 
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4.3. Sample numerical results. We give here the results that 
were obtained by using the program to identify two different 
systems. The duration of the signals is always equal to 3000 
time steps. 

4.3.1. Reading the results. The numerical results are pre- 
sented in graphical form. 

For each transfer, four sets of bar charts are presented. Each 
set corresponds to a time constant, or the static gain, as labeled 
at the bottom of the set; it indicates the ratio between the 
identified parameter and its true value. Each bar set features 
eight bars. The four black bars give the results given by the 
classical least squares for different noise/signal ratios; the gray 
bars give the results obtained with the two time scaled method. 

The succession of eight bars should be understood as fol- 
lows: the two first bars give the result for a noise/signal ratio 
(as described in Section 4.2) of 10w4, the following two to a 
ratio of IO-‘; then another group of two for lO-2, and a last 
group for IO-’ noise/signal ratio on the input and output. 

4.3.2. Data and results. The time constants of all the trans- 
fers below are expressed in time step units. 

The first transfer is 
100s + I 

‘(‘) = 2(200s+ 1)(8s+ I)’ 

The slow and fast pretilters used are 

1 
fi(s) = ~ 

(20s + 1)2’ 
1 

Fh(r) = I - (50s+ I)*’ 

The identification results are displayed in Fig. I. 
The second transfer has more distant time scales: 

T(s) = 2 500s + 1 
(lOOOs+ l)(lOs+ 1) 

We used the slow and fast prefilters 

1 
fi0) = (50s + ])2’ 

I 
fi(s) = ’ - (loos+ ])2’ 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

The results are in Fig. 2. 
4.3.3. Interpretation. The general interpretation of these re- 

sults is that, when the noise/signal ratio is small, the classical 
method works better than the two time scaled one, for the sim- 
ple reason that the second one is not model matching. When 
the noise/signal ratio increases (at 10e2), the classical least 
squares gives results that are inaccurate but within the right 
range, while the two time scaled method manages to keep a 
good accuracy. Another test, not presented here, shows that, 
when the noise/signal ratio gets even worse, the classical least 
squares method even fails to give estimates in the appropriate 
range, while the second method still gives a good idea of the 
parameters. 

In short, while the least squares gives excellent results when 
the noise is small and poor results when the noise becomes too 
important, the two time scaled method is more robust; however, 
it seems unable to give estimates as accurate as the least squares 
under the best circumstances. The reason is perhaps that it is 
not a model matching method in our experiment. 

As expected, the gap between the accuracy of the two meth- 
ods increases with the gap between the time scales. 

Finally, these few results confirm that the static gain is the 
parameter that is the most robustly identified; this is true for 
the two methods. 

5. Conclusion 

We have given some mathematical insight into the reasons 
why the classical least squares identification of two time scaled 
systems fails to give accurate parameters. 

We have proposed a new method for identifying these sys- 
tems, based on the filtering and time resealing of the signals, 
that allows a more reliable parameter identification of the sys- 
tems in both time scales. The estimated parameters, even though 
theoretically incorrect, are proved to converge to the plant’s 
parameters as E goes to 0, while featuring a nonvanishing ex- 
citation property. 

This is confirmed by a few numerical examples, which show 
that the new method .is more robust, at the expense of its 
maximum accuracy. 
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