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A finite element method for solving nth order differential equations

The method presented here uses both the Strang and Fix conditions and the regularity of the finite elements. By
keeping a nth order formulation, we reduce the number of equation variables at the expense of a greater regularity
requirement on the atoms. We also show that an nth order theory of characeristics can be applied to the variations
of the solutions.

1. Assumptions and problem statement

Let f a Cn mapping from IRn+1 into IR, Lipshitz with respect to its first n arguments, and define, for a regular
function x, F (x, s) def= f

(
x(s), . . . , x(n−1)(s), s

)
. Given a polynomial p of degree ≤ n − 1, we wish to compute an

approximate solution of the nth order integral equation:

x(t) = p(t) +
∫ t

0

dt1

∫ t1

0

. . .

∫ tn−1

0

F (x, tn)dtn
def= p(t) + In

t (F (x, tn)) (1)

To do so, we use a (small) step δ and two compactly supported functions ϕ and ϕ∗ that define a biorthogonal
system ϕk(t) def= ϕ(t/δ − k), k ∈ ZZ, and ϕ∗

k(t) def= (1/δ)ϕ∗(t/δ − k), k ∈ ZZ. We define the projector Πδ with Πδx =∑
k∈ZZ ϕk < x,ϕ

∗
k >. If E def=Span{ϕk, k ∈ ZZ} includes all polynomials of degree < r, then [Πδx]

(q) approximates
x(q) with an error of order δr−q if x is of class Cr ([2]). Hence the idea to approximate equation (1) by

z = p+ Πδ [In
• (F (z, tn))] , z ∈ E (2)

which makes sense if r ≥ n and if ϕ is of class Cn. We shall use the two following results:

L e m m a 1. There exist d and a such that, for x and y in E, |F (x(t), t)−F (y(t), t)| ≤ a sup|s−t|≤dδ |x(s)−y(s)|.

L e m m a 2. Assume that |x(t)| ≤ ∆(|t|) with ∆ nondecreasing. Then there exists A and γ such that
|ΠδI

n
t x| ≤ AIn

|t|+γδ [∆(| • |)].

2. Existence, unicity and regularity of the solutions of (2)

L e m m a 3. Assume δ < (Aa)−1/n[n/(e(γ + d))], and let µ1 and µ2 the nonnegative solutions of Aa =
µne−µ(d+γ)δ. Let x and y such that |x(t) − y(t)| ≤Meµ|t|, µ1 < µ < µ2. Then there exists K ∈ [0, 1[ such that

|ΠδI
n
t [F (x) − F (y)]| ≤ KMeµ|t| (3)

Proof. This comes from the previous lemmas and the study of h(x) = xne−x.

R e m a r k We shall assume the previous assumptions to be verified. If we have µ ≤ n/(δ(γ+ d)) then we can
in fact use µ̃ = n/(δ(γ + d)) instead, which leads to K = Aa[(eδ(d+ γ))/n]n.

T h e o r e m 1. Let µ2 as defined above, and Eµ2 the space of functions x ∈ E which satisfy |x(t)| ≤ Meµ|t|,
for some M ≥ 0 and µ < µ2. Assume that F (p, s) belongs to Eµ2 . Then (2) has a unique solution z in Eµ2 ; it is
such that |z − p| ≤Meµ|t|/(1 −K). Moreover, if g is a mapping similar to f with (|F (x, s) −G(x, s)| ≤ meµ|t| ∀x)
and (|F (p, s)−G(p, s)| ≤ m(aeµ(|s|+dδ))/(1−K) def= B(m)), then the difference between the two solutions is bounded
by B(m).

Proof. The unicity comes from the contraction property (3). The existence is proved constructively by using
the fixed point algorithm zn+1 = p+ΠδI

n
• F (zn) with z0 = p. The regular perturbation result is obtained by starting

the algorithm with p and showing that the bound remains valid.

3. Application to the solving of ODEs



T h e o r e m 2. The solution z of (2) approximates the solution x of (1) at the order r − n + 1 with respect
to δ.

Proof. We first notice that F (x(t), t) − F ((Πδx)(t), t) is of order r − n + 1 with respect to δ, and has an
exponential behaviour with respect to time. On the other hand, Πδx satisfies an equation of the type (2) with the
dynamics G(z, t) = F (z, t) +F (x(t), t)−F ((Πδx)(t), t). Note that G(z, t)−F (z, t) does not depend on z. Provided
that the step δ is small enough with respect to the Lipschitz constant of f , this proves that z − Πδx, and hence,
z − x, is of order r − n+ 1.

Let us turn now to the numerical solving of (2). We assume δ < D(a) and µ ≤ n/(δ(γ + d)). Then K is of
order n with respect to δ; this shows that only a finite number N of fixed point iterations, determined by the ratio
r/n, is needed to get an optimal precision on the solution of (2), that is, one that is consistent with the Strang and
Fix conditions.

To do these computations, we recall ([1],[3]) that there exists a family of n biorthogonal systems with generators
ϕ(d) and ϕ∗(d) such that d/dt

(∑
k xkϕ

(d)
k

)
=

∑
k(xk − xk−1)ϕ

(d+1)
k with ϕ(0) = ϕ and ϕ∗(0) = ϕ∗. Denoting by ∆

the difference operator (∆x)k
def= xk − xk−1, the fixed point agorithm zn+1 = p+ ΠδI

n
• F (zn) implies

(∆nzj+1)k =< ϕ∗(n)
k , F (zj , t) >

def= Fj,k (4)

Because the finite elements are compactly supported, the computation of Fj,k involves only the knowledge of zj,l
def=<

zj , ϕ
∗
l >, for k − a ≤ l ≤ k + b and some fixed integers a and b. This suggests the following algorithm:

• compute the zj,k, 1 ≤ j ≤ N , (N − n)b ≤ k ≤ n − 1 + (N − n)b, starting from z0 = p and using the integral
formulation of the fixed point algorithm

• given zj,k, 1 ≤ j ≤ N , p+ (N − n)b ≤ k ≤ p+ n− 1 + (N − n)b, increase p by one by using the N nth order
discrete recursions (4).

We see that, while (2) links all of the coordinates of z, computing only a finite number of fixed point iterates zjs
makes it possible to design an algorithm that is causal with respect to the index k of the coordinates zj,k of the zjs.

4. Sliding along the solutions

An interesting feature of the integral formulation (2) is that it allows to study the variation of z with repect to p
and the “initial” time.

T h e o r e m 3. Let us define In
a,bx =

∫ b

a
dt1

∫ t1
a
. . .

∫ tn−1

a
x(tn)dtn and z(a0, . . . , an−1, t0) the solution of z(t) =∑k=n−1

k=0 ak

[
(t− t0)n−1−k/(n− 1 − k)!

]
+ ΠδI

n
t0,tF (z, tn). Then we have the following characteristic equation

∂z

∂t0
+
∂z

∂a0
F (z, t)(t0) +

i=n−1∑
i=1

∂z

∂ai
ai−1 = 0 (5)

Proof. The reader will check that In
t0,tx = In

t0+h,tx+
∑k=n−1

k=0

[
(t− t0)n−k−1/(n− k − 1)!

]
I1t0,tI

k
t0+h,•x. Defin-

ing bi(h) =
∑k=i

k=0

(
hi−k/(i− k)!

) [
ak + I1t0,t0+hI

k
t0+h,•F (z)

]
, we see then that

z(a0, . . . , an−1, t0) = z(b0(h), . . . , bn−1(h), t0 + h) ∀h (6)
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