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Abstract  

We investigate how the stucture of multiresolution a p  
proximations, which are intimately related to wavelets, 
can be preserved through the use of a product operator. 
It appears that the dilatation or subsampling operator 
is best replaced by a smoothing operator at the nodes. 
Examples of related “wavelets” are given. 

Keywords: wavelets, multiresolution approximation, 
nonlinear systems, Hermite interpolation, Hermite 
spaces. 

1 Introduction 

Wavelets have emerged during the last decade as a new, 
efficient tool for signal proceesing. They are particu- 
larly suited to the study of transients and of the local 
regularity of signals, with many practical applications. 

In the control community, the shortcomings of the 
Fourier analysis, as far as time varying or nonlinear 
systems are concerned, are well known. One reason 
(not the only one) lies in its inability to represent lo- 
cal behaviours. It is then natural to study the use of 
wavelets as an alternative. 

Wavelets are very closely linked to multiresolution a p  
prowimations (see section 2 ) .  In this paper, the concept 
of multiresolution approximation spaces is extended to 
multiresolution approximation albegras which provide 
an signal analysis that is compatible with polynomial 
operators. This is the necessary first step towards the 
design of signal processing tools that fit the needs of 
nonlinear analysis. 

It is first proved that the classical notion of multires- 
olution approximation cannot provide multiresolution 
algebras, except for the case of piecewise constant func- 
tions. An alternative notion is proposed, which builds 
a sequence of nested approximation algebras. It is o p  
erational and has the same approximation properties 
(and more) as its classical counterpart. The difference 
is that the resolutions are not defined by a time rescal- 
ing, but by an explicit smoothing of the signal in a 
piecewise polynomial representation. The paper ends 
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with some indications on the nonlinear equivalents of 
wavelets, as they can be built from multiresolution al- 
gebras. 

2 Wavelet background 

The reader IKMY refer lo [ 2 ] ,  (4 lor a clear and exlerisive 
introduction to wavelets. We shall introduce them by 
the way of multiresolution approximations ([5], [ 6 ] ) .  

Definition 1 (Multiresolutions) A sequence 
{Vj}jEa: of closed subspaces of L2(R) is a multires- 
olution approximation if and only if, for any j E Z, 

Ic E Z ( f ( t )  E Vj e f ( t  - 2 J k )  E V j ) ,  the intersection 
of the spaces is zero in L2(W), their union is dense in 
L2(R), and their e~is ts  4 such that, {+(t  - n)}nEz is a 
Riesz basis of Vo. A biorthogonal multiresolution ap- 
pxoximation is a pair of multiresolutions {Vj}jEz and 

(Vj+l  c V j )  and (f E Vj f ( t / 2 )  E V j + l ) ,  for any 

(Vj.}jEZ such that < #l(t - n),#l(t - IC) >= & , k .  

4 and I#? are scaling functions. For a given pair 
({Vj}jca:,  { V ; } j E z ) ,  there exists a pair of wavelets 
($,$*), such that { $ ( 2 - j t  - n)}nEz  and { $ * ( 2 - j t  - 
n)},Ez are Riesz basis of the detail spaces Wj and Wj* 
defined by V j  @ Wj = Vj-1 and V ;  @ W; = Vj*-l, 
with W, orthogonal to  V; ,  and W; to V j .  4 and I#? 
can be designed to have a compact support, which we 
shall assume hereafter. 11, and $* can be then chosen 
to  have compact support. Note that, since 4 has to  be 
of non zero average, $* necessarily has one vanishing 
moment (or more); hence the term “wavelet”. 

Denote, for a function 5, z j ,%( t )  = 2-j/2x(2-jt  - n). 
Then any signal f E L2(R) can be decomposed into 

$j ,n .  The first summation is the projection PJf  of f 
into V J ,  orthogonally to @ j s ~ W j * .  

The following theorem [9] jusfies the “approxima- 
tion” denomination. We assume here the existence 
of a biorthogonal multiresolution with compactly sup- 
ported scaling functions and wavelets. 

f = CJEZ < f , 4 > , n  > 4J,n -k C j < J C k E z  < f,d‘;,n > 
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Theorem 1 (Fix-Strang) Let p E N. The following 
three conditions are equivalent 

0 for any 0 5 k < p ,  there exists a polynomial e k  

e +* has p vanishing moments 
of degree k s.t. C,r"_, nk 4(t - n) = &(t) 

]C(Vf E HP+l(W)  ( V j  I 0) ll4f - fllL2 I 
c2j(p+l) Ilf(p+l) l l L 2  

where HP+' is the Sobolev space of functions with p + 1 
derivatives in L2 (W). 

We see that, when the family Vj is a sequence of 
approximation spaces of order p + 1. The relation 
(Vj+l c V j )  is qualified as a causality property. It 
means that, if we do some linear computations over 
some elements of Vj+l, they will remain valid when 
switching to the finer resolution context V,. 

The aim of this paper is to extend this causality prop- 
erty to nonlinear operations, e.g., the product of sig- 
nals. 

Let us illustrate the importance of this causality prin- 
ciple for the product with an example. Consider the 
case of an interpolation scaling function as in section 
3.2.2. In that case, a signal f E VO is represented by its 
integer samples f (n), n E Z, and an element g E V I  
by its even subsamples g(2n),  n E Z. Following the 
conditions of theorem 3, we may take as a product op- 
erator over V ,  the product of samples at intervals 21. 

The product operator depends on the resolution. Now 
imagine that we have just computed the product of N 
signals 2 1 , .  . . , X N  in V I ,  and that we wish to extend 
this product to the finer resolution VO. This requires 
using an interpolation formula to compute the values 
of each xi at the odd positions, and then compute the 
product of all this values at each of these locations. 
If the product operator had been causal with respect 
to the resolutions, all that would have been required 
would have been an interpolation product on the val- 
ues of the product in V I  (those at the even positions), 
which is much simpler. 

3 Making a good resolution 

We study here under which conditions a single resolu- 
tion V j  can be invariant under a product operator over 
signals. The product operator may depend here on j .  

3.1 The basic shift invariant product  is a coor- 
d ina te  by coordinate product  

Theorem 2 Assume that * is a non trivially zero as- 
sociative product operator such that (Vj, +, *) be a 
cornmutative ring, that * commutes with the shift of 

length 2j ,  and that the product of two compactly sup- 
ported functions i s  zero beyond a certain $xed distance. 
Then there exist a constant A # 0 such that, for any x 
and y in Vj, and any n E N, 

< X *  ~ , + j * , ~  >= A < x,4;,n >< y,4* 3>n > . (1) 

Proof: For clarity's sake, we forget the scale 
index j .  Let r the maximum integer n for which 
40 * 4, # 0; because the product is coomutative, r 2 0. 
Let M,. = max { I C  E Z/ < 'po * 'p, , 'p; ># O } .  Consider 
now (40 * 4,) * 4M,+r ;  there exist a non zero constant 
a such that it is equal to a4Mr * $M,+,, which is it- 
self non zero. On the other hand, it is also equal to 
(40 * +M,+,) * 4,, which is zero if M, > 0; hence, 
M, 5 0. By a symmetric argument, one verifies 
that m, = min { I C  E Z/ < 90 * p,, 'p; ># 0) satisfies 
m, 2 0; hence, m, = M, = 0. This implies that 
+o * 4,. = A40. Consider now 4-, * (40 * 4,) = A24-,; 
it is also equal to (+-, * 4,) * 40, which is non zero if 
and only if r = 0. m 

A consequence of this theorem is that the only resolu- 
tion spaces that are invariant under the usual function's 
product are piecewise constant resolutions, which cor- 
responds to the Haar multiresolution. This multireso- 
lution has p = 0 in theorem 1, and yields poor approx- 
imation orders. The next thing to try is taking the 
projection of the product instead of the product itself. 
We shall see in section 3.2.2 that it does not work in the 
general case and that, in the cases where it works, it not 
suitable for the definition of multiresolution algebras. 
This means that we shall have to study alternate prod- 
uct operators that will be approximations of the classi- 
cal pointwise product (this is relevent, since the objects 
we multiply are essentially approximations themselves) 
and, possibly, alternate definitions of a multiresolution 
(section 4). 

3.2 Approximating product  operators 

ized to  the approximation of a product: 
3.2.1 Caracterization: theorem 1 is general- 

Theorem 3 Assume that * is a product operator such 
that (Vo, +, *) be a commutative ring, that * commutes 
with the shift of length L E NI and that the product 
of two compactly supported functions is zero beyond a 
certain f ied  distance. We define *j on V ,  by rescaling. 
Let N 5 p,  with p as in theorem 1. The two following 
conditions are equivalent: 

For any [a, b] there exist K and M such that, for 
any functions x and y of class CN+l and any 

Supt€[a,b] b y  - ( p j x >  *j (p.Y)l (2) 

j 5 0, 

< - K23(N+1) suPt€[a- M,b+M] 
( I" (N+l) ( t )  I + ly(N+')( t ) I  + I ( X Y ) ( N + l ) ( t ) l )  
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the following consistency condition is satified 

Proof: Necessary condition: define d = 
max {k E (0, N ]  n N s.t. (Vi E [O, k] n W)(VT E (0, L] )  
(ti * tk-2) ( T )  = T ~ } .  The condition (2) on the order 
of approximation implies that d = N .  Suficient w n -  
dition: let x and y two smooth, compactly supported 
functions. Because of theorem 1, we can replace x and 
y by Pjx and Pjy in the left handside of (2). Because 
of the product and projectors are localized, there exists 
K such that the value (Pjx) * j  (Pjy) ( t )  depends on the 
value of x and y in (t - K23, t + K2j) .  Let Tx and Ty 
the Taylor expansions of degree N of x and y at point t .  
We can replace (Pjx)*j(Pjy) ( t )  by (PjTx)*j(PjTy) ( t )  
without degrading the approximation. But it precisely 
equal to (PjT(xy)) ( t ) ,  where T(xy) stands for the Tay- 
lor expansion of xy at t .  The result follows from here. 

3.2.2 Lagrange product, interpolating scal- 
ing functions and Coiflets: because of theorems 2 
and 3, we can see that an approximating product oper- 
ator commutes with the elementary shift (e.g., L = 1) 
if and only if 

< tk,+* >= ( A  < t ,4* > ) k  for 1 5 k 5 min(p,N). 

This property is not verified by general scaling func- 
tions. As a consequence, the projection on a resolution 
of the classical product, considered as a product o p  
erator, is generally not associative (this is the only 
assumption in theorem 2 which is not verified in that 
case). Note that Beylkin [I] has introduced a recursive 
algorithm for computing the wavelet decomposition of 
the product of two signals. In theory, it requires (in 
most cases) an infinte number of computations. In 
practice, it is suggested to truncate the expansion at 
some resolution J .  This is equivalent to taking the 
projection P~(xy) as a product operator. As we have 
seen, this product is generally not associative; which 
means that the result depends on the order in which 
the operations are performed. The product of n signals 
can have (n  - l)! values, depending on the order. This 
is not easily manageable. 

(4) 

While (4) is not true in the general case,-it is known to 
be verified by two classes of scaling functions: Coiflets 
([3], [2]), which verify < tk,4* >= 0 for 1 5 k 5 p, and 
interpolation scaling functions ([7], [4]), which verify 
4(0) = 0 and 4(n) = 0 for n E Z, n # 0. In that case, 
we can use (1) as an approximate product operator, 
which we shall call the Lagrange product. 

Theorem 4 Assume that (VO,+,*, . )  be the algebra 
defined with the Lagrange product ( l ) ,  and that p 1 1 
in theorem 1. Then V1 is  not a subalgebra of VO. 

Proof: For an arbitrary large integer N ,  we can 
find an element U E VI and an element m E VI such 
that their coordinates in Vo be respectively U ,  = 1 and 
m, = n for 0 5 n 5 N .  If VI is invariant by product, 
then, by using the powers of rn and the Lagrange inter- 
polation, we see that we can find an element in VI with 
arbitrary coordinates in Vo for indices in (0, NI. This 
contradict the orthogonality of V1 and WO, which is 
expressed by a zero output through a given finite im- 
pulse response filter. 

Anticipating the results of section 4, we see that the 
Lagrange product is unable to provide a product which 
is causal with respect to the multiresolution. 

3.2.3 Construction of approximating prod- 
ucts for general scaling functions: In theorem 3, 
we have caracterized approximate product operators 
over Vo. There remains to build some of these, beside 
the Lagrange product that theorem 4 has shown to be 
improper for multiresolution algebras. This is done by 
identifying local polynomials in the coordinate space 
and then using theorem 3 through condition (3). 

Theorem 5 Let (50,. . . , zq )  a sequence of q + 1 real 
numbers. Then, for any j E N, there exists a unique 
polynomial Q of degree 5 q such that 

Proof: Define the matrix A = (a i , j )  with ak,, =< 
t i , p ;  >=< (t + k)',p; > and B = (b,,j) with bj,j = 

( 1 ) if i 5 j and b,,j = 0 if i > j .  B is invertible, 

and the matrix that changes the basis (1, ( t+k) ,  . . . (t+ 
k ) q ) ,  k E Z, into (1, t ,  . . . tq )  is equal to B k .  If we denote 
by M the vector matrix of the q + 1. first moments of 
p*, then we have: 

Let us now denote by B a matrix that is obtained from 
B by substituting each of its element by the outer prod- 
uct of it with the identity matrix that is the size of B. 
Then we have 

Id IyEP[ B;ld 1 
Bq (B - Id)' 

Observe that ( B  - Id)k has its first k columns equal to 
zero (as well as its last k rows). On the other hand, 
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we can see that the product of the large MT-diagonal 
matrix by BT is in fact equal to  BTn,(r, so that we 
have, in the end: 

Observe that the product of MT with the large matrix 
B- on the right is upper triangular, with the first (and 
non zero) moment of q5* on the diagonal. Since B is 
regular, A has full rank. w 

Let R,[t] the space of real polynomials with degree 5 q. 
Thanks to the previous mapping, we can identify any 
element of Vj to a sequence of elements of R,[t]. We 
shall denote by II this mapping from Vj into (R,(t])”. 
Observe that, if tk  E Vj and k 5 q, IItk is the sequence 
p , ( t )  = (n2j  + t )k ;  we shall use this in section 4. 

To construct a product operator on V j  that satisfies 
the conditions of theorem 3, it is sufficient to  con- 
truct a product on R,[t] which verifies (3), extend it 
to  (R,[t])’, and map it back to Vj .  The following the- 
orem describes product operators on R,[t] which satisfy 
(3). 

Theorem 6 Let * an associative, commutative prod- 
uct over R,[t] which satifies (3), and define Q E R,[t] 
by Q = t q  * t. Then, for any x and y in &[t], x * y is  
the H e m i t e  interpolation of x y  at the (possibly multi- 
ple) zeros of tq+’ - Q(t) in C.  Conversely, any such 
product is associative, commutative, and satisfies (3). 

Proof: one can verify recursively that the interpc- 
lation property is satisfied by Tn+l - T, * T ,  with 
To = 1. 

def 

The Lagrange product corresponds to the case where 
all the zeros are distinct. In that case, the polynomial 
identification is not necessary to compute the product, 
because it does not involve any derivative. In the other 
cases, the knowledge of the underlying polynomial is 
required. 

By extending an Hermite interpolating product * to 
(W,[t])z ,  and using II-’ to map it back to V,, an ap- 
proximate product on V j  is constructed, whatever the 
scaling functions, and for any j. Indeed, this product 
satisfies the assumptions of theorem 3 with L = q + 1 
and N = min(p, q). Observe that the product operator 
depends on j .  In the next section we study how one 
can build a multiresolution algebra atop a single resolu- 
tion V J endowed with such an Hermite approximating 
product. 

4 Climbing up the scales 

As we have seen, the Lagrange product does not al- 
low causal multiresolution algebras. But we can study 
multiresolutions under the polynomial representation 
instead of the functional representation VJ ,  or of the 
scaling coefficient representation < z,+;,, >, n E Z. 
This allows the use of the general Hermite interpolat- 
ing products of theorem 6. To study what can be a 
piecewise polynomial multiresolution algebra, we start 
by studying the subalgebras of (Rq[t])’ with I C Z and 
I finite. 

4.1 Subalgebras of (Rq[t])’ 
We relate the dimension of subalgebras to the over- 
lapping interpolation points, and build a subalgebra of 
minimum size from these. To that end, we denote by 
2 the set of interpolating points z as in theorem 6, 
without their order of multiplicity o(z). 

Lemma 1 Define SI as the subspace of sequences ( p k )  

in s such that, pf’(z + 2 ~ k )  = p f ) ( i :  + Pi) i f z  + 
2Jk = i: -+ 2 J i  a n d j  < min(o(z),o(i:)). Then Si is a 
subalgebra of S. 

Proof: The nature of the product operator garantees 
that the constraints that define SI are preserved by 
product. 

S1 is defined for any I c Z. For I = Z, S1 includes the 
images IItk of the polynomials such that k 5 min(p, q). 
This is actually the reason why we take a shift of 2’ in 
the definition of SI. 

For i  E I ,  we define 2i = 2+i2’, 21 = Uie12i. zi E 2i 
and zj E Zj overlap if they have the same value. For an 
element z E ZI, I(z) is the set of integer i E I such that 
a (necessarily unique) element zi(z) of 2i is equal to z. 
For z E 21 we define ~ ( z )  = maxiercz){o(zi(z))}, and 
R = CEEZI o(z). The following lemma gives an inter- 
pretation of S I  by relating it to an algebra of “global” 
polynomials. 

Lemma 2 Consider !Rn[t] with the the product defined 
by Hennite interpolation at the points z E 21 at order 
U(.). For any p E Rn[t], define H p  as the sequence 
H p  = (pk)kcI with pf)(Z) = p(j)(Z - k 2 J )  for any 
z E 2 and any 0 5 j 5 o(z). Then H is an algebraic 
isomorphism between Rn [t] and SI. 

Proof: It can be verified that H p  does belong to SI. 
From the definition of SI, we see that H is indeed one 
to  one. 

This lemma shows that the elements of SI can be rep- 
resented as one polynomial of degree < 52. Observe 
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that, for I = Z and k 5 q, the image n H t k  of tk  E V J  
is precisely tk E Rn[t]. 

Theorem 7 Let S a subalgebra of (R,[t])', and as- 
sume that S contains the constant sequence, To = 
( l ) i E 1 ,  and the linear sequence, Ti = (i2J+t)icr.  Then 
s1 c s. 

Proof: TO E SI n S and TI E SI n S; hence the 
powers T, = Tn-l * TI belong to S1 n S. On the 
other hand, H-'T, = tn if n < R. This proves that 
(To, Til.. . , To-1) is a basis of SI, and that S1 C S. 

def 

As a consequence, SI is a minimal subalgebra for all 
algebras that include the constant and linear sequences. 
Its dimension is R. If the number of elements of I is an 
even number 271, then (R,[t])' is dimension 2n(q + l ) ,  
and one can verify that R > n(q + 1) by studying the 
set of possible overlapping interpolation points. This 
implies that a subalgebra of (R, [t])'012n-11 cannot be 
obtained by a rescaling method similar to the method 
used to  define the resolutions in definition 1 ,  even in 
the polynomial representation, because it produces a 
subspace of dimension n(q + 1 )  < 0. 

R is minimized by maximizing the number of overlap- 
ping zeroes. Assuming that the distance between the 
elements of 2 does not exceed the shift 2 J ,  this max- 
imisation is achieved by taking q odd and taking two 
interpolation points at a distance 2J and a multiplicity 
of (q  + 1)/2.  For 1 = Z, and this interpolation choice, 
S1 is called a Hermite function space. It is the space 
of piecewise polynomial functions with degree 5 q and 
which are of class C(q-l)I2 at the nodes n 2 J ,  n E Z. 
Hermite function spaces are known in numerical analy- 
sis for their good interpolation properties and for giving 
simple composite integration rules [8]. 

4.2 Algebraic multiresolution a proximations 
Now that the subalgebras of (IW,[t]) have been stud- 
ied, one may wonder if they have some approximation 
properties. 

J! 

Theorem 8 Assume that S is an subalgebra of 
(R,[t])" which include constant and linear sequences 
as in theorem 7 with I = Z, and that q 2 p .  Then 
I T ' S  as a subalgebra of (VJ ,  +, *, .) which generates 
polynomials of degree smaller or equal to p .  

Proof: We have seen that "91 includes ntk for 0 5 
k I min(p, q) .  

Assuming that a projection from (W,[t])" into S has 
been defined, and that the projection and S commute 
with some shift of length M ,  it corresponds to a projec- 
tion from V J  into n-'S which commutes with shifts 

of length (q + 1)1V2~.  Thanks to the general version of 
theorem 1 [9], this implies that it approximates smooth 
compacty supported functions with an error of order 
( ( q +  1 ) M 2 J ) * f 1 .  The product is approximated with a 
similar error. 

Example of an algebraic multiresolution approx- 
imation q is taken odd with q = p ,  the interpolation 
points are 0 and 2J with both orders (q  + 1)/2.  S1 
is then a Hermite function space. The multiresolution 
(Hj),>o is defined with Ho = VJ, and Hj is the set of 
x E Ho such that, when n E Z is not a multiple of 23, 
the identity 

is satisfied. A projection from IIHo on IIH, can be 
defined by taking the average of ( I I X ) F ' ? ~ ( ~ ~ )  and of 
(n13c)i~)(O) at the points n # k2j ,  Vk E Z. Go- 
ing from I IHj  into n H j + l  amounts to smoothing one 
out of every two remaining singularity nodes. Such a 
projection garantees a linear approximation of order 
( ( q  + 1)2-'+j)P+l, and a similar product approxima- 
tion. This proves that this multiresoltion is indeed an 
sequence of approximation algebras. 

Where are the wavelets? Since classical rescaling 
is not used anymore to define the resolutions, this im- 
plies that wavelets, strictly speaking, have no use any- 
more. However, since multiresolutions can be defined, 
this implies the existence of detailed spaces. As in the 
classical theory of wavelets, the choice of detail spaces 
is not unique and depends on the practical use of the 
decomposition. 

For instance, it is possible, using cubic Hermite func- 
tion spaces, to have detail spaces such that the product 
of a detail signal with a smoother resolution signal is 
a detail signal with a similar singularity distribution. 
This is an extension of what happens in the case of the 
Haar basis. To that end, the basis of the detail space 
is defined by two pairs of polynomials. Both pairs have 
a zero value at the leftmost and rightmost boundaries. 
The first pair has two zero derivatives and opposite, 
non zero values at the middle interpolation point. The 
other pair has zero values at the midpoint and opposite 
derivatives. This solution corresponds to the previous 
projection, which performs an average of the values of 
the signal and of its derivative. There is also the possi- 
bility, in the same case, to define an L2 theory with an 
ad hoc approximation of the integration operator and 
of the nonnegativity of functions. The first solution 
seems more adapted to the study of static nonlineari- 
ties, while the second one seems to suit the dynamical 
case better; it also restores the property of the vanish- 
ing moments. Observe that, nonetheless, the nullity of 
the moments is not anymore an necessity for studying 
the smoothness of signals, since this directly handled 
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by the structure of the multiresolution. 
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