F. Chaplais

A finite element method for solving $n^{t h}$ order differential equations

The method presented here uses both the Strang and Fix conditions and the regularity of the finite elements. By keeping $a n^{\text {th }}$ order formulation, we reduce the number of equation variables at the expense of a greater regularity requirement on the atoms. We also show that an $n^{\text {th }}$ order theory of characeristics can be applied to the variations of the solutions.

1. Assumptions and problem statement

Let f a C^{n} mapping from \mathbb{R}^{n+1} into \mathbb{R}, Lipshitz with respect to its first n arguments, and define, for a regular function $x, F(x, s) \stackrel{\text { def }}{=} f\left(x(s), \ldots, x^{(n-1)}(s), s\right)$. Given a polynomial p of degree $\leq n-1$, we wish to compute an approximate solution of the $n^{t h}$ order integral equation:

$$
\begin{equation*}
x(t)=p(t)+\int_{0}^{t} d t_{1} \int_{0}^{t_{1}} \cdots \int_{0}^{t_{n-1}} F\left(x, t_{n}\right) d t_{n} \stackrel{\text { def }}{=} p(t)+I_{t}^{n}\left(F\left(x, t_{n}\right)\right) \tag{1}
\end{equation*}
$$

To do so, we use a (small) step δ and two compactly supported functions φ and φ^{*} that define a biorthogonal system $\varphi_{k}(t) \stackrel{\text { def }}{=} \varphi(t / \delta-k), k \in \mathbb{Z}$, and $\varphi_{k}^{*}(t) \stackrel{\text { def }}{=}(1 / \delta) \varphi^{*}(t / \delta-k), k \in \mathbb{Z}$. We define the projector Π_{δ} with $\Pi_{\delta} x=$ $\sum_{k \in \mathbb{Z}} \varphi_{k}<x, \varphi_{k}^{*}>$. If $E \stackrel{\text { def }}{=} \operatorname{Span}\left\{\varphi_{k}, k \in \mathbb{Z}\right\}$ includes all polynomials of degree $<r$, then $\left[\Pi_{\delta} x\right]^{(q)}$ approximates $x^{(q)}$ with an error of order δ^{r-q} if x is of class C^{r} ([2]). Hence the idea to approximate equation (1) by

$$
\begin{equation*}
z=p+\Pi_{\delta}\left[I_{\bullet}^{n}\left(F\left(z, t_{n}\right)\right)\right], z \in E \tag{2}
\end{equation*}
$$

which makes sense if $r \geq n$ and if φ is of class C^{n}. We shall use the two following results:
Lemma 1. There exist d and a such that, for x and y in $E,|F(x(t), t)-F(y(t), t)| \leq a \sup _{|s-t| \leq d \delta}|x(s)-y(s)|$.
Lemma 2. Assume that $|x(t)| \leq \Delta(|t|)$ with Δ nondecreasing. Then there exists A and γ such that $\left|\Pi_{\delta} I_{t}^{n} x\right| \leq A I_{|t|+\gamma \delta}^{n}[\Delta(|\bullet|)]$.

2. Existence, unicity and regularity of the solutions of (2)

Lemma 3. Assume $\delta<(A a)^{-1 / n}[n /(e(\gamma+d))]$, and let μ_{1} and μ_{2} the nonnegative solutions of $A a=$ $\mu^{n} e^{-\mu(d+\gamma) \delta}$. Let x and y such that $|x(t)-y(t)| \leq M e^{\mu|t|}, \mu_{1}<\mu<\mu_{2}$. Then there exists $K \in[0,1[$ such that

$$
\begin{equation*}
\left|\Pi_{\delta} I_{t}^{n}[F(x)-F(y)]\right| \leq K M e^{\mu|t|} \tag{3}
\end{equation*}
$$

Proof. This comes from the previous lemmas and the study of $h(x)=x^{n} e^{-x}$.
Remark We shall assume the previous assumptions to be verified. If we have $\mu \leq n /(\delta(\gamma+d))$ then we can in fact use $\tilde{\mu}=n /(\delta(\gamma+d))$ instead, which leads to $K=A a[(e \delta(d+\gamma)) / n]^{n}$.

Theorem 1. Let μ_{2} as defined above, and $E_{\mu_{2}}$ the space of functions $x \in E$ which satisfy $|x(t)| \leq M e^{\mu|t|}$, for some $M \geq 0$ and $\mu<\mu_{2}$. Assume that $F(p, s)$ belongs to $E_{\mu_{2}}$. Then (2) has a unique solution z in $E_{\mu_{2}}$; it is such that $|z-p| \leq M e^{\mu|t|} /(1-K)$. Moreover, if g is a mapping similar to f with $\left(|F(x, s)-G(x, s)| \leq m e^{\mu|t|} \forall x\right)$ and $\left(|F(p, s)-G(p, s)| \leq m\left(a e^{\mu(|s|+d \delta)}\right) /(1-K) \stackrel{\text { def }}{=} B(m)\right)$, then the difference between the two solutions is bounded by $B(m)$.

Proof. The unicity comes from the contraction property (3). The existence is proved constructively by using the fixed point algorithm $z_{n+1}=p+\Pi_{\delta} I_{\bullet}^{n} F\left(z_{n}\right)$ with $z_{0}=p$. The regular perturbation result is obtained by starting the algorithm with p and showing that the bound remains valid.

3. Application to the solving of ODEs

Theorem 2. The solution z of (2) approximates the solution x of (1) at the order $r-n+1$ with respect to δ.

Proof. We first notice that $F(x(t), t)-F\left(\left(\Pi_{\delta} x\right)(t), t\right)$ is of order $r-n+1$ with respect to δ, and has an exponential behaviour with respect to time. On the other hand, $\Pi_{\delta} x$ satisfies an equation of the type (2) with the dynamics $G(z, t)=F(z, t)+F(x(t), t)-F\left(\left(\Pi_{\delta} x\right)(t), t\right)$. Note that $G(z, t)-F(z, t)$ does not depend on z. Provided that the step δ is small enough with respect to the Lipschitz constant of f, this proves that $z-\Pi_{\delta} x$, and hence, $z-x$, is of order $r-n+1$.

Let us turn now to the numerical solving of (2). We assume $\delta<D(a)$ and $\mu \leq n /(\delta(\gamma+d))$. Then K is of order n with respect to δ; this shows that only a finite number N of fixed point iterations, determined by the ratio r / n, is needed to get an optimal precision on the solution of (2), that is, one that is consistent with the Strang and Fix conditions.

To do these computations, we recall ([1],[3]) that there exists a family of n biorthogonal systems with generators $\varphi^{(d)}$ and $\varphi^{*(d)}$ such that $d / d t\left(\sum_{k} x_{k} \varphi_{k}^{(d)}\right)=\sum_{k}\left(x_{k}-x_{k-1}\right) \varphi_{k}^{(d+1)}$ with $\varphi^{(0)}=\varphi$ and $\varphi^{*(0)}=\varphi^{*}$. Denoting by Δ the difference operator $(\Delta x)_{k} \stackrel{\text { def }}{=} x_{k}-x_{k-1}$, the fixed point agorithm $z_{n+1}=p+\Pi_{\delta} I_{\bullet}^{n} F\left(z_{n}\right)$ implies

$$
\begin{equation*}
\left(\Delta^{n} z_{j+1}\right)_{k}=<\varphi_{k}^{*(n)}, F\left(z_{j}, t\right)>\stackrel{\text { def }}{=} F_{j, k} \tag{4}
\end{equation*}
$$

Because the finite elements are compactly supported, the computation of $F_{j, k}$ involves only the knowledge of $z_{j, l} \stackrel{\text { def }}{=}<$ $z_{j}, \varphi_{l}^{*}>$, for $k-a \leq l \leq k+b$ and some fixed integers a and b. This suggests the following algorithm:

- compute the $z_{j, k}, 1 \leq j \leq N,(N-n) b \leq k \leq n-1+(N-n) b$, starting from $z_{0}=p$ and using the integral formulation of the fixed point algorithm
- given $z_{j, k}, 1 \leq j \leq N, p+(N-n) b \leq k \leq p+n-1+(N-n) b$, increase p by one by using the $\mathrm{N} n^{t h}$ order discrete recursions (4).

We see that, while (2) links all of the coordinates of z, computing only a finite number of fixed point iterates $z_{j} \mathrm{~s}$ makes it possible to design an algorithm that is causal with respect to the index k of the coordinates $z_{j, k}$ of the $z_{j} \mathrm{~s}$.

4. Sliding along the solutions

An interesting feature of the integral formulation (2) is that it allows to study the variation of z with repect to p and the "initial" time.

Theorem 3. Let us define $I_{a, b}^{n} x=\int_{a}^{b} d t_{1} \int_{a}^{t_{1}} \ldots \int_{a}^{t_{n-1}} x\left(t_{n}\right) d t_{n}$ and $z\left(a_{0}, \ldots, a_{n-1}, t_{0}\right)$ the solution of $z(t)=$ $\sum_{k=0}^{k=n-1} a_{k}\left[\left(t-t_{0}\right)^{n-1-k} /(n-1-k)!\right]+\Pi_{\delta} I_{t_{0}, t}^{n} F\left(z, t_{n}\right)$. Then we have the following characteristic equation

$$
\begin{equation*}
\frac{\partial z}{\partial t_{0}}+\frac{\partial z}{\partial a_{0}} F(z, t)\left(t_{0}\right)+\sum_{i=1}^{i=n-1} \frac{\partial z}{\partial a_{i}} a_{i-1}=0 \tag{5}
\end{equation*}
$$

Proof. The reader will check that $I_{t_{0}, t}^{n} x=I_{t_{0}+h, t}^{n} x+\sum_{k=0}^{k=n-1}\left[\left(t-t_{0}\right)^{n-k-1} /(n-k-1)!\right] I_{t_{0}, t}^{1} I_{t_{0}+h, \bullet}^{k} x$. Defin$\operatorname{ing} b_{i}(h)=\sum_{k=0}^{k=i}\left(h^{i-k} /(i-k)!\right)\left[a_{k}+I_{t_{0}, t_{0}+h}^{1} I_{t_{0}+h, \bullet}^{k}, F(z)\right]$, we see then that

$$
\begin{equation*}
z\left(a_{0}, \ldots, a_{n-1}, t_{0}\right)=z\left(b_{0}(h), \ldots, b_{n-1}(h), t_{0}+h\right) \forall h \tag{6}
\end{equation*}
$$

5. References

1 Cieselski Z. \& Fiegiel T.: Spline bases in classical function spaces on compact manifolds, part II, Studia Math. LXXVCI (1983), 95-136.

2 Fix G. \& Strang G.: Fourier Analysis of the Finite element method in Ritz-Galerkin theory, Studia Appl. Math. 48 (1969), 265-273.

3 Lemarie-Rieusset P.G.: Analyses multi-resolutions non orthogonales, commutation entre projecteurs et dérivation et ondelettes vecteurs à divergence nulle, Revista Matemática Iberoamericana, Vol. 8 No 2 (1992), 221-237.

Addresses: Prof. F. Chaplais, CAS-Ecole des Mines de Paris, 35 rue Saint-Honoré, 77305 Fontainebleau Cedex, France. e-mail: chaplais@cas.ensmp.fr.

