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Abstract

A scale and time recursive algorithm which computes
the wavelet frame inverse of a signal is proposed.

1 Introduction

1.1 Problem motivation and statement

Wavelet processing provides tools for denoising [4]
piecewise regular signals and estimating their regular-
ity {4, 2]. In control, it can be used to process the
controller inputs. For instance, measures can be de-
noised and their regularity may be computed hefore
their are differentiated for observation purposes [3]. To
do so, the wavelet transform must be computed online,
as well as the signal reconstruction.

The simplest method operates on the coefficients of the

signal in a wavelet basis, using a cascade of Finite Im-
pulse Response (FIR) filters [4]. Unfortunately, the
amplitude of the wavelet coefficients largely depends of
the locations of the transient patterns. This is aveided
by computing a shift invariant wavelet transform. [t is
a redundant representation; processing it may produce
data which is not itself a wavelet transform. The frame
inverse recovers a signal by solving a least squares
problem. This paper shows how to to compute the
frame inverse signal recursively in time and scale. It is
applied to the online denoising a a real life signal.

1.2 Dyadic shift invariant wavelet transform
Notations: If ¢ is a discrete sequence, z;1 (k] is defined
by z;7[k] = x[p] if k = 27p and 2;;[k] = 0 in the other
case.

Let h and g a pair of conjugate mirror FIR filters. If J
is an integer, and ag a discrete signal, the transform of
(ag,dy,...d1) of ap is defined recursively by

el = Y hitln— pla[nl (1
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dialel = 3 gitln —plds[n] (2)
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The signal can be reconstructed by the algorithme d
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trous[4]:

a;{p] = % > hstip— nlajgiinl + > g51(p — nidjnan]

ncf nck
(3)

2 Recursive frame inverse on the real line

Here a sequence ay and a family of sequences é;, j =
1,...,J are given for all sample times n € Z. The
frame inverse problem is:

j=7
min 517 3 (aslk] - aslk)® + 3 -2-1; S (d; (K] - 55[K])°

° keZ i=1 7 keZ
(4)

Theorem 1 The signal ag generated by the algorithme
@ trous (3) with a5 = ay and d; = §; s a solution to
problem ().

Proof: A direct computational proof can be found
in {1]. At the scale J, the signal is made of 27 non re-
dundent representations, which provide 27 reconstruc-
tions. Since the transforms are orthonormal, the op-
timum recenstruction at scale J is the average of the
reconstructions, and it is computed by the algorithme
4 trous. ™

3 Recursive frame inverse on the interval

The data is now only given on a finite interval
[K_,K,]. The lower scale (e.g., 1} in problem (4) is
allowed to vary with value j in order to find a scale
recursive solution. At scale 7, the problem is to find a
signal a;o which satisfies

k=K

min | = 3 (ags[k) — asfk)?

as
4.0 k=K_

i=J k=K,

+ % > (dyalk] = S:kD?| (5)

i=j+1 T k=K_



3.1 Notations

Boundery and inner sets: since we use wavelets on the
real axis to estimate a signal on an interval, bound-
ary effects are to be expected. Let [p_,py] (resp.
[9—,q4+]) the support of h (resp. g). We will use
the following adjacent intervals at the scale j: for
i=J,Tp=[K ,K¥|I; =¢T] =0 for j < J,
Iy =[65,7 =1 T; =y, v landT] = [vf +1,¢]]
with y; = K_ + (277! — 29)p; 4 2/ " max(q},p+),
v = Ky 4+ (277! - Y)p_ + 2/~ min(q_,p-), 6] =
K_+ (27! — 2)p_ + 2/ min(g_,p_) and ¢
K+ (2771 = 2)p, + 27 Y max(qy, py)-

Boundary matrices: let &7 = Iy —~ K_ and
& I'T — Ki; they do not depend on K.
and K. The symmetric matrices which computes
the cost on the boundary sets are computed re-
cursively with M7 (n,p) 29 Y kcpwoo) Gill —
klg;[J — k] + 2-3+1 Zke[.@;,am] hill — kjhi[J — K] +
Em,neﬁ’j’ MZ, (my )iyl — mlhy[J — nj, with ¢ = +

org == and 7 = (271 — 2)p, + 27~ max(gy. po)

Inner estimate: an intermediate signal &;
is defined by &) = 1/2%.cpe o, 9ilp -
kld; 41 (k] 123 her,, Rile —  Klajsalk]

+2jk12m,kel‘j+1 M;f'_l(m — K+,k - K+)h][p —
mla‘j+1[k] +2jFlZm,kEF;+l M)ti-l(m - K—’k -

K_)hslp — miaj k.
3.2 Optimal signals

Theorem 2 At the scale j the optimal signals d; sat-
isfy

(M) la;n]  ifne Ty
aylni = afnl ynel;  (®)
%;(M;’)‘iaj[n] ifne I‘j’

and their values for the other indices are indeterminate.
Ifn ey, a;(n] is obtained by the algorithme 4 trous.

Proof: Details of the proof are in [1]. Theorem (1) is
used when the data is far enough from the boundaries;
when there are boundary eflects, the ad hoc matrices
MY are used. ]

4 Application

At each time t, a dyadic shift invariant wavelet trans-
form (1,2) is performed on the past noisy data. Wavelet
coeflicients whose magnitude is below a given thresh-
old are set to zero to denoise the signal [4]. A signal
estimation is recovered using the algorithm of theorem
2 with K+ = t. From this sigral estimate at time t,
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a signal value estimate is extracted for the time £ — 1.
if r is small, boundary matrices are used; if + is large
enough, the algorithme & trous is used.

The figure below shows a measure from an actual plant
which is controlled to produce piecewise constant out-
puts, and its denoising using a wavelet threshold and
a reconstruction with the algorithme & trous'. The es-
timation delay due to the FIR filters is 381 time steps.
Tests show that, if the delay is shortened using bound-
ary matrices, the estimate becomes rapidly corrupted
and the derivative is not reliable.
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5 Conclusion

A recursive algorithm which estimates a signal in the
least squares sense from pervaded wavelet data is de-
tailed. It has been tested on real life signals; these tests
indicate that the price to pay for a good estimate may
be some important delays.
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LThe signal has a length of 2424. The transform is computed
with Daubechies wavelets with two vanishing moments and over
7 scales. The threshold corresponds to an estimated variance of
9 (¢ = 3). A Simulink Wavelet toolbox featuring this denois-
ing is available at http://cas.ensmp.fr/ chaplais/FTP/Matlab.
sources/SimuWave/



